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Abstract In this study, we investigate the impact of the
magnetic field on the evolution of the transverse flow of
QGP matter in the magneto-hydrodynamic (MHD) frame-
work. We assume that the magnetic field is perpendicular to
the reaction plane and then we solve the coupled Maxwell
and conservation equations in (1+1D) transverse flow, within
the Bjorken scenario. We consider a QGP with infinite elec-
trical conductivity. First, the magnetic effects on the QGP
medium at mid-rapidity are investigated at leading order;
then the time and space dependence of the energy density,
velocity and magnetic field in the transverse plane of the ideal
magnetized hot plasma are obtained.

1 Introduction

It is commonly accepted nowadays that collisions of relativis-
tic heavy-ions create a hot and dense fireball matter. Quarks
and gluons are in a deconfined state, called a quark–gluon
plasma (QGP), for a very short time (∼ 1 fm/c) after the
initial hard parton collisions of nuclei. The hydrodynamic
approach has given one of the best descriptions for the QGP
matter: especially for estimating the lowest shear viscosity
over the entropy ratio, this theoretical framework has shown
acceptable consistencies with many experimental results
[1–6].

Recently it has been shown that in the peripheral AA-
collisions such as Pb–Pb at the center of mass energy√
s = 2.76 TeV and Au–Au at the center of mass energy√
s = 200 GeV a huge magnetic field is created, of the order

of eB∼ 1018 − 1019 G, which is 1013 times larger than the
strongest steady magnetic field ever realized in the labora-
tory. It has been claimed that the existence of such strong
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fields may be important for a variety of new phenomena like
the Chiral Magnetic Effect (CME), Chiral Magnetic Wave
(CMW), Chiral Electric Separation Effect (CESE), Chiral
Hall Separation Effect (CHSE), pressure anisotropy in QGP,
influence on the direct and elliptic flow, shift of the critical
temperature. A series of reviews and more references can
be found in Refs. [7–26]. Hence, it will be worth to further
investigate the properties of the QGP in the presence of EM
fields.

There have been several works which have explored the
behavior of the space-time evolution of electromagnetic
fields created by the colliding charged beams moving at rel-
ativistic speed in z-direction, as a solution of the Maxwell
equations [27–33]. In Refs. [27–32], for the sake of sim-
plicity, the classical Ohm law for induced currents in QGP
has been suggested. In many studies, it has been assumed
that there are no couplings between the electrodynamic and
hydrodynamic equations in a QGP medium. Based on this
assumption, it has been shown that the electromagnetic field
depends only on the impact parameter of the colliding nucle-
ons b, on the center of mass energy

√
s and on the electric

and chiral magnetic conductivities of the QGP; besides, its
decrease with time is much slower than in vacuum. In addi-
tion, in several works (see, e.g., Refs. [27–33]) the electro-
magnetic field is derived from the Maxwell equations without
coupling to the velocity of the fluid, assuming that the latter
has negligible influence on the field itself.

According to this point, considering the Bjorken flow four
velocity, the electromagnetic response of QGP in a quantum
regime has been investigated in Ref. [30], and it has been
concluded that the induced electric current in the plasma fire-
ball cannot generate a classical electromagnetic field. In [35]
charged dependence of flow coefficients has been discussed,
and the effects of the EM field on directed flow has been
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studied, showing that these effects are negligible. However,
we claim that this controversial result has been obtained by
imposing the requirement that the velocity of charged parti-
cles �v is smaller than the velocity of the expanding plasma �u.

Other work obtained a series of preliminary results, by
estimating the significance of strong EM fields on the QGP
medium [36–40]. In most cases, it has been assumed that
the Maxwell equations decouple from the time evolution of
the QGP, and then the evolution of the EM fields and their
influence on the flow coefficients have been studied. Results
have revealed that after collision, the strength of the EM fields
decrease. In addition, it was found that the ratio of magnetic
pressure over the thermal pressure b2/P of the hot in-viscid
fluid is negligible. However, the presence of a medium with
finite electrical conductivity can substantially delay the decay
of the magnetic field [40].

