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Abstract 

 

BACKGROUND: Technical biases due to PCR artefacts could represent an insidious obstacle for mutational 

analysis and precision medicine.  

METHODS: We report a retrospective analysis by fast COLD-PCR and sequencing of 31 suboptimal tumor 

DNA samples obtained from FFPE tissues and liquid biopsies.  

RESULTS: In FFPE tumor tissues and plasma liquid biopsies of patients with lung and colorectal 

adenocarcinoma, we observed a significant rate of artefactual KRAS mutations, unveiled by repeated 

analysis following UDG pretreatment as well as by simple repetition without UDG pretreatment step, thus 

suggesting a DNA damage different from cytosine deamination. UDG pretreatment was not only 

unnecessary to contrast artefacts occurrence, but also hampered the efficiency of mutational screening, 

reducing the analytical sensitivity. Taken individually or considered together, the reduced DNA input per 

reaction and UDG pretreatment limited the detection of “real” mutated alleles, decreasing PCR sensitivity 

enough to hamper distinction between artefactual and true subclonal mutations of KRAS.  

CONCLUSIONS: Careful validation of analytical sensitivities should always be carried out through standard 

controls, and strategies other than UDG pretreatment need to be identified to avoid both amplification of 

artefactual mutations and failure to identify real subclonal mutations. 
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INTRODUCTION 

Cancer is a heterogeneous disease, as documented by morphological assessment, biomarker evaluation 

and changes in tumor molecular profile over time and between different tumor sites (primary versus 

metastatic lesions). Molecular characterization of different cancer types based on next generation 

sequencing (NGS) analysis recently provided evidence of such heterogeneity, even at base-pair level. In the 

era of precision medicine, tumor heterogeneity may significantly hamper therapy efficacy and limit response 

to treatments (McGranahan et al, 2017). “Liquid biopsy” is one of the recently introduced approaches aimed 

at recapitulating intratumoral heterogeneity by analysis of tumor-derived cell-free DNA (cfDNA) circulating in 

different biological fluids as plasma, urine and cerebrospinal fluid (CSF) (Siravegna et al, 2017).   

Several studies have demonstrated a high concordance between mutational profiles of candidate genes in 

matched tumor and plasma DNA samples from patients with breast cancer (Bettegowda et al, 2014; Higgins 

et al, 2012; Dawson et al, 2013), colorectal cancer (Diehl et al, 2008; Misale et al, 2012, Thierry et al, 2014), 

and non-small cell lung cancer (NSCLC) (Narayan et al, 2012; Khoo et al, 2016). Brain metastases of 

different primary tumor-types are well recapitulated in their DNA alterations by cfDNA circulating in CSF 

rather than in plasma, supporting the idea that in some circumstances tumour-shed DNA is preferentially 

confined to specific biological fluids (Brastianos et al, 2015; De Mattos-Arruda et al, 2015). Therefore, liquid 

biopsies can be exploited for diagnostic purposes, to identify and track tumour-specific alterations during the 

course of the disease, and to address therapeutic choices (Siravegna et al, 2017). Furthermore, several 

experimental studies proved the efficacy of liquid biopsy samples in monitoring minimal residual disease 

after neoadjuvant treatment (Venesio et al, 2017) as well as in early tumor detection (Phallen et al, 2017).  

Besides this wide range of potentialities, liquid biopsies hold some possible drawbacks. A major limiting 

concern resides in the low amount of cfDNA available: ultra-sensitive assays have to be employed, which 

are intrinsically more prone to produce mutation artefacts, especially when applied to scarce DNA quantities 

(Wong et al, 2014). In this scenario, it is mandatory to assure the non-artefactual nature of the detected 

mutations. In most of cases in which DNA is fragmented or degraded, mutation artefacts have been reported 

to depend on cytosine deamination (Williams et al, 1999), and seemed accordingly preventable by uracil 

DNA glycosylase (UDG) pretreatment of DNA. 

