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Abstract

In this paper, we present a new C++ API with a fluent interface called PiCo (Pipeline Composition). PiCo’s program-
ming model aims at making easier the programming of data analytics applications while preserving or enhancing their
performance. This is attained through three key design choices: 1) unifying batch and stream data access models, 2) de-
coupling processing from data layout, and 3) exploiting a stream-oriented, scalable, e�cient C++11 runtime system.
PiCo proposes a programming model based on pipelines and operators that are polymorphic with respect to data types
in the sense that it is possible to reuse the same algorithms and pipelines on di↵erent data models (e.g., streams, lists,
sets, etc.). Preliminary results show that PiCo, when compared to Spark and Flink, can attain better performances in
terms of execution times and can hugely improve memory utilization, both for batch and stream processing.

Keywords: Big Data, High Performance Data Analytics, Domain Specific Language, C++, Stream Computing, Fog
Computing, Edge Computing.

1. Introduction

The importance of Big Data has been strongly assessed
in the last years, and their role is crucial to companies
institutions, and research centres, which keep incorporat-
ing their analysis into their strategic vision, using them5

to make better and faster decisions. In the next years,
most of those Big Data will be produced by the Inter-

net of Things (IoT). By 2020, Cisco expects 50 billion of
connected devices [1] with an average of almost 7 per per-
son. According to the current IoT+Cloud paradigm for10

Big Data Analytics (BDA), data sensed from distributed
devices ought to be stored in cloud data centres to be
analysed. Whilst data-processing speeds have increased
rapidly, bandwidth to carry data to/from data centres has
not increased equally fast [2]. For this, supporting the15

transfer of data from billions of IoT devices to cloud to be
analysed is becoming increasingly unrealistic due to the
volume and geo-distribution of those devices. Moreover,
the need to reduce latency to enable applications to react
promptly to events is impelling, and it is common to push20

computation and storage closer to where data is continu-
ously generated [3].

Fog (or Edge) computing actually aims at exploiting many
distributed edge nodes (e.g., routers, set-top boxes, mo-
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bile devices, micro data centres) to selectively support dis-25

tributed latency- or bandwidth-sensitive applications also
implementing near-data analytics [3]. Fog configures as
a powerful enabling complement to the IoT+Cloud sce-
nario, featuring a new layer of cooperating devices that
can run services and analytic tasks, independently from30

and contiguously with existing Cloud systems [4].

Distributing BDA pipelines into Fog systems poses new
challenges, stemming from the dynamic and open nature of
these systems. For these systems we envision the following
desiderata:35

1. The ability to process partial data, either a batch’s
partition or a stream’s time window. Neither edge
devices nor the Cloud will have a global vision of the
whole data (no data lake).

2. The ability to switch from stream to batch data model40

(and vice versa), as well as reusing code and mixing
up the two models in large systems. Data will be sub-
ject to di↵erent degrees of aggregation or coalescing
depending on the system condition.

3. The capacity to deploy on heterogeneous computing45

devices, possibly low-power and with a lightweight
framework stack.

4. The availability of a model for users with a clear
and compositional semantics. Compositionality at the
language level should be reflected at run-time level.50

An update in the BDA pipeline should not require to
recompile and redeploy the whole system.

From the programmability perspective, a common aim in
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BDA tools is to allow ease of programming by providing
a programming model independent from the data model,55

resulting in uniform interfaces for batch and stream pro-
cessing. For instance, such uniformity is the cornerstone of
Google Dataflow [5]. Similarly, modifying a batch-oriented
Spark [6] program to perform stream processing amounts
to wrapping the existing code with stream-oriented con-60

structs.

In this context, we advocate PiCo (Pipeline Composi-
tion), a new C++ framework with a fluent API, based on
method chaining [7], designed over a conceptual framework
of layered Dataflow. PiCo’s programming model aims at65

facilitating the programming and enhancing the perfor-

mance of BDA through a unified batch and stream data
model (cf. desideratum 2), coupled with a stream-oriented,
scalable, e�cient C++11 run-time system (cf. desidera-
tum 3).70

Moreover, PiCo stands on a functional abstract model,
mapping each program to its unambiguous seman-
tics (cf. desideratum 4). This was an explicit design choice,
that distinguishes PiCo from most mainstream BDA tools.
For instance, Spark, Storm [8], and Flink [9] typically re-75

quire specializing the algorithm to match the data access
and layout. Specifically, data transformation functions ex-
hibit di↵erent functional types when accessing data in dif-
ferent ways. For this reason, the source code must often be
revised when switching from one data model to another.80

Some of them, such as Spark, provide the runtime with
a module to convert streams into micro-batches (Spark
Streaming, a library running on Spark core), but still, dif-
ferent code needs to be written at the user-level.

PiCo is designed as a headers-only C++11 framework and85

supports headers-only analytics applications. This means
that a PiCo application can be compiled to any target
platform supporting a modern C++ compiler. Since the
PiCo run-time exhibits no dependencies from third-party
libraries, this makes it easy to port PiCo applications, and90

even deploy them on specialised hardware platforms and
appliances, e.g., to run high-frequency stream analytics for
edge computing. A PiCo pipeline could also be directly
compiled into a FPGA bitstream.

PiCo has been designed under a philosophy that can be95

summarized as “high performance at low cost,” based
on a lightweight C++ runtime, in which data collections
are streamed among computational nodes to minimize the
memory footprint. In particular, PiCo relies on Fast-
Flow [10], a parallel programming framework designed to100

support streaming applications on cache-coherent multi-
core platforms. As confirmed by the results presented be-
low, PiCo steadily exhibits low memory consumption with
no compromises on the performance side.

The present paper is an extension of a previous workshop105

paper [11]. In particular, the PiCo API has been extended
to include iterative and binary pipelines, making it possi-

ble to implement join-based applications like Page Rank.
The experimental evaluation has also been enriched with
the use of larger batch and stream datasets, along with110

Page Rank. Additionally, the PiCo abstract model is now
presented—viz., formal syntax and semantics.

This paper thus proceeds as follows. In Section 2, we pro-
vide a brief survey over the state-of-the-art data analytics
frameworks. In Sections 3 and 4, we introduce the abstract115

programming model and its current implementation, thus
discussing the C++ API exposed by PiCo. In Section 5,
we provide some experimental evaluation. Finally, we con-
clude the paper in Section 6 and present some future work.