It is obvious that the resulting EM field is a solution
of a complicated magneto-hydrodynamic problem [1–6]. In
fact, the relativistic magneto-hydrodynamic (RMHD) setup
is one of the necessary tools in order to describe the hot
plasma in the presence of EM fields [41,42]. For this pur-
pose, one needs a numerical code that solves the equations
of (1+3) dimensional relativistic magneto-hydrodynamics
(RMHD).

Recently, in Refs. [43–46], some efforts have been made
toward both numerical and analytical approaches aimed to
solve the RMHD setup, by considering some constraints,
specific of high energy heavy ion collisions. In Ref. [46] the
main goal was to obtain an analytical solution for a (1+1)
dimensional Bjorken flow within ideal transverse RMHD;
these authors have neglected (consistently with their hypoth-
esis) the coupling to Maxwell’s equations and have analyt-
ically solved the energy-momentum conservation equations
in a perturbation framework.

Another recent work employs a (1+3) dimensional RMHD
code [47]: these authors have used the initial conditions
according to the solutions obtained from the Maxwell equa-
tions in the early time of the collision: there are, however,
many uncertainties in the conditions of the pre-equilibrium
phase.

In this paper we improve previous research by removing
some of the above-mentioned restrictions: in particular we
simulate (1 + 1) dimensional ideal magneto-hydrodynamics
in the Bjorken scenario to determine the effect of the mag-
netic field on the behavior of an inviscid fluid. Here, we
consider the combination of non relativistic hydrodynamic
equations with Maxwell equations and solve numerically in
(1+1) dimensions a set of coupled MHD equations. This
improves some previous, analogous, work, where the cou-
pling between Maxwell equations and conservation equa-
tions has been neglected or treated perturbatively. For the
purpose of numerical calculations, we have supplemented a
relatively simple code which incorporates the contribution

of a coupled electromagnetic field in (1+1) dimensions. One
important novelty is that we use the boundary conditions at
late time (τ → ∞): indeed the late-time dynamics has been
governed by ideal hydrodynamics and is known, while the
early-time conditions are unknown. In order to check our
code, we compare our results with the analytical solutions of
Ref. [46]. We find, indeed, that their results can be recovered
by the numerical solutions, at least in (1+1)-D transverse
evolution.

The paper is organized as follows: in Sect. 2, we intro-
duce the ideal relativistic magneto-hydrodynamic equations
in their most general form, considering them in the case of
a plasma with infinite electrical conductivity. In the end of
this section we restrict the formalism to the case of non-
relativistic transverse flow, which will be employed in the
subsequent calculations. In Sect. 3 we present our numerical
procedure with details in the setup; results obtained with the
spatial initial condition are shown in Sect. 4. Finally, we sum-
marize our conclusions and present a possible subsequent
outlook in the last section.

2 Ideal transverse MHD setup in (1+1D) expansion

We consider the relativistic magneto-hydrodynamic (RMHD)
framework, in order to describe the interaction of matter and
electromagnetic fields in quark–gluon plasmas [41,42]. For
the sake of simplicity, we assume an ideal relativistic plasma
with massless particles and infinite electrical conductivity.
In addition, the fluid is considered to be ultra relativistic,
thus implying that the rest mass contributions to the equa-
tion of state (EOS) can be neglected, and the pressure is
simply proportional to the energy density: P = c2

s ε = 1
3ε

where cs =
√

1
3 is the speed of sound. For an ideal fluid with

infinite electrical conductivity, the equations of RMHD can
be written in the form of the covariant conservation laws,

dμT
μν = 0, (1)

dμF
�μν = 0, (2)

where

Tμν = Tμν
matter + Tμν

EM, (3)

Tμν
matter = (ε + P)uμuν + Pgμν, (4)

Tμν
EM = b2uμuν + 1

2
b2gμν − bμbν, (5)

F�μν = uμbν − uνbμ, (6)

and

bμ = F�μνuν, (bμuμ = 0), b2 = bμbμ. (7)

Here F�μν is the dual tensor of electromagnetic field. ε

and P are energy density and pressure, respectively. bμ is the
magnetic field four vector in the local rest-frame of the fluid,
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which is related in the standard way to the one measured in the
lab-frame. In the present paper we assume a fluid with infinite
electrical conductivity, so the electric field four vector in the
local rest-frame equals zero (eμ = 0). Besides, the single
fluid four velocity uμ (uμuμ = −1) is defined as follows:

uμ = γ (1, �v), γ = 1√
1 − v2

.