In this study, we aimed to assess the extent of artefactual PCR amplification due to cytosine deamination in 

DNA derived from FFPE tissues and liquid biopsies (plasma or CSF) in samples previously determined as 

KRAS mutated. The hypothetical occurrence of artefactual mutations not due to stable DNA damages was 

investigated by simple repetitions of PCR amplification and sequencing without UDG, to assess whether and 

to which extent the latter was effective in preventing artefacts. 
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MATERIALS AND METHODS 

Patients and specimen characteristics 

We retrieved 31 DNAs previously extracted from formalin fixed and paraffin embedded (FFPE) tumor tissues 

(n = 22), plasma (n = 7) or CSF-derived liquid biopsies (n = 2). Selection of DNA specimens has been based 

on positivity for KRAS mutations at exon 2 (one of the most frequent hotspot sequence involved in 

mutational events in lung and in colorectal adenocarcinomas as well) and on belonging to “borderline” 

samples in terms of: i) suboptimal neoplastic/normal cells ratio or overall neoplastic cells number (according 

to the Italian guidelines for enrichment of tumor tissue samples to perform DNA sequencing, 

https://testbiomolecolari.it/), ii) tumor heterogeneity (very frequent in colorectal cancer) or iii) low tumor DNA 

enrichment (like in liquid biopsies). These conditions were supposed to favor false positive results due to 

PCR artefacts. 

The 31 specimens were derived as follows: 10 FFPE tumor tissues, 7 plasma and 2 CSF samples belonged 

to 18 patients with lung adenocarcinoma [the latter 2 with central nervous system (CNS) metastases]. The 

remaining 12 FFPE tumor tissues belonged to patients described in the recent Mariani and coll. paper 

(Mariani et al, 2017) and they consisted of metastatic colorectal cancers (mCRCs) subclonally mutated at 

KRAS, whose mutations resulted artefactual after pretreatment of DNA with UDG.  

Clinical characteristics of all patients and specimens, including their KRAS sequence at exon 2 hotspots, are 

reported in Table 1. 

 

Sample preparation 

The analyses were repeated on residual DNA originally extracted and tested, thus excluding a possible bias 

due to different dissection. 

In FFPE tissues, selections of tumor areas were originally performed as previously described (Mariani et al, 

2015) on archival slides used for cytological or histopathological diagnosis. The criteria of morphological 

adequacy to perform DNA sequencing were derived from the Biogate portal (https://testbiomolecolari.it/) of 

the Italian Associations of Medical Oncologists and Pathologists (AIOM-SIAPEC-IAP). Specimens were 

recorded as acceptable when tumor enrichment was above the 50% (neoplastic/normal cells ratio) and at 

least 100 neoplastic cells were present.  The DNA of the FFPE blocks was derived from two 10 μm thick 

sections that were macrodissected and kept in Eppendorf tubes.  

For the analysis of liquid biopsies, 7 ml of blood or 1-2 ml of CSF from lumbar puncture were obtained in the 

context of routine clinical management of patients. Blood was collected in tubes containing EDTA. Both 

types of liquid biopsies were centrifuged twice at 2000g at 4°C for 10' to obtain plasma and tumor cells, 
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respectively. CSF supernatant, usually representing a waste material, was collected in new tubes and stored 

like plasma at -80°C before extraction of circulating DNA. The study was submitted to and approved by the 

ethic Institutional Review Board for "Biobanking and use of human tissues for experimental studies" of the 

Department of Medical Sciences, University of Turin. Due to the retrospective approach of the study and 

since there was no impact on patients’ treatment, a verbal informed consent was requested. All the cases 

were anonymously recorded. The IRB approved this consent procedure. 

 

DNA extraction from tissue and liquid biopsies 

FFPE tumor sections were submitted to DNA extraction (Maxwell16 FFPE Tissue LEV DNA Purification Kit, 

Promega, Madison, WI, USA) on a Maxwell16 Instrument (Promega, Madison, WI, USA). DNA was eluted in 

a final volume of 58 μl, and the concentration/purity was measured by a Nanodrop 1000 spectrophotometer 

(Thermo Fisher Scientific, Wilmington, DE, USA). 

cfDNAs circulating in plasma or CSF were extracted from 1 ml of liquid biopsy on a Maxwell 16 instrument 

(Promega, Madison, WI, USA) using the Circulating Nucleic Acid purification kit (Promega, Madison, WI, 

USA), according to the manufacturer's instructions and eluted in 50 μl of buffer. Concentration measurement 

was not required for the following analysis. 