2. Related Work120

In recent years, a plethora of BDA tools has been pro-
posed. Although each tool claims to provide better pro-
gramming, data, and execution models—for which only
informal semantics are generally provided—all share some
characteristics at di↵erent levels [12].125

Apache Spark design is intended to address iterative com-
putations by reusing the working dataset by keeping it
in memory [13, 6]. For this reason, Spark represents a
landmark in Big Data tools history, having a strong suc-
cess in the community. The overall framework and paral-130

lel computing model of Spark is similar to MapReduce,
while the innovation is in the data model, represented
by the Resilient Distributed Dataset (RDD). An RDD
is a read-only collection of objects partitioned across a
cluster of computers that can be operated on in paral-135

lel. A Spark program can be characterized by the two
kinds of operations applicable to RDDs: transformations

and actions. Those transformations and actions compose
the directed acyclic graph (DAG) representing the ap-
plication. For stream processing, Spark implements an140

extension through the Spark Streaming module, provid-
ing a high-level abstraction called discretized stream or
DStream [13]. Such streams represent results in contin-
uous sequences of RDDs of the same type, called micro-

batches. Operations over DStreams are “forwarded” to145

each RDD in the DStream, thus the semantics of oper-
ations over streams is defined in terms of batch process-
ing according to the following simple translation: Given
a DStream a = [a1, a2, . . .]—i.e., a possibly unbounded
ordered sequence of items, where each item ai is a micro-150

batch of type RDD—then op(a) = [op(a1), op(a2), . . .]. All
RDDs in a DStream are processed in order, whereas data
items inside an RDD are processed in parallel without any
ordering guarantees.

Formerly known as Stratosphere [14], Apache Flink [9] fo-155

cuses on stream programming. The abstraction used is
the DataStream, a representation of a stream as a single
object. Operations are composed (i.e., pipelined) by call-
ing operators on DataStream objects. Flink also provides
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the DataSet type for batch applications, that identifies a160

single immutable multi-set—a stream of one element. A
Flink program, either for stream or batch processing, is
a term from an algebra of operators over DataStreams or
DataSets, respectively. Flink, di↵erently from Spark, is
a stream processing framework, meaning that both batch165

and stream processing are based on a streaming runtime.
It can be considered one of the most advanced stream pro-
cessors as many of its core features were already considered
in the initial design [9].

Apache Storm is a framework targeting only stream pro-170

cessing [8]. It is perhaps the first widely used large-scale
stream processing framework in the open source world.
Storm’s programming model is based on three key notions:
Spouts, Bolts, and Topologies. A Spout is a source of a
stream, that is (typically) connected to a data source or175

that can generate its own stream. A Bolt is a processing
element, so it processes any number of input streams and
produces any number of new output streams. A topology
is a composition of Spout and Bolts.

Google Dataflow SDK [5] is part of the Google Cloud Plat-180

form. Here, the term “Dataflow” refers to the “Dataflow
model,” to describe the processing and programming
model of the Cloud Platform. This framework aims at
providing a unified model for stream, batch, and micro-
batch processing. The base entity is the Pipeline, repre-185

senting a data processing job consisting of a set of opera-
tions that can read a source of input data, transform that
data, and write out the resulting output. The data model
in Google Dataflow is represented by PCollections, repre-
senting potentially large, immutable bags of elements, that190

can be either bounded or unbounded. The bounded (or
unbounded) nature of a PCollection a↵ects how Dataflow
processes the data. Bounded PCollections can be pro-
cessed using batch jobs, that might read the entire data set
once and perform processing in a finite job. Unbounded195

PCollections must be processed using streaming jobs, as
the entire collection may never be available for process-
ing at any one time, and they can be grouped by using
windowing to create logical windows of finite size.

Thrill [15] is a prototype of a general purpose big data200

batch processing framework with a dataflow style program-
ming interface implemented in C++ and exploiting tem-
plate meta-programming. Thrill’s data model is the Dis-

tributed Immutable Array (DIA), an array of items dis-
tributed over the cluster, to which no direct access to ele-205

ments is permitted—i.e., it is only possible to apply oper-
ations to the array as a whole. A DIA remains an abstract
entity flowing between two concrete DIA operations, al-
lowing to apply optimizations such as pipelining or chain-
ing, combining the logic of multiple functions into a sin-210

gle one (called pipeline). A consequence of using C++ is
that memory has to be managed explicitly, although mem-
ory management in modern C++11 has been considerably
simplified—for instance, Thrill uses reference counting ex-

tensively. Thrill provides a SPMD (Single Program, Mul-215

tiple Data) execution model, similar to MPI, where the
same program is run on di↵erent machines.

StreamBox [16] is another recent stream processing en-
gine, also in C++, specifically designed to exploit the
parallelism of multicore machines. StreamBox executes220

a pipeline of transforms over records, expressed using a
model similar to Google Dataflow (viz., PCollection,
ParDo, etc.). Records can be grouped into epochs delin-
eated by watermarks. To enhance parallelism, records as
well as epochs may be processed out-of-order. However,225

all records within an epoch are ensured to be consumed
before the watermarks, thus ensuring an appropriate or-
dering between epochs.

Despite the fact that the design of both the C++ API and
the underlying abstract model focuses on minimality (à la230

RISC), PiCo is expressive enough to almost subsume all
the mentioned frameworks. Thus, starting from a program
expressed in one of those tools’ API, any function can eas-
ily be mapped to PiCo functions, yielding a PiCo Pipeline
with a similar but more abstract semantics.235

From the implementation perspective, along with the same
line as StreamBox, PiCo is based on a C++ stream-based
runtime, thus we expect PiCo and StreamBox to exhibit
similar performance. Unfortunately, it was not possible to
deploy StreamBox on our testing platform, therefore an240

e↵ective comparison has to be relegated to future work.

3. PiCo Abstract Model

In this section, we present the abstract model underly-
ing PiCo [17, 18]. We remark that providing the possibil-
ity of reasoning about programs in abstract—rather than245

operational—terms is a primary goal of PiCo, in particular
with respect to the Fog context, where compositionality is
a key requirement (cf. desideratum 4).

The building blocks of the PiCo syntax are
Pipelines (Sect. 3.4), that are composed by Opera-250

tors (Sect. 3.3) according to a type system supporting
partial polymorphism. Conversely, Collections (Sect. 3.2)
are considered only at the semantic level, where a PiCo
Pipeline is mapped to a Dataflow graph, with tokens,
nodes, and edges representing, respectively, Collections,255

Operators, and data dependencies. But first, we present
a brief overview of dataflow concepts.

3.1. The Dataflow Model

Dataflow is a model of computation where a program is
described as a set of concurrent processes—aka. actors—260

communicating with each other by sending/receiving data
tokens through channels [19].
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A set of firing rules is associated with each actor. Pro-
cessing then consists of “repeated firings of actors” based
on the availability of tokens. The Dataflow model is inher-265

ently parallel as all actors whose data tokens are available
can be fired simultaneously.

More precisely, a Dataflow actor consumes input tokens
when it fires and then produces output tokens. The func-
tion mapping input to output tokens is called the kernel.270

Typically, kernels are purely functional, meaning that fir-
ings have no side e↵ects and that output tokens are pure
functions of the input tokens. However, the model can be
extended to allow stateful actors. As for output tokens,
they can be replicated and placed onto all output chan-275

nels (i.e., broadcasting) or sent to specific channels (e.g.,
switch, scatter). Extensions to the basic model also al-
low to express arbitrary stream consuming policies (e.g.,
gathering from any channel).