In Eqs. (1) and (2) the covariant derivative is given by

dμA
ν = ∂μA

ν + �ν
μm Am, (8)

dp A
μν = ∂p A

μν + �μ
pm Amν + �ν

pm Amμ, (9)

where �i
jk are the Christoffel symbols

�i
jk = 1

2
gim

(
∂gmj

∂xk
+ ∂gmk

∂x j
− ∂g jk

∂xm

)
(10)

and gi j is the metric tensor.
It is more convenient to work with Milne coordinates

rather than the standard Cartesian coordinates for a longi-
tudinally boost-invariant flow:

(τ, x, y, η) =
(√

t2 − z2, x, y,
1

2
ln

t + z

t − z

)
. (11)

Here, the metric is given by

gμν = diag(−1, 1, 1, 1/τ 2), gμν = diag(−1, 1, 1, τ 2).

(12)

Working in Milne coordinates, one can easily obtain the
Christoffel symbols: the only non-zero ones being �τ

ηη = τ

and �
η
τη = 1/τ . Then four distinct conservation equations

can easily be derived from dμTμν = 0 in the Milne coordi-
nate system. They are given by

∂τT
ττ + ∂x T

xτ + ∂yT
yτ + ∂ηT

ητ + τT ηη + 1

τ
T ττ = 0,

(13)

∂τT
τ x + ∂x T

xx + ∂yT
yx + ∂ηT

ηx + 1

τ
T τ x = 0, (14)

∂τT
τ y + ∂x T

xy + ∂yT
yy + ∂ηT

ηy + 1

τ
T τ y = 0, (15)

∂τT
τη + ∂x T

xη + ∂yT
yη + ∂ηT

ηη + 3

τ
T τη = 0. (16)

In contrast with the energy-momentum tensor Tμν , the dual
electromagnetic tensor F∗μν is antisymmetric; hence the
homogeneous Maxwell equation, dμF∗μν = 0, leads to the
following equations:

∂x F
∗xτ + ∂y F

∗yτ + ∂ηF
∗ητ = 0, (17)

∂τ F
∗τ x + ∂y F

∗yx + ∂ηF
∗ηx + 1

τ
F∗τ x = 0, (18)

∂τ F
∗τ y + ∂x F

∗xy + ∂ηF
∗ηy + 1

τ
F∗τ y = 0, (19)

∂τ F
∗τη + ∂x F

∗xη + ∂y F
∗yη + 1

τ
F∗τη = 0. (20)

In order to simplify the problem, we assume that the mag-
netic field is perpendicular to the reaction plane, pointing
along the y direction in an inviscid fluid with infinite electri-
cal conductivity, following the Bjorken expansion along the
z direction and moving, in the transverse plane, only in the
x direction. The boost invariance of the Bjorken expansion
allows us to restrict the discussion to the z = 0 plane, where
symmetry reasons impose uz = 0. Then

uμ = γ̃ (1, ux , 0, 0), bμ = (0, 0, by, 0), eμ = (0, 0, 0, 0),

(21)

where γ̃ = 1√
1−u2

x
, and uμbμ = 0, uμuμ = −1 are satis-

fied.
In our setup, the energy-momentum and dual electromag-

netic tensors are given by

Tμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(ε + P + b2)γ̃ 2 − P − b2

2 −(ε + P + b2)γ̃ 2ux 0 0

−(ε + P + b2)γ̃ 2ux (ε + P + b2)γ̃ 2u2
x + P + b2

2 0 0

0 0 P − b2

2 0

0 0 0
(
P + b2

2

) (
1
τ 2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

F∗μν =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −γ̃ by 0

0 0 γ̃ uxby 0

γ̃ by −γ̃ uxby 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (23)
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When Eqs. (22)–(23) are plugged into Eqs. (13)–(20), one
obtains the following coupled equations:

∂τ

[
(ε + P + b2)γ̃ 2 − P − b2

2

]
+ ∂x

[−(ε + P + b2)γ̃ 2ux
]