 

EGFR and KRAS gene mutation analysis 

In suboptimal tumor-enriched tissues and in liquid biopsies of patients with lung adenocarcinoma, EGFR 

gene sequences were evaluated at exons 18-21 with the Easy EGFR kit (Diatech Pharmacogenetics, Jesi, 

Italy), according to the manufacturer's instructions. In colorectal cancers, KRAS mutations at exons 2-4 were 

analyzed by Sequenom mass spectrometry using the Myriapod Colon Status kit, according to the 

manufacturer's instructions (Diatech Pharmacogenetics, Jesi, Italy). All mutations revealed by mass 

spectrometry were confirmed by standard PCR and DNA sequencing as reported elsewhere (Mariani et al, 

2015; Mariani et al, 2017). In wild-type samples of both lung and colorectal tumors, KRAS mutations at exon 

2 were investigated with fast COLD-PCR and DNA sequencing, as described below. 

 

Fast COLD-PCR and DNA sequencing at exon 2 of KRAS   

Fast COLD-PCR for exon 2 of KRAS, followed by DNA sequencing was applied to tumor DNA derived from 

tissues or liquid biopsies which resulted EGFR and KRAS wild-type by the previously described, less 

sensitive methods. The protocol of analysis was derived from Mancini and coll. (Mancini et al, 2010). We 
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amplified 30 ng of DNA or 10 μl of cfDNA, in absence of fluorophores in the reagent mix. Finally, the PCR 

conditions were modified as follows: 20 cycles of standard PCR (95.0 °C 8'', 60.0 °C 30'', 72.0 °C 30'') 

followed by 35 cycles of COLD-PCR (82.5 °C 8'', 58.0 °C 30'', 72.0 °C 30''), in which the denaturation step 

was set at a critical dissociation temperature, favoring the amplification of the mutated sequences. The 

amplified products were submitted to DNA sequencing as elsewhere reported (Mariani et al, 2017). 

Repetitions of fast COLD-PCR amplifications and sequencing in the presence or absence of UDG 

pretreatment were applied to DNA samples resulted KRAS mutated after a first analysis. UDG pretreatment 

consisted of an incubation of DNA at 37°C for 30' just before fast COLD-PCR amplification scheme, 

according to the protocol described by Pierce and coll. (Pierce et al, 2004). 

 

Construction of standard DNAs with different mutated allele frequency and concentrations 

(mimicking DNA input from suboptimal tumor-enriched tissue and liquid biopsy samples) 

Positive DNA controls with progressively decreasing mutated allele frequencies (MAFs) were prepared at 

concentrations of 6 ng/μl mixing a standard FFPE tissue-derived KRAS mutated DNA (Horizon, Cambridge, 

UK) with a control KRAS wild-type DNA (Diatech Pharmacogenetics, Jesi, Italy). The expected mutation was 

at position c.34G>T (p.Gly12Cys) and the six controls generated had the following MAFs: 30%, 10%, 3%, 

0.3%, 0.1% and 0%. From each of these six DNA controls, by diluting samples with pure water, we obtained 

other standards the concentrations of which were 6 pg/μl. The two concentrations obtained (6 ng/μl and 6 

pg/μl) were useful to mimic input DNA quantities typical of FFPE- or liquid biopsy-derived samples, 

respectively. All 12 standard DNAs were prepared for establishing the limit of detection (LOD) of the 

expected KRAS mutation when submitted to fast COLD-PCR and DNA sequencing in conditions of absence 

or presence of UDG.  