3.2. Collections280

In PiCo, collections are semantic entities that flow across
semantic graphs, in the form of tokens. A collection is ei-
ther bounded or unbounded ; moreover, it is also either or-
dered or unordered. A combination of the mentioned char-
acteristics defines the structure type of a collection. We285

refer to the key structure types with a mnemonic name:1

• a bounded, ordered collection is a list;

• a bounded, unordered collection is a (bounded) bag;

• an unbounded, ordered collection is a stream.

A collection type is characterized by a structure type and290

a data type, namely the type of the collection elements.
Formally, a collection type has form T� where � 2 ⌃
is the structure type, T is the data type, and where
⌃ = {bag, list, stream} is the set of all structure types.
We also partition ⌃ into ⌃b and ⌃u, defined as the sets295

of bounded and unbounded structure types. Moreover,
we define ⌃o as the set of ordered structure types, thus
⌃b \ ⌃o = {list} and ⌃u \ ⌃o = {stream}. Finally, we
allow the void type ;.

At the semantic level, collection are Dataflow tokens. Un-300

ordered collections are mapped to multi-sets, whereas or-
dered collections are mapped to sequences, in which each
item is associated with a numeric timestamp, represent-
ing its temporal coordinate. In the following, for the sake
of simplicity, we restrict the presentation to unordered,305

bounded collections (i.e., multi-sets), although the model
also covers the other collection types [17].

1We do not deal with unbounded, unordered collections: un-
bounded collections typically represent data streams, which are se-

quences of items, thus are ordered.

3.3. Operators

Operators are the building blocks composing a Pipeline.
They are categorized according to the following grammar310

of core operator families:

hcore-operatori ::= hcore-unary-operatori
| hcore-binary-operatori

315 hcore-unary-operatori ::= hmap i | hcombine i
| hemit i | hcollect i

hcore-binary-operatori ::= hb-map i

In addition to core operators, generalized operators can320

decompose their input collections by:

• partitioning the input collection according to a user-
defined grouping policy (e.g., group by key);

• windowing the ordered input collection according to a
user-defined windowing policy (e.g., sliding windows).325

The complete grammar of operators follows:

hoperatori ::= hcore-operatori
| hw-operatori | hp-operatori | hw-p-operatori

where w- and p- denote decomposition by windowing and330

partitioning.

Operator types have form T� ! U�, where T� and U� are
collection types. All operators are polymorphic with re-
spect to data types. Moreover, all operators but emit and
collect are polymorphic with respect to structure types.335

Conversely, each emit and collect operator deals with
one specific structure type. For example, an emit for a
finite text file (i.e., a from-file Operator) would gener-
ate a bounded collection of strings, whereas an emit for a
stream of tweets would generate an unbounded collection340

of tweet objects. The depicted polymorphic type system is
the essence of the unified processing model for batch and
streaming, that we identified as a primary requirement for
the Fog context (cf. desideratum 2).

3.3.1. Data-Parallel Operators345

Operators in the map family process data collections on a
per-element basis, according to a kernel function. They
are defined by the following grammar:

hmap i ::= map f | flatmap f350

where f is the kernel function. The former produces ex-
actly one output element from each input element, whereas
the latter produces a (possibly empty) bounded set of out-
put elements for each input element and the output col-
lection is the merging of the output sets. Formally:

map f m = {f(mi) •mi 2 m}
flatmap f m =

S
{f(mi) •mi 2 m}

Operators in the map family have type T� ! U�, for � 2 ⌃.
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Operators in the combine family synthesize the elements
from an input collection into a single value. They are
defined by the following grammar:

355
hcombine i ::= reduce � | fold+reduce �1 z �2

The former corresponds to a classical reduction with a
binary operator, whereas the latter is a two-phase aggre-
gation that uses �2 to reduce a set of partial accumulated
states obtained using z and �1.2 Formally, for the reduce
operator—we do not discuss further the fold+reduce for
the sake of simplicity:

reduce � m =
nM

{mi 2 m}
o

Operators in the combine family deal only with bounded
collections, thus they have type T� ! U�, for � 2 ⌃b.

3.3.2. Pairing Operators

Operators in the b-map family are intended to be the bi-360

nary counterparts of map operators. They are defined by
the following grammar:

hb-map i ::= zip-map f | join-map f
| zip-flatmap f | join-flatmap f365

The binary kernel f takes as input pairs of elements, one
from each of the input collections. Variants zip- and
join- correspond to the following pairing policies, with
some restrictions:

• Zipping is restricted to ordered collections and pro-370

duces the pairs of elements with the same position
within the order of respective collections;

• Joining is restricted to bounded collections and pro-
duces the Cartesian product of the input collections.

In the following, since our presentation is restricted to un-375

ordered collections, we only consider join- operators, that
have type T� ⇥ T 0

� ! U�, for � 2 ⌃b.

The join-map and join-flatmap operators have the fol-
lowing semantics, where m1 and m2 are input multi-sets:

join-map f (m1,m2) = {f(x, y) • (x, y) 2 m1 ⇥m2}
join-flatmap f (m1,m2) =

S
{f(x, y) • (x, y) 2 m1 ⇥m2}

3.3.3. Windowing Operators

Windowing operators are defined according to the follow-380

ing grammar, where ! is the windowing policy:

hw-operatori ::= w-hcore-operatori !

2More precisely, z 2 S is the initial value, �1 : S ⇥ T ! S is
the fold (how each input item a↵ects the accumulated state) and
�2 : S ⇥ S ! S is the reduce (how the various states are combined
into a final value).

In semantic terms, a windowing operator takes an ordered
collection, produces a collection (with the same structure385

type as the input one) of windows (i.e., lists), according
to the windowing policy !, and applies the subsequent
operation to each window.

We also rely on windowing to extend bounded operators3

and have them deal with unbounded collections; for in-
stance, given a (bounded) windowing combine operator
op, the semantics of its unbounded variant is a direct ex-
tension of the bounded one. Formally, using + as an infix
operator for list concatenation, where s(!) denotes the re-
sult of windowing the stream s according to policy !:

w-op ! s = op s(!)
0 + . . .+ op s(!)

i + . . .

For the sake of simplicity, we omit some parts of the for-
malization, including windowed collections and unbounded390

map operators. We refer to the complete PiCo formaliza-
tion [17] for further details.

3.3.4. Partitioning Operators

Partitioning operators are defined according to the follow-
ing grammar, where ⇡ is the partitioning policy:395

hp-operatori ::= p-hcore-operatori ⇡

Operators in the combine and b-map families support par-
titioning, so, for instance, a p-combine produces a multi-
set, in which each value is the synthesis of one group; also400

the natural join operator from the relational algebra is a
particular case of per-group joining.

In semantic terms, a partitioning policy ⇡ : T ! K defines
how to group the elements from a T -typed multi-set m,
such that each element mi is mapped to a sub-collection,405

depending on the corresponding key ⇡(mi) 2 K. The
sub-collection containing all the elements from m mapped
to k by ⇡ is denoted by �⇡

k (m), whereas the collection
containing all such sub-collections is denoted by c(⇡).