+ (ε + P + b2)γ̃ 2

τ
= 0, (24)

∂τ

[−(ε + P + b2)γ̃ 2ux
] + ∂x

[
(ε + P + b2)γ̃ 2u2

x + P + b2

2

]

− (ε + P + b2)γ̃ 2ux
τ

= 0, (25)

∂y

(
P − b2

2

)
= 0, (26)

∂η

(
(P + b2

2
)

(
1

τ 2

))
= 0, (27)

∂y(γ̃ by) = 0, (28)
∂y(γ̃ uxby) = 0. (29)
[−γ̃ ∂τ + γ̃ ux∂x

]
by + by

(
∂x (γ̃ ux ) − ∂τ (γ̃ ) − γ̃

τ

)
= 0. (30)

In the following, we will assume that the transverse veloc-
ity ux is non-relativistic, so we will keep only first-order
terms in ux . Since we consider (1+1D) flow, all thermody-
namical variables depend only on τ, x coordinates. Applying
the definition of u2 = −1 one finds that uμ = (1, ux , 0, 0)

and γ̃ → 1. Using all the above assumptions the set of equa-
tions (24)–(30) reduce to

(−∂τ + ux∂x )by +
(

∂ux
∂x

− 1

τ

)
by = 0, (31)

−∂τ ε + ux∂xε + (1 + c2
s )ε

(
∂ux
∂x

− 1

τ

)
= 0, (32)

−
(
(1 + c2

s )ε + b2
)
∂τux + c2

s ∂xε + by∂xby

+
(
c2
s (1 + c2

s )ε + b2

τ

)
ux = 0. (33)

As one expects in ideal MHD, the energy conservation
equation (31 does not include the B field.

In the next section we present a numerical method to solve
the above coupled equations (31)–(33) simultaneously.

3 Numerical calculation

In this section we will solve the coupled non-relativistic
hydrodynamic and Maxwell equations, which are summa-
rized in Eqs. (31)–(33). The solutions of the three coupled
differential equations will be obtained by using the numerical
method of lines (MOL). This method is a technique for solv-
ing partial differential equations (PDE) by discretizing one
variable in one of the two dimensions and then by integrating
the semi-discrete problem as a system of ordinary differential
equations (ODE). Here we discretize the partial derivatives

0.5 1.0 1.5 2.0 2.5 3.0 x

t

Fig. 1 The geometry of the PDEs in the MOL. The vi (τ ) is defined
along the lines

with respect to the space variables and obtain a system of
ODEs in the time variable: then the initial value software
Mathematica has been used to solve this ODE system. It is
necessary that the partial differential equation problem be
well posed as an initial value problem in at least one dimen-
sion, since these are the conditions for an appropriate use of
the employed ODEs integrators.

Hence we discretize the coordinate x with N (N even)
uniformly spaced grid points xi = (i −1)h, xN+1 = π, i =
1, 2, . . . , N and h = π/N . We use a second-order finite dif-
ference formula for the first derivative in x . In this configura-
tion vi (τ ) indicates v(τ, xi ). In Fig. 1, the lines along which
the discrete quantities vi (τ ) are defined, are shown. Using the
second-order difference approximation for the first derivative
in x results in

dvi (τ )

dx
= −3vi (τ ) + 4vi+1(τ ) − vi+2(τ )

2h
, i = 1, . . . , N + 1.

(34)

After substituting the first derivatives with respect to x for
the vi (τ ), εi (τ ), bi (τ ), in Eqs. (31)–(33) one is left with a set
of coupled ODEs: in order to numerically solve these equa-
tions the crucial point remains the definition of the boundary
conditions.

3.1 Boundary conditions

In our work we consider the boundary conditions at late
time. Indeed the issue under investigation does not allow
one to have precise information on the early-time condi-
tions. Also the determination of the proper boundary condi-
tions from analytical solutions of Eqs. (31)–(33) at late time
(τ → ∞) is still very difficult, due to the coupling between
conservation and Maxwell equations. Hence we derived such
boundary conditions at late time from the analytical solutions
of Ref. [46]. These authors have investigated the magneto-
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Fig. 2 A comparison between the approximated B2 in Fourier cosine
series (dots) and the Gaussian distribution of B2 (thin line)

hydrodynamics in the presence of an external magnetic field,
which follows the power-law decay in proper time and has
spatial inhomogeneity characterized by a Gaussian distri-
bution in transverse coordinates. For simplicity they have
neglected the coupling of Maxwell’s equations and conser-
vation equations and solved the conservation equations per-
turbatively and analytically.