 

RESULTS 

Fast COLD-PCR generates only few artefactual nucleotide substitutions affecting the KRAS gene in 

FFPE-derived DNA of lung tumors 

DNAs extracted from 10 archival FFPE tissue samples of patients with lung adenocarcinoma, suboptimal for 

standard mutational analysis due to their low percentage (<50%) or number (<100) of neoplastic cells, were 

selected because they previously resulted EGFR wild-type by real-time PCR amplification, but KRAS 

mutated at codon 12 (all but one with MAF > 3%) by fast COLD-PCR followed by DNA sequencing (Table 

2a, row A). When fast COLD-PCR and DNA sequencing were repeated in the samples (n = 9, one sample 

excluded because of failed analysis) in presence (Table 2a, row B) or absence (Table 2a, row C) of UDG 
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pretreatment, 1/9 (11%; the only sample harboring a MAF <3%) resulted wild-type (data not shown) in both 

conditions. This finding suggests that the originally diagnosed base-pair substitution (c.35G>A, p.Gly35Asp) 

was artefactual in nature and that it originated from PCR errors rather than from cytosine deamination, since 

randomly abolished even in absence of UDG. In the remaining 8/9 (89%) samples the original mutations 

were confirmed, including one sample showing a G>T substitution at a MAF of 3%. Nevertheless, in 

confirmed samples the mutated/wild-type allele ratio seemed to be reduced by the UDG pretreatment (Figure 

1). 

 

Plasma-circulating cell-free DNA, unlike CSF cell-free DNA, is prone to PCR artefacts 

Since characterized by low amount and quality, we reasoned that cfDNA obtained by liquid biopsy was 

particularly interesting to be analysed for mutational artefacts. Therefore, KRAS gene sequence at codon 12 

was investigated by fast COLD-PCR in 7 plasma-derived cfDNA samples extracted from blood of patients 

with lung adenocarcinoma, having suboptimal/unavailable FFPE tissue samples at diagnosis. In 5/7 samples 

a KRAS mutation was found (Table 2b, row A). In 4 out of these 5 positive samples (80%), PCR and 

sequencing repetitions in presence or absence of UDG pretreatment did not confirm the presence of a KRAS 

mutation. The previously identified KRAS mutation was therefore revealed as artefactual and independent of 

cytosine deamination (Table 2b, rows B-C). 

Recently, we reported that in two patients with KRAS mutated lung tumors metastatic to the CNS the tumor 

DNA recirculated preferentially in CSF than in plasma (Table 2c, row A) (Marchiò et al, 2017). In the present 

work we performed a re-evaluation by fast COLD-PCR and DNA sequencing in presence or absence of UDG 

pretreatment of both cfDNAs previously extracted from CSF samples. The aim of the experiment was to 

evaluate the real or artefactual existence of KRAS mutations in this low DNA-yield fluid, since it has never 

been investigated before. Both CSF liquid biopsies were confirmed to be KRAS mutated (Table 2c, rows B-

C), excluding in these samples the occurrence of artefacts due to stable DNA damage or to random errors of 

PCR amplifications. 

 

Independence of mutation artefacts from tissue of origin or UDG prevention 

We explored whether the occurrence of these artefactual mutations could be tissue-specific. Since we 

recently demonstrated the occurrence of UDG-sensitive KRAS mutated artefacts in 9/12 (75%) colorectal 

cancer samples (Mariani et al, 2017), a re-evaluation of those DNA sequences at exon 2 of KRAS was 

conceived in absence of UDG pretreatment to better understand the origin of those artefacts. The new 

experiment confirmed the artefactual nature of the KRAS mutations even in absence of UDG pretreatment 
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(data not shown), suggesting the same randomly PCR-associated origin of mutation artefacts in colorectal 

cancers as observed in lung cancers, thus excluding cytosine deamination. Taken together, these data 

suggest that these types of artefacts are likely to be independent from the tumor site and are not prevented 

by UDG pretreatment.  

 

The limit of detection of KRAS mutations by fast COLD-PCR is influenced by UDG pretreatment and 

by quantity of input DNA per reaction 

As reported above, UDG was not useful to identify falsely mutated samples in our cohorts. In addition, since 

“real” mutated samples presented decreasing mutated/wild-type allele ratio in presence of UDG (Figure 1), 

we sought to understand whether the UDG pretreatment step not only was unnecessary, but could be 

instead deleterious. An experiment was designed, applying UDG pretreatment to standard controls of DNA, 

constructed with decreasing MAFs and diluted at two concentrations mimicking FFPE- and liquid biopsy-

derived DNA quantities, respectively. As reported in Figure 2, without UDG (UDG- column) the maximum 