Given a combine operator op and a partitioning policy ⇡,
the semantics of operator p-op ⇡ is as follows:

p-op ⇡ c =
n
op c0 • c0 2 c(⇡)

o

As for binary operators, given an operator op in the b-map
family and a partitioning policy ⇡, the semantics of p-op ⇡
is defined as follows, for all sub-collections mapped to the
same key k 2 K:

p-op ⇡ (m1,m2) =

[
{op (�⇡

k (m1),�
⇡
k (m2))}

410

The common group-by-key partitioning, with ⇡1 being the
left projection,4 can be identified by collections with data
type K ⇥ V and ⇡ = ⇡1.

3An operator is bounded if it only deals with bounded collections.
4⇡1(x, y) = x
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Figure 1: Graphical representation of PiCo Pipelines.

3.4. Pipelines

PiCo’s cornerstone concept is the Pipeline. The grammar415

for Pipelines is essentially a graph-composition of Opera-
tors (Sect. 3.4.1), that allows to map each Pipeline to a
corresponding Dataflow graph, representing its semantic
counterpart (Sect. 3.4.2).

3.4.1. Pipeline Syntax420

Fig. 1 presents the grammar for Pipelines. Pipelines in
Figs. 1a, 1b, and 1c, respectively, produce, consume, and
process data, through the operator op. Fig. 1d is the to
composition, in which the output from Pipeline p is sent as
input to every downstream Pipeline—a particular case is425

when n = 1, which then represents basic Pipeline chaining.
Fig. 1e is the merge composition, in which the outputs
from two Pipelines are merged. Fig. 1f is the pair-with
composition, in which the input is paired with the output
of an internal Pipeline P , through the binary Operator op.430

Finally, Fig. 1g is the iterate constructor, that represents
iterative processing by feeding the output of the internal
Pipeline P back as input to P itself, until some termination
condition (denoted by h in Fig. 1g) holds.

Note that in Fig. 1, a dashed line means the path may be435

void. We refer to such input- or output-less Pipelines as,
respectively, sources and sinks. In particular, a Pipeline is
executable only if it is both input-less and output-less. The
type system for Pipelines, which we omit for the sake of
simplicity, defines legal compositions with respect to both440

data and structure types—see the whole formalization for

further details [17]. We remark that, to ease the imple-
mentation of composition and typing, we prohibit legal
pipelines to have multiple input or output paths.

3.4.2. Pipeline Semantics445

The semantics of a Pipeline is obtained by mapping its syn-
tactic tree to a Dataflow graph, such that Operators are
mapped to Dataflow nodes, Dataflow edges are inferred
from the Pipeline structure, and Dataflow tokens repre-
sent either synchronization signals (for sources, e.g., a fir-450

ing signal for an emit Operator that allows to read from a
file: cf. sect. 3.3) or whole collections. Therefore, the pro-
posed mapping is denotational rather than operational, in
the sense that it models the (abstract) functional transfor-
mations applied to (possibly unbounded) data collections,455

rather than any specific data processing.

The most basic mapping is for a single-Operator Pipeline
(Figs. 1a, 1b, and 1c), resulting in a Dataflow graph with
a single node that, when fired upon the arrival of an input
token, produces and emits a token according to its Oper-460

ator semantics; moreover, if the Operator is input-less, a
firing (synchronization) token is preloaded on the incom-
ing edge, so that the node is activated at the beginning of
the (logical) execution.

The semantic mapping for compound Pipelines is defined465

by structural induction. Some mappings introduce addi-
tional Dataflow nodes, with respect to syntactic nodes;
for instance, mapping to and merge Pipelines introduces
gathering nodes at the downstream end of the resulting
Dataflow graph. Moreover, some mappings require to470

modify the internal behavior of Dataflow nodes; for in-
stance, mapping a to Pipeline requires modifying the most
upstream node, so that it emits n copies of the produced
tokens, one for each downstream sub-graph (resulting from
mapping each of the downstream Pipeline in Fig. 1d).475

Finally, mapping iterate Pipelines is the most complex
case, since it requires to both: 1. introduce an additional
upstream (resp. downstream) switch node to control the
input source (resp. output destination) for the iteration
“box”; 2. introduce additional edges from the downstream480

switch to each input-less node within the iteration box, so
that firing tokens are emitted to trigger the next iteration.

4. PiCo Implementation

In this section, we present an implementation of the model
discussed in Section 3. The presented implementation is485

available as open-source code.5

The logical path from an (abstract) PiCo Pipeline to
the corresponding runtime-level support is illustrated in

5
https://github.com/alpha-unito/PiCo
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Figure 2: PiCo implementation schema.

Fig. 2. First, the user translates the abstract Pipeline into
a C++ program, using a fluent-style C++ API (Sect. 4.1).490

Then, the program is mapped to a parallel execution (PE)

graph, in which each operator is converted into a multi-
node Dataflow network, by introducing as much paral-
lelism as possible and performing network-to-network op-
timizations (Sect. 4.2). Finally, the PE graph is mapped to495

an actual thread network, on top of the FastFlow parallel
programming framework (Sect. 4.3).

Let us stress, as highlighted in Fig. 2, that every PiCo pro-
gram is endowed with an abstract semantics that allows
the user to reason about data transformations (i.e., busi-500

ness logic) without dealing with any operational aspect
(related with program execution).

Finally, we remark that the choice of implementing PiCo as
a C++ stack was driven by the aim of minimising both the
run-time overhead and the resource consumption. This is505

desirable from a high-performance perspective, but also a
fundamental aspect in the Fog context, where dealing with
limited resources is paramount (cf. desideratum 3). The
experimental evaluation in Sect. 5 provides some quanti-
tative assessment of this aim.510

4.1. C++ API

In this section, we provide a C++ API for expressing
PiCo Pipelines (Sect. 4.1.1) and Operators (Sect. 4.1.2).
As a fundamental design choice, we adopted a functional
fluent-style interface, exploiting method cascading (aka.515

method chaining) to relay the instruction context to a
subsequent call. According to the functional design, each
function call returns a fresh object (either Pipeline or Op-
erator6), so that natural composition is supported. More-
over, the API is endowed with a type system that reflects520

the polymorphism provided by the abstract model, re-
lying on both compile-time and run-time type polymor-
phism (Sect. 4.1.3). Finally, in Sect. 4.1.4, we show the
complete source code for a PiCo implementation of the
PageRank algorithm.525

6Throughout the present paper, we seamlessly abuse the terms
Pipeline and Operator to denote both abstract entities and C++
objects of the Pipe and Operator classes.