In Ref. [46] the profile of the magnetic field has been
defined by

by(τ, x)ŷ = Bcτ
n/2e−x2/2 ŷ (35)

where n is a negative value which governs the decay of mag-
netic field with increasing time. The Fourier expansion of the
above square magnetic field is approximated as

by(τ, x)
2 = B2

c τ
n(0.28 + 0.44 cos x

+ 0.21 cos 2x + 0.06 cos 3x + 0.01 cos 4x)

(36)

and Fig. 2 shows a comparison between the Fourier cosine
series and the Gaussian distribution at the late time τ1 = 20
fm.1 Due to the oscillatory property of the cosine function,
the solutions are valid only in the region −π < x < π . The
spatial width of the magnetic field depends on the impact
parameter of the considered peripheral collision. Following
the method which has been presented in Ref. [46] one can
obtain analytical solutions for transverse velocity v(τ, x) and
energy density ratio ε(τ, x)/εc at the assumed late time [εc
is the initial energy density of the medium at time τ0]. They
are shown in Figs. 3 and 4, for τ1 = 20 fm and three different
values of n; the value B2

c /εc = 0.1 has been assumed.

1 In the ratio illustrated in Fig. 2 the τ dependence (and hence the precise
value of τ )n is irrelevant, since it cancels in the ratio; however, in the
following this value will be chosen to fix the initial late conditions.

n 5 3
n 2
n 7 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0000

0.0001

0.0002

0.0003

0.0004

x

v
1
,x

Fig. 3 Transverse velocity v(τ, x) versus x plotted at the late time
τ1 = 20 fm with different values of n

n 5 3
n 2
n 7 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0178

0.0180

0.0182

0.0184

0.0186

0.0188

x

1
,x

c

Fig. 4 Energy density ε(τ, x)/εc versus x plotted at the late time τ1 =
20 fm with different values of n

Then we consider the following family of equations:

∂εi (τ )

∂τ
= −3εi (τ ) + 4εi+1(τ ) − εi+2(τ )

2h
vi (τ )

+ 4

3

[−3vi (τ ) + 4vi+1(τ ) − vi+2(τ )

2h
− 1

τ

]
εi (τ ),

∂bi (τ )

∂τ
= −3bi (τ ) + 4bi+1(τ ) − bi+2(τ )

2h
vi (τ )

+
[−3vi (τ ) + 4vi+1(τ ) − vi+2(τ )

2h
− 1

τ

]
bi (τ ),

∂vi (τ )

∂τ
=

(4

3
εi (τ ) + bi (τ )2

)−1

×
[1

3

(−3εi (τ ) + 4εi+1(τ ) − bi+2(τ )

2h

)

+ bi (τ )
(−3bi (τ ) + 4bi+1(τ ) − bi+2(τ )

2h

)

+
(4

9
εi (τ ) + bi (τ )2

)vi (τ )

τ

]
. (37)

These are 3N+3 first-order, coupled ODEs with boundary
conditions: εi (τ1)≡εi (τ1, xi ), bi (τ1) ≡ bi (τ1, xi ), vi (τ1)≡
vi (τ1, xi ), i = 1, . . . , N + 1 and v1(τ ) = vN+1(τ ) = 0.
These functions are obtained from analytical solutions of
Ref. [46] and shown in Figs. 2, 3 and 4.
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4 Numerical results of MHD

We shall now show the results obtained by numerically solv-
ing the above outlined system of equations. To resume the
procedure, we recall that with the method of lines we have
fixed discrete values for the variable x (3N + 3 values) and
defined derivatives with respect to x via the second-order dif-
ference method; then the original set of equations reduces to
a system of 3N + 3 coupled ordinary differential equations
for the quantities εi (τ ), bi (τ ), vi (τ ).