LOD reached using different DNA input per reaction (Panel A, 30 ng; Panel B, 30 pg) was 0.3% and 10%, 

respectively. After UDG pretreatment (Figure 2, UDG+ column), the respective LOD at each DNA 

concentration (Panel A, 30 ng; Panel B, 30 pg) was 3% and more than 10% (likely 20%, indicative value 

estimated by comparing the mutated/wild-type allele ratios in UDG+ and UDG- columns of Figure 2B), 

respectively. Taken together, these results demonstrate that the procedure of fast COLD-PCR for KRAS 

followed by DNA sequencing was less effective in detecting the expected and truly present mutation as a 

consequence of UDG pretreatment and when the quantity of DNA per reaction was decreased from the 

order of ng (as for FFPE-tissue derived DNA) to that of pg (as for plasma- or CSF-derived cfDNA). 

 

DISCUSSION 

Spatial and temporal molecular heterogeneity represents an intrinsic characteristic of solid tumors (Wei et al, 

2017) hampering the efficacy of personalized medicine and mandating new and diversified schemes of 

targeted therapies (Senft et al, 2017).  

Resistance to a targeted treatment may stem from selection of tumor subclones with specific mutations 

detectable by liquid biopsy: this approach is currently used in lung adenocarcinoma for prompt adjustments 

of treatment. Of note, the relatively scarce quantities of circulating tumor DNA (ctDNA) in liquid biopsies 

require highly sensitive analytical methods for mutational analysis, thus increasing the possible emergence 

of artefacts during PCR (Wong et al, 2014; Lamy et al, 2011). If on one side the effect of formalin fixation on 

DNA and the consequent outcome on PCR artefacts is well known (Wong et al, 2014; Lamy et al, 2011; Do 
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et al, 2012; Do et al, 2013), on the other side the order of magnitude of this phenomenon is yet to be 

clarified, both in ctDNA and in FFPE tissue-derived DNAs.  

Since artefactual DNA calls may affect the selection of patients treatable with specific targeted therapies and 

confound the evaluation of response to treatment, in the present study we sought to: i) track the existence 

and nature of false KRAS mutations in tissue samples and liquid biopsies of lung tumors; ii) investigate 

whether artefact occurrence could be tissue-type specific, comparing lung and colorectal cancer DNAs. In 

particular, we focused on KRAS mutations at exon 2 due to their high incidence in both diseases and 

because a particularly sensitive assay was available to detect even subclonal KRAS mutations, which could 

be suspected to have an artefactual origin. 

Tissue-derived tumor DNAs already identified as KRAS-mutated by highly sensitive fast COLD-PCR 

amplification and sequencing were retested: a simple PCR replica without UDG pretreatment was sufficient 

to identify a mutation artefact in one of the analysed samples harbouring a MAF below 3%. Similarly, PCR 

repetitions without UDG pretreatment unveiled the artefactual nature of KRAS mutations detected in 

colorectal cancers and previously attributed to cytosine deamination (Mariani et al, 2017). PCR repetitions 

without UDG pretreatment also demonstrated 80% of the KRAS mutations detected in plasma liquid biopsies 

to be mere artefacts. Thus, the presence of KRAS mutational artefacts encompassed different tumor tissues 

(lung and colon) and sample-types (FFPE tissues and plasma liquid biopsies).  

As revealed even by a simple PCR replica, false G>A transitions, primarily found in plasma DNA samples, 

and false G>T transversions, which we observed as particularly frequent in FFPE-tissue samples, were not 

stable damages as one would have expected (Lamy et al, 2011). The latter can usually derive either from a 

guanine oxidation to 8-hydroxyguanine (Lindahl et al, 1993) or from randomly generated errors by Taq DNA 

polymerases during PCR (Stiller et al, 2006), through a process called “PCR jumping or template switching” 

(Pääbo et al, 1990). The random nature of the detected artefacts seems to suggest the second hypothesis.  

It should be noted that different Taq polymerases may have the property of avoiding PCR errors or 

correcting chemical-induced base substitutions during PCR (Stiller et al, 2006) by a 3'-5' exonuclease 

activity, i.e. a proofreading activity. Our Taq polymerase did not feature this function.  