4.1.1. Pipes

Table 1 summarizes the most relevant functions in the
API for the Pipe class, whose instances represent PiCo
Pipelines. For each function, the corresponding abstract
meaning is described.530

The first function is the default constructor, that produces
an empty Pipeline, whereas the second constructor pro-
duces a single stage Pipeline, containing only the argu-
ment Operator. The add function produces a Pipeline by
adding the argument Operator to the subject Pipeline p.535

Similarly, the two flavors of the to function attach to p,
respectively, a single Pipeline and a series of independent
Pipelines, each receiving as input the output of p. It can
be easily observed that add(op) is just syntactic sugar for
to(Pipe{op}).540

The pairWith function is similar to the single-argument
to function, but it routes the output of both the subject
and the argument Pipelines into a binary Operator. Simi-
larly, the merge function merges the outputs from the two
Pipelines. Finally, the iterate function produces an it-545

erative version of the subject Pipeline, taking as input a
generic termination condition. In the current implemen-
tation, only definite (fixed-length) iterations are provided,
but the API is general enough to support arbitrarily com-
plex conditions.550

The above functions allow to define the structure of a
Pipeline, indeed they correspond to the grammar rules il-
lustrated in Fig. 1. In addition to the structural functions,
the run function triggers the execution of a Pipeline, pro-
vided the Pipeline is executable (cf. Sect. 3.4.1).555

4.1.2. Operators

The second part of the C++ PiCo API represents the PiCo
operators. Following the grammar in Sect. 3.3, we orga-
nize the API in a hierarchical structure of unary and bi-
nary operator classes. The design of the operators API560

is based on inheritance to easily follow the grammar de-
scribing all operators; nevertheless, we recognize that us-
ing generic programming (e.g., based on templates) would
lead to safer code, in which composition errors could be
detected at compile-time rather than run-time.565

UnaryOperator is the base class representing PiCo unary
operators, i.e., those with no more than one input or out-
put collection. For instance, a Map object takes a C++
callable value (i.e., a kernel) as parameter and represents
a PiCo operator map, which processes a collection by ap-570

plying the kernel to each item. Also, ReadFromFile is a
subclass of UnaryOperator which represents those PiCo
operators that produce a (bounded) unordered collection
of text lines, read from an input file.

BinaryOperator is the base class representing operators575

with two input collections and one output collection. For
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Function Abstract Meaning

Pipe() Create an empty Pipeline

template<typename OpType>

Pipe(OpType&)
Create a Pipeline from an initial operator

template<typename OpType>

Pipe add(OpType&)
Create a Pipeline by adding a new stage to the subject

Pipe to(Pipe&) Create a Pipeline by appending the argument Pipeline to the subject

Pipe to(std::vector<Pipe*>&) Create a Pipeline by appending a set of Pipelines, all fed by the subject

template<typename BinaryOpType>

Pipe pairWith(Pipe&, BinaryOpType&)
Create a Pipeline by pairing the subject with an argument Pipeline,
through a binary operator

Pipe merge(Pipe& pipe) Create a Pipeline by merging the subject with the argument Pipeline

template<typename TerminationPolicy>

Pipe iterate(TerminationPolicy&)
Create a Pipeline that iterates the subject until the termination condition
is met

void run() Execute the subject Pipeline

Table 1: The Pipe class API. Although const annotations are omitted for readability, all the arguments are const and all the functions are
marked as const, yielding a purely functional API.

instance, a BinaryMap object represents a PiCo Operator
in the b-map family (e.g., join-map), that processes pairs
of elements coming from two di↵erent input collections and
produces a single output for each pair. A BinaryMap ob-580

ject is passed as parameter to Pipeline objects built by
calling the pairWith member function (cf. Table 1). Ta-
ble 2 summarizes the constructors for the subclasses of
the Operator class, whose instances represent PiCo Op-
erators. For each constructor, the corresponding abstract585

Operator is described.

The constructors Map, FlatMap, and Reduce produce core
data-parallel Operators (cf. Sect. 3.3.1). The FlatMap

constructor takes as input a FlatMapCollector object,
whose add method is used to build the output collec-590

tion to be emitted by a kernel instance. Similarly, the
JoinMap constructor produces a (core) binary join-map

Operator (cf. Sect. 3.3.2).

In addition to core Operators, some constructors are pro-
vided that produce partitioning Operators (cf. Sect. 3.3.4).595

For instance, the ReduceByKey constructor produces a
p-reduce Operator, that reduces a key-value collection
by applying the kernel function to each value mapped
to a given key. Similarly, a JoinMapByKey produces a
p-join-map Operator, that applies the kernel function to600

each pair generated by joining two key-value collections, on
a per-key basis. Moreover, although not shown in Table 2,
the window function can be invoked on any supported Op-
erator (e.g., a combine Operator), by passing as input a
windowing policy, yielding a windowing Operator.605

Constructors for source and sink Operators are also pro-
vided. For instance, the ReadFromFile constructor pro-
duces a from-file Operator, that reads data from an
input file on a per-line basis and returns each line as a
std::string. Dually, the WriteToFile constructor pro-610

duces a to-file Operator, that writes data to an output

file through the << operator. Finally, ReadFromSocket and
WriteToSocket are the socket-based sources and sinks.

4.1.3. Polymorphism

One distinguishing feature of the PiCo programming615

model, compared to other state-of-the-art frameworks, is
that the same syntactic object (viz., a Pipeline or an Op-
erator) can be used to process data collections having dif-
ferent types. As discussed in Sect. 3, Pipelines and Opera-
tors are polymorphic with respect to both data types and620

structure types (i.e., the “shape” of the collections, such
as bag or stream).

In the proposed C++ API, the data type polymorphism
is expressed at compile-time by implementing operators as
template classes. As shown in Table 2, each operator takes625

a template parameter representing the data type of the
collections processed by the operator. Namely, any copy-

constructible
7 data type is supported. Moreover, each

Pipeline object is decorated by the set of supported struc-
ture types.630

In the proposed type system, all polymorphism is dropped
in executable Pipelines. Therefore, executable Pipe ob-
jects have a unique type. By construction, source op-
erators (i.e., objects of the SourceOperator class) play
the role of specifying the unique structure type processed635

by the (executable) pipe they belong to. For instance,
a pipe starting with a ReadFromFile type operator will
only process multi-sets, whereas a pipe starting with a
ReadFromSocket type operator will only process streams.

The types supported by a Pipe object are not exposed640

by the C++ API, but they are exploited at run-time to

7
http://en.cppreference.com/w/cpp/concept/

CopyConstructible
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Constructor Abstract Operator

template<typename T, typename U>

Map(std::function<U(T&)> f)
map f , with kernel function f : T ! U

template<typename T, typename U>

FlatMap(std::function<void(T&, FMapCollector<U>&)> f)
flatmap f , with kernel function f : T ! P(U)

template<typename T>

Reduce(std::function<T(T&, T&)> f)
reduce f , with kernel function f : T ⇥ T ! T

template<typename K, typename V>

ReduceByKey(std::function<V(V&, V&)> f)

p-reduce ⇡1 f 0, with kernel function f 0 : V ⇥V ! V , that applies
f to the values and leaves the K-typed keys unchanged (a slight
variant of the semantics in Sect. 3.3.4)

template<typename T1, typename T2>

JoinMap(std::function<U(T1&, T2&)> f)
join-map f , with kernel f : T1 ⇥ T2 ! U

template<typename T1, typename T2>

JoinMapByKey(std::function<U(T1&, T2&)> f)

p-join-map ⇡1 f , with kernel function f : T1 ⇥ T2 ! U , with
T1 = K ⇥ T 0

1 and T2 = K ⇥ T 0
2

ReadFromFile(std::string &) from-file, reading data from the argument filename

template<typename SocketType>

ReadFromSocket(SocketType &, char)

from-socket, reading data from the argument socket, where lines
are separated by the argument delimiter

template<typename T>

WriteToFile(std::string&)

to-file, writing data to the argument filename through the <<

operator for type T

template<typename SocketType, typename T>

WriteToSocket(SocketType &)

to-socket, writing data to the argument socket through the <<

operator for type T

Table 2: Operator constructors. As for the Pipe API in Table 1, const annotations are omitted for readability but the API is purely functional.

ensure only legal PiCo Pipelines are built, thus they are
part of the API specification. When a member function is
called on a Pipe object, the runtime: 1. checks the legality
of the call by inspecting the type of both the subject and645

the argument Pipe objects (type checking); 2. updates the
type of the subject Pipe object (type inference).