The above-mentioned ODEs have been solved by using an
ODE solver of Mathematica, with respect to the time variable.
The initial boundary conditions for the ODE integrator have
been fixed at the late time τ1 = 20 fm and derived from the
analytical solutions of Ref. [46].

This procedure allowed us to solve the (R)MHD equa-
tions in 1+1 dimensions (Eqs. (31)–(33)) and to obtain the
space-time evolution of the magnetic field, the energy density
and the velocity of plasma, v(τ, x), ε(τ, x) and b(τ, x). Our
results for these functions are presented in following figures,

n 5 3
n 2
n 7 3

5 10 15 20

0.000

0.005

0.010

0.015

0.020

v
,1

Fig. 5 Transverse velocity v(τ, x) versus τ plotted at x = 1 with
different values of n. The dashed, solid and dotted curves correspond
to n = −5/3,−2 and −7/3, respectively

n 5 3
n 2
n 7 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.000

0.005

0.010

0.015

0.020

x

v
0
,x

Fig. 6 Transverse velocity v(τ, x) versus x plotted at τ = 1 fm with
different values of n. The dashed, solid and dotted curves correspond
to n = −5/3,−2 and −7/3, respectively

where they are plotted versus x at fixed τ or versus τ at fixed
x , for three different values of n ( n < −1).

Figures 5 and 6 show the variation of the fluid velocity
in terms of either τ or x with different values of n. Figure 5
shows that |v| at fixed x is large at early times end becomes
small in late times. This behavior is strikingly evident for
the smallest |n| employed here. The transverse velocity v in
terms of x at the fixed time τ = 1 fm has been plotted in
Fig. 6. v increases from x = 0 to a maximum at intermediate
x and gradually decrease with x. Besides, one can see that
when the |n| increases, the v at fixed τ becomes smaller due
to the faster decay of the magnetic field.

Figures 7 and 8 show the energy density in terms of x at
fixed τ or in terms of τ at fixed x , for three different values of
n ( n < −1). Figure 7 indicates that ε grows from x = 0 up
to some intermediate value of x , where it seems to saturate:
the increase is more rapid when n > −2. The behavior of the
energy density as a function of τ is monotonically decreasing;
notice the different scale between Figs. 7 and 8.

n 5 3
n 2
n 7 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.85

0.90

0.95

1.00

1.05

x

0
,x

c

Fig. 7 Energy density ε(τ, x)/εc versus x plot at τ1 = 1 fm with
different values of n. The dashed, solid and dotted curves correspond
to n = −5/3,−2 and −7/3, respectively

Fig. 8 Energy density ε(τ, x)/εc versus τ plot at x = 0 fm with dif-
ferent values of n. The dashed, solid and dotted curves correspond to
n = −5/3,−2 and −7/3, respectively
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Fig. 9 Magnetic field B(τ, x) versus x plot at τ = 1 with different
values of n. The dashed, solid and dotted curves correspond to n =
−5/3,−2 and −7/3, respectively

n 5 3
n 2
n 7 3

5 10 15 20

0.0

0.5

1.0

1.5

B
,0

Fig. 10 Magnetic field B(τ, x) versus τ plot at x = 0 fm with different
values of n. The dashed, solid and dotted curves correspond to n =
−5/3,−2 and −7/3, respectively

n 5 3
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n 7 3
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B
0
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Fig. 11 Magnetic field B(τ, x) versus x plot at τ = 1 with different
values of n. The black curves correspond to coupling of Maxwell’s
equations with conservation equations (present work) and the blue curve
correspond to the analytical solutions

Finally, in Figs. 9 and 10 the magnetic field by(τ, x) is
plotted versus x at fixed time (τ = 1) or in terms of τ at fixed
x . Figure 9 shows that by(τ, x) becomes small for large x .
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Fig. 12 B(τ, x)2/ε(τ, x) versus τ plotted at x = 0 with different val-
ues of n. The black curves correspond to the analytical solutions of Ref.
[46]

Besides, when |n| < 2 the magnetic field is quite larger, in
the central area, than for the other values of n.

Next we wish to validate our numerical work by compar-
ing it with the approximate analytical calculation of Ref. [46]:
as already stated these authors assume an external, time-
decreasing magnetic field B with a Gaussian distribution in
x .