Based on the very low DNA amount and high fragmentation (Wong et al, 2014; Lamy et al, 2011), plasma 

ctDNAs produced a higher percentage of artefactual KRAS mutations compared to FFPE tissue-derived 

DNAs. Conversely, liquid biopsies from CFS samples seemed to be devoid of KRAS mutation artefacts. 

Although these data were accrued on a limited number of samples and should be confirmed on a larger 

scale, we envisage, as already reported (Marchiò et al, 2017), that CSF is representative of a closed 

anatomical space in which ctDNA, although at low quantity, is presumably homogeneous in sequence, due 
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to a relative absence of a normal DNA background. This condition apparently favors a good and reliable 

PCR amplification of ctDNA templates. 

In a way akin to colorectal carcinomas (Mariani et al, 2017), in lung carcinoma samples a MAF cutoff value 

of 3% seemed effective in discriminating artefactual from real KRAS mutations. Data reported by 

independent groups (Molinari et al, 2011; Kimura et al, 2012; Dono et al, 2013; Tougeron et al, 2013; 

Laurent-Puig et al, 2015; Normanno et al, 2015, Van Cutsem et al, 2015) suggested that low frequency 

mutations are not detrimental for clinical response to cetuximab or panitumumab in patients with colorectal 

cancers, and a MAF of KRAS below 3% seems to lack any negative impact on response to treatment and 

survival, thus most likely representing a grey zone attributable to artefacts. The impact of subclonal KRAS 

mutations to TKI therapy has not been clarified in lung cancers to date (McGranahan et al, 2015).  

Although in our cohort artefacts were not due to stable damages of DNA, UDG pretreatment remains the 

only useful method to account for mutations secondary to cytosine deamination. Nevertheless, in our hands 

UDG pretreatment reduced the efficiency of fast COLD-PCR in identifying real KRAS mutations, completely 

hampering their detection at allele frequencies below 3% and 20% in tissue- and liquid biopsy-mimicking 

samples, respectively. Below these frequencies UDG pretreatment turned into wild-type both subclonal PCR 

artefacts and true mutations. Our results suggest that UDG employment requires a word of caution because 

of its potentially deleterious effects, conversely to the previous observations concerning its use before 

different PCR techniques ranging from real-time PCR or high-resolution melting analysis (HRMA) to NGS 

(Pierce et al, 2004; Lamy et al, 2011; Do et al, 2013; Chen et al, 2014; Pérez-Báez et al, 2017; Kim et al, 

2017). None of the previously published studies reported specific experiments aimed at assessing the effect 

of UDG on PCR efficiency, in particular at low MAFs. In view of the increasing interest in adopting NGS 

methodologies into the daily routine diagnostic practice, samples with scarce amounts of fragmented DNA 

amplified by PCR at low coverage (Wong et al, 2014) may be still reliably tested provided that a robust 

program of “reads” analysis is guaranteed (Kockan et al, 2017). 

In conclusion, our results demonstrate that mutational artefacts frequently occur in plasma-derived cfDNAs 

obtained from patients with lung tumors. This is of particular relevance in these patients because liquid 

biopsy is currently preferred to tissue biopsy at disease relapse, for the detection of mutations (i.e. EGFR 

p.Tyr790Met) associated with resistance to TKIs of first and second generation, in order to guide the 

therapeutic choices.  

From a technical standpoint, our data suggest that PCR should be repeated in absence and presence of 

UDG pretreatment to prevent false mutations and to discriminate stable from random artefacts. Stable 

artefacts, but not real mutations beyond an allele frequency threshold (which we have demonstrated to vary 
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based on assay type and DNA quantity and quality), would disappear only in presence of UDG. Random 

artefacts are prevented by simple PCR replica or by comparing results from multiple assays and their 

occurrence should also be easily avoided by using Taq DNA Polymerases with proofreading activity. 
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KEY ISSUES 

• KRAS artefactual mutations seem to occur frequently in suboptimal FFPE tissue samples and 

plasma liquid biopsies of different tumor types, but not in CSF liquid biopsies. 

• These artefactual mutations can be unveiled by simple analysis repetition, even without UDG 

pretreatment, thus suggesting a DNA damage different from cytosine deamination. 