4.1.4. Example: PageRank

The usage of the proposed API is illustrated in Listing 1
with the source code for the PageRank algorithm.650

In the example, the top-level executable Pipeline is the
pageRank object (line 60). At the input end, the
generateLinks Pipeline (line 61) builds the input graph
by: 1. reading lines from the input text file; 2. parsing each
line, by mean of the map Operator parseLinks (line 14),655

into a src-links pair, where src is a page identifier and
links is the set of pages cited by src. From the generated
graph, the map Operator generateInitialRanks (line 23)
generates the initial ranking by associating the default
rank 1.0 to each page. The initial approximation is660

fed as input to the core Pipeline, built by iterating the
improveRanks Pipeline (line 54) for 20 iterations. Finally,
the WriteToFile Operator (line 64) writes the computed
ranks to the output text file.

The improveRanks Pipeline, whose iteration is the core665

processing in the example, combines a ranking with the in-
put graph (i.e., the output from generateLinks), through
the binary Operator computeContributions (line 29). At
the first iteration, the input ranking is the output from
generateInitialRanks, whereas at iteration i + 1 it is670

the output from the previous i-th iteration. Internally,
computeContributions joins the input collections (i.e.,
the input graph and the most recent ranking) based on
page identifiers, so that, for a given page p, the pairwise
kernel receives as input both p’s neighbors (nl) and the675

rank associated to p (nr); for each of such pairs, the Oper-
ator generates a contribution from each of p’s neighbor, ac-
cording to the PageRank formula, by calling the add func-
tion on the collector (cf. Sect. 4.1.2). The contributions are
reduced on a per-key basis, so that all the contributions for680

a given page, generated by di↵erent instances of the binary
Operator, are summed up through the p-reduce Operator
sumContributions (line 36). Finally, each contribution is
converted into an updated rank through the normalization
provided by the map Operator normalize (line 42).685

Note that, di↵erently for instance from the reference Spark
implementation of Page Rank, there is no need to specify
which data should be cached, since in PiCo only the run-
time system is in involved in taking this kind of decisions.

4.2. Intermediate Optimizations690

We now show how a PiCo program is mapped to a graph
of parallel processing nodes. Logically, as shown in Fig. 2,
the mapping takes as input a Semantic Dataflow graph
representing a PiCo program (cf. 3.4.2) and produces a
Parallel Execution (PE) Graph, representing a possible695

parallelization of the Semantic graph. The resulting PE
graph is a classical macro-Dataflow network [19], in which
tokens represent portions of data collections and nodes are
persistent processing units, mapping input to output to-
kens, according to a pure functional behavior.700
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1 #include <pico/pico.hpp>

2 using namespace pico;

3

4 typedef std::string Node;

5 typedef float Rank;

6 typedef KeyValue<Node, Rank> NRank;

7 typedef KeyValue<Node, std::vector<Node>> NLinks;

8

9 constexpr float DAMPENING = 0.85;

10 unsigned VERTICES;

11

12 int main(int argc, char** argv) {

13 // Map operator parsing lines into node-links pairs

14 Map<std::string, NLinks> parseLinks {

15 [] (const std::string &adj) {

16 Node src;

17 std::vector<Node> links;

18 // Code omitted: Tokenize adj into src and links...

19 return NLinks{src, links};

20 }};

21

22 // Map operator generating initial ranks for node-links

23 Map<NLinks, NRank> generateInitialRanks {

24 [] (const NLinks &nl) {

25 return NRank{nl.Key(), 1.0};

26 }};

27

28 // By-key join + FlatMap operator, computing ranking updates

29 JoinFlatMapByKey<NRank,NLinks,NRank> computeContribs {

30 [] (const NRank &nr, const NLinks &nl, FMapCollector<KV> &c) {

31 for( auto &dest: nl.Value() )

32 c.add( NRank{dest, nr.Value() / nl.Value().size()} );

33 }};

34

35 // By-key reduce summing up contributions

36 ReduceByKey<NRank> sumContribs {

37 [] (Rank r1, Rank r2) {

38 return r1 + r2;

39 }};

40

41 // Map operator normalizing node-rank pairs

42 Map<NRank,NRank> normalize {

43 [] (const NRank &nr) {

44 float jump = (1 - DAMPENING) / VERTICES;

45 return NRank(nr.Key(), nr.Value() * DAMPENING + jump);

46 }};

47

48 // The pipe for building the graph to be processed.

49 Pipe generateLinks = Pipe{}

50 .add(ReadFromFile(argv[1]))

51 .add(parseLinks);

52

53 // The pipe that gets iterated to improve the computed ranks

54 Pipe improveRanks = Pipe{}

55 .pairWith(generateLinks, computeContribs)

56 .add(sumContribs)

57 .add(normalize);

58

59 // The whole pageRank pipe.

60 Pipe pageRank = Pipe{}

61 .to(generateLinks)

62 .add(generateInitialRanks)

63 .to(improveRanks.iterate(FixedLengthIteration<20>))

64 .add(WriteToFile<NRank>(argv[2]));

65

66 // Code omitted: count VERTICES...

67

68 pageRank.run();

69

70 return 0;

71 }

Listing 1: PageRank example in PiCo. Input and output filenames
are taken as first and second command-line parameters, respectively.

Dataflow networks naturally express some basic forms of
parallelism. For instance, non-connected nodes (i.e., in-
dependent nodes) may execute independently from each
other, exploiting embarrassing parallelism. Moreover, con-

nected nodes (i.e., data-dependent nodes) may process705

di↵erent tokens independently, exploiting pipeline paral-
lelism (also known as task parallelism). Finally, each PiCo
operator is compiled into a Dataflow (sub-)graph of nodes,
each processing di↵erent portions of the data collection at
hand, exploiting data parallelism.710

We also provide a set of rewriting rules for optimizing PE
graphs, similarly to what is done by optimizing compil-
ers over intermediate representations. For instance, Fig. 3
shows the rewriting for a map/p-reduce composition. This
optimization pattern is commonly referred as shu✏e

8: be-715

tween the map and p-reduce operators, the data is moved
from the map workers (ui in the figure) to the reduce work-
ers (vi in the figure) by following a partitioning criterion.
By shu✏ing data, only the data belonging to a given parti-
tion can be assigned to each worker, and the reduce oper-720

ator produces a single value for each partition. Typically,
data shu✏ing produces an all-to-all communication pat-
tern among map and reduce workers, highlighted by the
dotted box in Fig. 3c. As a further optimization, part of
the reducing phase can be moved into the map workers, so725

that each reduce worker computes the final result for each
key by combining partial results coming from map workers.