In Fig. 11. we show the profile of the magnetic field for dif-
ferent values of n, for the fixed time τ = 1: the black curves
correspond to our solutions and the blue curves correspond
to the approximate analytical solution of Ref. [46], where the
magnetic field is considered as the one given in Eq. (35). At
τ = 1 obviously the profiles of magnetic field Eq. (35) is
independent of the value of n, while in the present work we
obtain different results, as already seen in Fig. 9. The case
n = −2 corresponds to ideal magneto-hydrodynamics and is
referred to as the ”frozen-flux condition”, which stems from
the Maxwell equations with conservation of the entropy-
density current: in this case the analytical solution coincides
with the one obtained in the present calculation. Instead for
n = −7/3 the magnetic field decreases by nearly a factor 0.5
and for n = −5/3 it increases by a factor 1.5 relative to case
n = −2.

Figure 12 shows the ratio b(τ, 0)2/ε(τ, 0) as a function
of τ at x = 0, for different values of n: it is seen that all
the analytical solutions of Ref. [46] (blue lines) converge
to the value 0.1 at τ = 1 for any value of n, as expected.
Our results, instead, reach the same limit only for the value
n = 2, while for n = −7/3 (n = −5/3) the ratio is typi-
cally smaller (larger). This shows the effect of the coupling
between Maxwell’s and conservation equations. Moreover,
for n < −1, the ratio decreases with increasing time: this
implies that the energy density of the magnetic field decays
much faster than the fluid energy density in relativistic heavy
ion collisions.
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Fig. 13 Transverse velocity v(τ, x) versus x plotted at different times for n = −4/5, a numerical solutions (present work), b analytical solutions
of Ref. [46]

(a) (b)

Fig. 14 B2(τ, x)/ε(τ, x) versus x plotted at different times for n = −4/5, a numerical solutions (present work), b analytical solutions

Finally, in order to show the influence of the MHD equa-
tions on the modification of velocity, magnetic field and
energy density we consider the specific case n = −4/5,
which corresponds to a weaker dependence on time of the
magnetic field, Eq. (35). This is illustrated in Figs. 12 and
13, where again we compare our solutions with the approx-
imated analytical ones of Ref. [46]. The latter implies that
v(τ, x) = 0 for n = −1; hence one may expect a change in
the direction of the transverse velocity.

Figure 13a, b show the transverse velocity results from the
numerical solutions of the present work and from the analyt-
ical solutions, respectively, at different times, for n = −4/5.
From Fig. 13b one finds that the magnitude of the transverse
velocity decreases with respect to the proper time τ0 = 1 fm,
as expected, and the velocity profile has a similar shape com-
pared with the case n < −1, but the direction becomes neg-
ative. In addition (notice the small numbers in the vertical
scale) it is nearly zero, since in the approximate analytical
solution the fluid velocity is only modified by the spatial gra-
dient of the external magnetic field. On the contrary, Fig. 13a
shows that the direction of the fluid velocity is positive and
decreases with time, until τ = 10 fm, where the sign changes;
moreover, its magnitude is much larger than the analytical

solution at early times. As a conclusion we can state that,
in the analytical solution, the transverse flow led by a Gaus-
sian magnetic field points outward for n < −1 and inward
for n > −1, while the results of the present work, where
the MHD equations are solved numerically, for both cases
(n < −1 and n > −1) the transverse flow points outward in
early time, though they have opposite direction at late time.

Figure 14a shows the behavior of b(τ, 0)2/ε(τ, 0) versus
x , for different proper times: it decreases with time from the
value 2.5 at proper time τ0 = 1 fm to the value 0.6 at the late
time τ1 = 10 fm, similarly to the case n < −1 (see Fig. 12).
We also plot the analytical solution for b(τ, 0)2/ε(τ, 0) in
Fig. 14b: in this case the considered ratio increases with time
from the value τ0 = 0.1 at proper time τ0 = 1 fm to the
value 0.6 at the late time τ1 = 10 fm. This again stresses
the importance of the coupling between Maxwell’s and the
conservation equations.