• UDG pretreatment and lower DNA input affected the efficiency of mutational screening by increasing 

allele limit of detection both in tissue and liquid samples. 

• PCR sensitivity can be decreased enough to hamper distinction between artefactual and true 

subclonal mutations of KRAS, with possible consequences on patients’ therapeutic management. 
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• Careful validation of analytical sensitivities should always be carried out and strategies other than 

UDG pretreatment need to be identified. 
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FIGURE LEGENDS 

 

Figure 1. Fast COLD-PCR efficiency is negatively influenced by UDG pretreatment of KRAS mutated 

samples. A representative KRAS mutated tumor DNA sequence, obtained from a colorectal FFPE tissue 

specimen of the case series. The sample DNA was PCR amplified in absence (Panel A) or presence (Panel 

B) of UDG pretreatment. Black lines identify nucleotide sequences at codon 12. The mutated 

(c.34_35GG>TT, p. Gly12Phe)/wild-type allele ratio is significantly decreased by DNA pretreatment with 

UDG (Panel B), compared to a standard reaction (Panel A). 

 

Figure 2. The efficiency of fast COLD-PCR amplification for KRAS gene sequencing is negatively 

affected by both UDG pretreatment and quantity of DNA input. Panels A and B represent the sequence 

of KRAS arising from fast COLD-PCR amplifications of a standard mutated control (c.34G>T, p.Gly12Cys) 

diluted in a wild type DNA control at different MAF (10%, 3%, 0.3%) and used in the range of nanograms and 

picograms, respectively. The standard DNA controls were amplified in absence (UDG-) or presence (UDG+) 

of UDG pretreatment. The LOD of KRAS mutations obtainable by fast COLD-PCR was negatively affected 

(higher percent values) both by presence of UDG pretreatment (LOD for DNA input of ng: 0.3% vs 3%; LOD 

for DNA input of pg: 10% vs 20%) and decreasing DNA input (LOD in absence of UDG: 0.3% vs 10%; LOD 

in presence of UDG: 3% vs 20%). 
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Table 1. Clinical and specimen characteristics of the patients 

PATIENTS GENDER AGE AT 

DIAGNO

SIS 

HISTOLOGICAL 

TYPE 

SYNCHRONOUS 

METASTASTATIC 

SITES 

SAMPLE 

ANALYZED 

SPECIMEN 

ANALYZED 

FIRST KRAS 

MUTATIONAL 

ANALYSIS* 

REPLICA OF 

KRAS 

MUTATIONAL 

ANALYSIS (WITH 

OR WITHOUT 

UDG) 

Case 1 M 73 COLORECTAL 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

 p.G13D (<3%) WT 

Case 2 F 59 COLORECTAL 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

 p.G12S (<3%) WT 

Case 3 F 71 COLORECTAL 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

 p.G12D (<3%) WT 

Case 4 F 67 COLORECTAL 

ADENOCARCINO

MA 

NA PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

 p.G13D WT 

Case 5 F 63 COLORECTAL 

ADENOCARCINO

MA 

LIVER LOCAL 

RELAPSE 

HISTOLOGICAL 

FFPE TISSUE 

 p.G12S (<3%) WT 

Case 6 M 60 COLORECTAL 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES AND 

LIVER 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

 p.G12D (<3%) +  

p.G13S (<3%) 

WT 

Case 7 F 52 COLORECTAL 

ADENOCARCINO

MA 

PERITONEUM PERITONEAL 

METASTASIS 

HISTOLOGICAL 

FFPE TISSUE 

p.G12D (<3%) p.G13D (<3%) 

Case 8 M 59 COLORECTAL 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

 p.G12V (3%) p.G12V 

Case 9 F 50 COLORECTAL 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

 p.G12V (<3%) WT 

Case 10 M 70 COLORECTAL 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

p.G13D (<3%)  WT 
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Case 11 M 67 COLORECTAL 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES, 

LIVER, LUNG 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

 p.G13D (<3%)  WT 

Case 12 M 71 COLORECTAL 

ADENOCARCINO

MA 

NA PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

 p.A11_G12>AC  p.A11_G12>AC 

Case 13 F 73 LUNG 

ADENOCARCINO

MA 

BONE PLASMA 

cfDNA 

PLASMA p.G12D WT 

Case 14 F 79 LUNG 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES & 

SKIN 

(METACHRONOUS) 