4.3. FastFlow Runtime

The bottom-level runtime support for PiCo is implemented
on top of FastFlow [10], a programming framework in730

which lock-free parallel applications can be expressed as
arbitrary networks of ff_node objects (i.e., threads). Fast-
Flow provides a set of preset core patterns, capturing some
common networks such as ff_pipeline, representing the
pipeline pattern, and ff_farm, representing the farm pat-735

tern. We exploit ff_node, ff_pipeline, and ff_farm as
building blocks for implementing PE graphs.

The following mapping holds for the API from Sect. 4.1,

• Pipe objects (i.e., PiCo Pipelines) are implemented
as ff_pipeline objects; in particular, iterative740

Pipelines are implemented as FastFlow pipelines with
a feedback channel;

• All operators but sources and sinks are implemented
as ff_farm objects, in which multiple workers are
spawned to exploit data parallelism;745

• Input and output operators are implemented as
ff_node objects, thus only sequential input/output
is provided in the current implementation.

In the prototypical implementation we present, the inter-
nal parallelism of each Operator is set manually (i.e., no750

automatic elasticity is provided). Although omitted for
simplicity in Table 2, each Operator constructor takes as

8The shu✏e pattern is sometimes referred as “parallel-sorting.”
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Figure 3: Rewriting the PE graph for map/p-reduce composition.

input an optional argument specifying the degree of in-
ternal parallelism. A global default degree can also be
specified as an environment variable.755

In a runtime-level network, data collections are streamed

across the threads (i.e., ff_node objects) in the form of
pointers. To reduce the overhead induced by inter-thread
communication, data collections are sliced into contiguous
non-overlapping chunks. The chunk size is an execution760

parameter that controls the usual trade-o↵ between la-
tency and communication (i.e., grain size). FastFlow has
been shown to not su↵er even with ultra-fine grain and,
indeed, we did not observe any significant e↵ect induced
by various chunk sizes. For the following experiments, we765

arbitrarily set this value to 512.

5. Experiments

In this section, the performance sustained by PiCo in a
shared-memory setting is evaluated in comparison to two
mainstream tools, Spark (v2.1.0) and Flink (v1.2.0).770

The machine used for the experiments is the Occam Super-
computer9 (Open Computing Cluster for Advanced data
Manipulation) [20], designed and managed by the Uni-
versity of Torino and the National Institute for Nuclear
Physics. We used one node having the following charac-775

teristics: Hardware: 4x Intel R�Xeon R�Processor E7-4830
v3 12 core/2.1Ghz, 768GB/1666MHz (48 x 16GB) DDR4
RAM, 1x SSD 800GB + 1x HDD 2TB/7200rpm, Infini-
Band 56Gb + 2x Ethernet 10Gb. Software: Linux CentOS
v7.3 with Linux kernel 3.10, gcc v4.8.5 compiler (PiCo was780

compiled with O3 optimization flag), and OpenJDK Server
v1.8 Java runtime.

For the sake of fairness, the comparison is carried on the
configuration leading to the best performance, for each
tool.10 For Spark and Flink, as both rely on master-785

workers run-time systems, this means finding the optimal
number of workers. For PiCo, each program is mapped
to a di↵erent network of threads, requiring to explore a
broader space of configurations. Although a general solu-
tion for automating this is beyond the current scope, some790

simple strategies are discussed for each benchmark.

The observed results are summarized in Table 3 (p. 12).
Each reported measurement is the average of 10 repeti-
tions. Since only negligible deviations were observed, no
discussion about variance is included in the analysis.795

This section proceeds as follows. Sect. 5.1 discusses two
benchmarks conforming to the simple MapReduce pattern,
namely Word Count and Stock Pricing. Sect. 5.2 discusses
a streaming variant of Stock Pricing. Finally, Sect. 5.3
discusses Page Rank, a more complex application, typical800

of a real world application.

5.1. MapReduce-like Benchmarks

In Big Data analytics, Word Count is considered the
“Hello, World!” application. In its batch flavour, Word
Counts finds the number of occurrences of each word from805

a text file. Fig. 4 shows the semantic graph (cf. Sect. 3.4.2)
for a PiCo Pipeline implementing Word Count.11 The in-
put is read line by line from the text file foo; each line is
tokenized into a sequence of words using a FlatMap node
(as each line contains a varying number of words) and each810

word w is mapped to a key-value pair hw, 1i; the gener-
ated pairs are grouped by-word and then the values (i.e.,
the 1s) are summed up by a ReduceByKey node; finally,
the result (i.e., one pair per word along with its number
of occurrences in the text) is written to the text file bar.815

The second benchmark is Stock Pricing, an application
from the stock market domain that computes the maxi-
mum price for each option from a bunch of stock-option

9
http://c3s.unito.it/index.php/super-computer

10Initialization/termination excluded.
11The semantic graph for a PiCo application can be generated in

dot format by the to_dotfile function from the Pipe class API.
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Figure 4: Semantic graph for Word Count in PiCo.

data. Its semantic graph is omitted since it is analogous to
the Word Count graph (Fig. 4): each stock-option entry820

from a text file is parsed and processed by a Map node, to
compute the stock-price associated to the entry, by means
of the Black & Scholes formula; finally, a ReduceByKey

extracts the maximum price for each stock name and the
output is written to a text file.825

5.1.1. Settings

For the Word Count benchmark, an input file of 6 GB
is considered, formed by text lines of various lengths,
each composed by random words from a dictionary of
1024 words. For the Stock Pricing benchmark, an input830

file of 10 GB is considered, generated by replicating the
largest dataset included in the PARSEC12 suite for the
blackscholes benchmark.

The parallel configuration for PiCo can be controlled by
setting the degree of parallelism for parsing and process-835

ing stages. Indeed, in the current implementation, both
benchmarks are implemented at the FastFlow level as two
pipelined farms, one for reading the input file and pars-
ing lines into strings (ReadFromFile, Fig. 4), the other for
applying the map-reduce processing (FlatMap and Reduce-840

ByKey, Fig. 4). Therefore, the optimal configuration is
observed with the minimal parallelism degree for parsing
that prevents a bottleneck at parsing side, leaving as many
resources as possible to the heavier processing stage.