5 Conclusion and outlook

In this work, we present a numerical method for the solu-
tion of coupled non-relativistic hydrodynamic equations
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and Maxwell’s equations, i.e., non-relativistic magneto-
hydrodynamics (MHD), which has recently become of grow-
ing interest for the study of relativistic heavy ion collisions.
By solving the coupled conservation and Maxwell’s equa-
tions, we obtain numerical results for the fluid velocity, the
energy density and the magnetic field.

We work in the (1+1D) dimensional MHD model where
the transverse magnetic field, fluid velocity, and energy den-
sity are considered as a function of one spatial (x) and one
temporal (τ ) variable; besides, the magnetic field points along
the orthogonal y direction. In our setup, the medium is boost-
invariant along the z direction. It turns out that the transverse
velocity is rather small at all times and for different parame-
terizations of the initial magnetic field: hence we treated the
transverse flow in the non-relativistic approximation.

The core of our method is twofold: (1) the adoption of a
discretized spatial variable, in terms of which the derivatives
are expressed with the method of the second-order finite dif-
ference formula, (2) the adoption of suitable boundary con-
ditions for the numerical solution of the resulting system of
ordinary differential equations in the time variable.

Although it is well known that during relativistic heavy ion
collisions intense magnetic fields are developed, their knowl-
edge in the initial times of the collision, where the QGP has
been formed, could not be used here as the desired bound-
ary conditions. Indeed for the purpose of comparing with the
results of Ref. [46], it turned out more convenient to intro-
duce initial conditions at a late time and solve numerically
the coupled equations inversely in time

We found it appropriate to assume for the late-time quan-
tities (fluid velocity, energy density and magnetic field) the
approximate analytical solutions found by the authors of Ref.
[46]: in contrast with our approach, these solutions where
found by neglecting the back reaction from the internal fields,
i.e., the combination of Maxwell equations and conservation
equations was discarded. A weak external, magnetic field is
adopted, with Gaussian distribution dependence in space and
power-law decay dependence in time. For our method these
analytical solutions are appropriate for the late-time bound-
ary conditions, since in the final stage of the plasma evolution,
the magnetic field is indeed quite small and the back reaction
from the internal fields can be safely neglected.

After presenting our results for the fluid velocity, the
energy density and the magnetic field as functions of both
space and time, we have validated our numerical calcula-
tion by making a comparison with the approximate analytical
solutions of Ref. [46]. As expected the two approaches give
similar results at late times as well as for specific choices of
the time evolution of their magnetic field (which is governed
by the parameter n), but in other conditions the coupling
between Maxwell and conservation (RMHD) equations, here
taken into account, appears to be quite relevant.

In particular we notice that the transverse velocities have
the same direction in early and late time for the case n < −1
(faster decay of the magnetic field), while for the casen > −1
the transverse velocities appear to change sign in late time.
Hence, the transverse flow propagates on the same direction,
for any value of n only in the early stages of the collision. It
should be noticed, however, that a weak decay of the magnetic
field is probably less realistic than a strong one.

According to the estimated conditions of heavy ion col-
lision experiment at RHIC, one find b2/ε = 0.17 − 0.68 at
τ = 0.6 fm. As a result, for the validity of the weak-field
expansion, in Ref. [46] b2/ε = 0.1 was chosen at the proper
time τ0 = 1. We find that only for the case n = −2, b2/ε

converges to this value at the proper time τ0 = 1. For the
casen < −2, b2/ε is smaller than 0.1 and decreases when n
becomes smaller. For the casen > −2,b2/ε is bigger than 0.1
and increases when n becomes larger. For both cases n < −1
and n > −1, b(τ, x)2/ε(τ, x) decreases with time at fixed x .
This is a preliminary result of our approach, which is poten-
tially interesting and deserves further investigation also from
experimental point of view.

As a final remark and outlook for future developments
we wish to consider the possibility of extending the present
calculation to the case of (1+2D) dimensions, taking into
account both transverse dimensions. This will also allow one
to investigate differences in the azimuthal distribution of the
velocities and hence the so-called elliptic flow. It is well
known that this is one of the crucial characteristics of the
deconfined plasma. At present there is an interesting debate
about the influence of the magnetic field on the v2 coefficient
of the elliptic flow (see for example Ref. [48,49]) and the
role of the magnetic field in this connection still deserves
additional efforts.
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