PLASMA 

cfDNA 

PLASMA p.G12T (<3%) WT 

Case 15 M 84 LUNG 

ADENOCARCINO

MA 

BONE PLASMA 

cfDNA 

PLASMA p.G12C p.G12C 

Case 16 M 68 LUNG 

ADENOCARCINO

MA 

BONE PLASMA 

cfDNA 

PLASMA  p.G12D  (<3%) WT 

Case 17 M 53 LUNG 

ADENOCARCINO

MA 

BONE PLASMA 

cfDNA 

PLASMA  p.G12S  (<3%) WT 

Case 18 M 67 LUNG 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES, 

ADRENAL GLAND, 

BONE 

PLASMA 

cfDNA 

PLASMA WT WT 

Case 19 M 78 LUNG 

ADENOCARCINO

MA 

PLEURA 

(METACHRONOUS) 

PLASMA 

cfDNA 

PLASMA WT WT 

Case 20 M 58 LUNG 

ADENOCARCINO

MA   

CNS CSF cfDNA CSF p.G13C p.G13C 

Case 21 F 64 LUNG 

ADENOCARCINO

MA 

CNS CSF cfDNA CSF p.G12F p.G12F 

Case 22 M 78 LUNG 

ADENOCARCINO

MA 

PLEURA 

(METACHRONOUS) 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

p.G12D (<3%) WT 
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Case 23 M 75 LUNG 

ADENOCARCINO

MA 

ADRENAL GLAND PRIMITIVE 

TUMOR 

CYTOLOGICAL 

FFPE SAMPLE 

p.G12C p.G12C 

Case 24 M 80 LUNG 

ADENOCARCINO

MA 

PERITONEUM PRIMITIVE 

TUMOR 

CYTOLOGICAL 

FFPE SAMPLE 

p.G12V p.G12V 

Case 25 F 65 LUNG 

ADENOCARCINO

MA 

ADRENAL GLAND PRIMITIVE 

TUMOR 

CYTOLOGICAL 

FFPE SAMPLE 

p.G12C p.G12C 

Case 26 F 71 LUNG 

ADENOCARCINO

MA 

MEDIASTINUM PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

p.G12C p.G12C 

Case 27 M 77 LUNG 

ADENOCARCINO

MA 

NA PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

p.G12D p.G12D 

Case 28 F 60 LUNG 

ADENOCARCINO

MA 

UTERUS PRIMITIVE 

TUMOR 

CYTOLOGICAL 

FFPE SAMPLE 

p.G12C p.G12C 

Case 29 M 59 LUNG 

ADENOCARCINO

MA 

LUNG PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

p.G12V p.G12V 

Case 30 F 57 LUNG 

ADENOCARCINO

MA 

CNS PRIMITIVE 

TUMOR 

CYTOLOGICAL 

FFPE SAMPLE 

p.G12V p.G12V 

Case 31 M 70 LUNG 

ADENOCARCINO

MA 

LOCOREGIONAL 

LYMPH-NODES 

PRIMITIVE 

TUMOR 

HISTOLOGICAL 

FFPE TISSUE 

p.G12V p.G12V 

 

F: female; M: male; WT: wild-type; NA: not available; cfDNA: cell-free DNA, CSF: cerebrospinal fluid; FFPE: 

formalin-fixed and paraffin-embedded. 

*Subclonal KRAS mutations with mutated allele ratio <3% had been reported in parenthesis. 
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Table 2. Mutational results after primary and repeated analysis 

 
 FFPE tissue-derived DNAs (a) Plasma-derived ctDNAs (b) CSF-

derived 
ctDNAs 

(c) 

A                    
B                    
C                    

 

 

A: KRAS mutational results by fast COLD-PCR; B: Replica of fast COLD-PCR for KRAS in presence of UDG 

pretreatment; C: Replica of fast COLD-PCR for KRAS in absence of UDG pretreatment (White boxes: 

samples wild-type at KRAS; Grey boxes: samples mutated at KRAS; Black box: failed analysis). 

 

 

 