As we discuss in Sect. 6, more refined solutions can be845

envisioned based on a larger set of intermediate optimiza-
tions (cf. Sect. 4.2), leading to improved FastFlow net-
works. However, in the current implementation, the sim-
ple heuristic already discussed yields good performance, as
we show in the following.850

5.1.2. Results

Table 3 shows the comparison on minimum execution time,
whereas Fig. 5 shows the relative speedup for the Word
Count benchmark, with respect to the parallelism degree
of the processing stage.855

For Word Count, with the optimal parallelism for pars-
ing found at 4, PiCo features the best performance with
parallelism for processing at 36, that is also the maximum
degree in Fig. 5 not causing overbooking. For the Stock
Pricing benchmark, 8 parallel readers are needed to avoid860

the bottleneck, then lowering the optimal parallelism for

12
http://parsec.cs.princeton.edu/index.htm

Spark Flink PiCo

Min. Execution Time (s)

Word Count 10.07 69.29 5.95
Stock Pricing (S.P.) 19.99 42.80 14.20
Page Rank 226.52 82.11 81.08

Max. Throughput (MB/s)

Streaming S.P. 18.63 37.89 112.39

Additional Memory Footprint vs. PiCo (GB)

Word Count +4.45 +2.06 -
Stock Pricing (S.P.) +16.80 +2.32 -
Page Rank +38.95 +2.15 -
Streaming S.P. +45.80 +1.73 -

Table 3: Outcome of the performance experiments. All measure-
ments refer to the best-performing parallel configuration. Execution
time and throughput are showed for batch and streaming bench-
marks, respectively. The memory footprint for Spark and Flink is
represented by the di↵erence in memory usage with respect to PiCo.
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Figure 5: Scalability of Word Count in PiCo.

processing to 32. With these configurations, PiCo outper-
forms both Spark (48 workers) and Flink (24 workers).

5.2. Streaming Benchmark

We now consider a streaming variant of the Stock Pric-865

ing benchmark discussed above. In this variant (referred
as “Streaming S.P.” in Table 3), the data comes from a
socket (rather than a file) and more complex processing is
done on each stock-option entry—Binomial Tree and Ex-
plicit Finite Di↵erence are computed, in addition to the870

Black & Scholes formula, and the result is averaged. Fi-
nally, a per-window reduction is performed under fixed-
size windowing with size 8. The semantic graph for this
benchmark is again analogous to the graph in Fig. 4.

5.2.1. Settings875

The same 10GB input file as in Stock Pricing is used, but
streaming it to a network socket using the netcat tool.

12



First, let us note that the we could not do a totally fair
comparison with Spark, since Spark does not provide fixed-
size windowing.880

As for PiCo, although the streaming variant is semanti-
cally similar to the Stock Pricing batch benchmark, its
parallel configuration is di↵erent. First, in the current
implementation, no parallelism is exploited when reading
from/writing to sockets. Second, no fusion is applied be-885

tween Map (or FlatMap) and per-window reductions, when
performing intermediate optimizations. Therefore, in the
streaming benchmark, the parallelism degrees for the two
stages can be set independently.

5.2.2. Results890

Table 3 shows the comparison on maximum sustained
throughput. In terms of stock-option entries processed per
second, PiCo processes more than 1.7M entries per second,
outperforming Flink and Spark, that process approx. 600K
and 300K entries per second, respectively.895

The optimal parallel configuration for PiCo was found
when not exploiting any parallelism on the reduce-side
while setting the map-side parallelism to 24; Spark and
Flink also attain the best performance with 24 workers.

In addition to poor throughput, Table 3 shows a strik-900

ing memory explosion for Spark. To understand this poor
performance, an analysis of bottlenecks in streaming plat-
forms would need to be performed, which would also help
determine the overhead induced by the JVM [21].

5.3. Page Rank905

In this section, we now examine the Page Rank applica-
tion, described in Sect. 4.1.4. Fig. 6 shows the semantic
graph for a PiCo implementation, which is a slight vari-
ant of the code in Listing 1. In particular, this variant
takes as input the list of pages and the list of links from910

two separate files (like the Flink implementation) and the
adjacency lists are generated by per-page reduction of the
links (the leftmost ReduceByKey node in Fig. 6).

5.3.1. Settings

The largest graph from the SNAP repository,13 represent-915

ing links between users of the LiveJournal on-line commu-
nity, is given as input to the Page Rank implementations.
The graph has approx. 4.8M nodes and 69M edges (i.e.,
edge factor is 14.37), requiring approx. 1GB of memory.

The parallel configuration for PiCo is relevant only for920

the critical portion of the application—the highlighted box
in Fig. 6. Indeed, the execution time is dominated by
the iterative processing. Within the critical portion, the

13
https://snap.stanford.edu/data/

optimal parallelism degree for the ReduceByKey stage was
found at 6, whereas various degrees were tested for the925

(binary) FlatMap stage.

In the current implementation, as for the benchmarks in
Sect. 5.1, only some map-reduce fusion is performed as
intermediate optimizations (e.g., between FlatMap and
ReduceByKey within the critical portion). Therefore, the930

performance will unavoidably su↵er from significant re-

source overbooking, as discussed in more detail in Sect. 6.

5.3.2. Results

Table 3 shows the comparison for minimum execution
time. The results show that, although su↵ering from lim-935

ited scalability due to the factors discussed above, PiCo
performs as well as Flink, reaching the optimal perfor-
mance with parallelism degree set to 16 for the FlatMap

stage, whereas Spark and Flink attain the best perfor-
mance with 32 workers. Again, Spark exhibits the highest940

execution time and significant memory explosion.

6. Conclusions

In this paper, we presented PiCo, a new C++ API with
a fluent interface for generic Big Data Analytics pipelines,
based on a streaming runtime that provides high perfor-945

mance at low cost of resource consumption.

PiCo provides an expressive programming model backed
by a functional abstract semantics. The abstract model
is coupled with a concrete API expressed using mod-
ern C++, thus ensuring good code portability. One dis-950

tinguishing feature of PiCo is the polymorphic pipelines,
that allow uniform programming for di↵erent data models
(i.e., stream or batch processing).

The experiments performed, where we compared execu-
tion times in shared memory for both batch and stream955

applications, showed that PiCo attained the best execution
time when compared to two state-of-the-art frameworks,
Spark and Flink. Moreover, the C++ streaming runtime
provides e�ciency also in terms of low memory footprint,
thus showing it is possible to do high performance analyt-960

ics with low resource consumption.

The presented results allow us to advocate the exploita-
tion of PiCo for emerging Fog scenarios, as it addresses
some fundamental challenges inherent in these systems:
batch and stream programs can be assembled by composi-965

tion (enabled by the abstract model) and executed over a
lightweight, high-performance runtime. In this respect, we
remark that both Spark and Flink are systems supporting
distributed memory hardware holistically, and both the
higher memory footprint and the longer execution time970

may be strongly influenced by the support for system-wide
fault tolerance and data distribution.
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Figure 6: Semantic graph for Page Rank in PiCo.

As future work, we plan to design and implement a broader
class of intermediate optimisations for runtime-level net-
works, with the aim of minimising both the number of975

threads—thus alleviating the performance penalties due to
overbooking—and the amount of inter-thread communica-
tion. In the same perspective, we will consider adopting
some strategy to automate (at least partially) the pro-
cess of finding optimal parallel configurations. Finally, we980

plan to investigate a distributed-memory implementation
on top of some distributed-shared memory system. In that
context, we will also address the issues of fault-tolerance
(e.g., automatic restores in case of failures).
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