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Abstract 7 

The unique color pattern polymorphism and the foamy nymphal case of the 8 

meadow spittlebug Philaenus spumarius, have attracted the attention of 9 

scientists for centuries. Nevertheless, since this species has never been 10 

considered a major threat to agriculture, biological, ecological and ethological 11 

data are missing and rather scattered. To date this knowledge has become of 12 

paramount importance, in view of the discovery of P. spumarius main role in 13 

the transmission of the bacterium Xylella fastidiosa in Italy, and possibly in 14 

other European countries. The aim of this review is to provide a state of the 15 

art about this species, with particular focus on those elements that could help 16 

developing environmental-friendly and sustainable control programs to 17 

prevent transmission of X. fastidiosa. Moreover, recent findings on the role 18 

of the meadow spittlebug as vector of the fastidious bacterium within the first 19 

reported European bacterium outbreak in Apulia (South Italy) will be 20 

discussed. 21 

  22 



Key Message 23 

 The meadow spittlebug Philaenus spumarius plays a major role in the 24 

spread of Xylella fastidiosa in the first European outbreak of the 25 

bacterium in the Apulia region (Southern Italy). 26 

 Biological, ecological and ethological data about P. spumarius are rather 27 

scattered and needs further investigations. 28 

 Here, we comprehensively collected scattering data and unpublished 29 

information about the meadow spittlebug and its relationship with the 30 

fastidious bacterium. Furthermore, we reviewed the known control 31 

tactics and proposed new management strategies against this pest. 32 

 33 

 34 

  35 



Introduction 36 

Spittlebugs and their nymphal case have received attention from naturalists 37 

for centuries. Starting from Saint Isidorous from Seville in the sixth century, 38 

and later with Moffet and Linnaeus, many scientists devoted their attention 39 

to these unique creatures coming from a “frothy sticky whitish dew” (Moffet 40 

1685, cited in Weaver and King 1954). In the literature, spittle masses have 41 

been called in many ways: Gowk’s spittle, frog spit, snake spit, witch’s spit 42 

and wood sear, beside cuckoo spittle, since the Cuckoo bird migrate in 43 

Europe at the same time the first masses appear (Svanberg 2016). It has also 44 

been suggested that these masses generate small locust (Yurtsever 2000). 45 

The meadow spittlebug Philaenus spumarius L. (1758) belongs to the order 46 

Hemiptera, superfamily Cercopoidea, family Aphrophoridae. The name 47 

spittlebug came from the shell built up by the nymphs mixing fluid voided 48 

from the anus and a secretion produced by glands located between the 7th 49 

and the 8th abdominal sternites. Air bubbles are introduced within the 50 

spittle by mean of caudal appendages and a ventral tube formed by 51 

abdominal tergites (4th to 9th) bent downward (Yurtsever 2000). Due to its 52 

polymorphism, more than 50 synonyms had been given to P. spumarius, as 53 

reported by Nast (1972). The meadow spittlebug was commonly called 54 

Philaenus leucophtalmus in the early literature, as for example in Severin 55 

(1950) and Weaver and King (1954). The taxonomical confusion was solved 56 

when, in 1961, the International Commission of Zoological Nomenclature 57 

decided for the only valid specific name of P. spumarius (Yurtsever 2000). 58 

The large body of literature on P. spumarius deals meanly with the genetic 59 

basis of adult color polymorphism, and the damage caused by nymphs to 60 

strawberry and alfalfa, when the insect was introduced in USA (Weaver and 61 

King, 1954). Now we know that this ubiquitous, common and locally very 62 

abundant insect is the main vector of the bacterium Xylella fastidiosa in the 63 

Apulia Region of Italy, and has the potential to spread it in all the other 64 

European regions where the pathogen is present. Nevertheless, since the 65 

meadow spittlebug has never been considered an agricultural pest in 66 



Europe before the introduction of X. fastidiosa, its biology, ecology and 67 

ethology have never been investigated continuously and in a comprehensive 68 

way. Therefore, the main aim of this manuscript is to provide an updated 69 

and critical state of the art about P. spumarius, mainly focusing on those 70 

elements that could help developing an environmental friendly and 71 

sustainable control strategy to prevent X. fastidiosa spread.  72 

 73 

Taxonomy and description 74 

Until 1980’s, only three species belonging to the genus Philaenus were 75 

known: the Holarctic P. spumarius; the Mediterranean species P. signatus 76 

(inhabiting the Balkans and Middle East); and P. tesselatus (Southern Iberia 77 

and Maghreb), this latter often considered a subspecies or a synonym of P. 78 

spumarius (Nast 1972). Starting from the 1990’s, thanks to in-depth studies 79 

carried out across the Mediterranean, five further species of the genus have 80 

been described: P. loukasi (southern Balkans), P. arslani (Middle East), P. 81 

maghresignus (Maghreb and southern Spain), P. italosignus (southern Italy 82 

and Sicily), and P. tarifa (southern Iberia). The eight species are sympatric 83 

with P. spumarius, and partially allopatric with each other (Maryanska-84 

Nadachowska et al. 2012). The proteobacterium Wolbachia could have 85 

played a role in the speciation of P. spumarius, since it is almost exclusively 86 

present in Northeastern mitochondrial clade (Lis et al. 2015). Currently, the 87 

species can be distinguished according to anal tube and male genitalia 88 

morphology in two groups: the “spumarius” group (P. spumarius, P. 89 

tesselatus, P. loukasi and P. arslani), and the “signatus” group (P. 90 

maghresignus, P. italosignus, P. signatus, P. tarifa) (Drosopoulos and 91 

Remane 2000). Another classification takes into account nymphal food 92 

plants, and allows  a differentiation in three main groups: P. signatus, P. 93 

italosignus, P. maghresignus and P. tarifa, whose nymphs elect the lily 94 

Asphodelus aestivalis L. (1753) as their main host plant; P. loukasi and P. 95 

arslani, whose nymphs develop on xerophilic plants; and P. spumarius and 96 



P. tesselatus, that thrive on monocotyledonous and dicotyledonous plants, 97 

although the former is likely to prefer dicots  (Drosopoulos 2003). According 98 

to Maryanska-Nadachowska et al. (2012), the genus Philaenus is 99 

monophyletic, this claim being supported by morphological, ecological and 100 

chromosomal data. P. spumarius is extremely varying in color, going from 101 

unicolorous yellowish white to unicolorous black, with several intermediate 102 

morphs. Most of these were originally described as species. Furthermore, 103 

recently two new species belonging to the genus Philaenus, namely P. 104 

elbusiarnus and P. iranicus, have been described in Iran (Tishechkin 2013). A 105 

detailed morphological and phylogenetic description of the species is out of 106 

the purpose of this review; for papers regarding these issues, please refer to 107 

Delong and Severin (1950), Ossiannilsson (1981), Berry and Willmer (1986), 108 

Stewart and Lees (1996), Quartau and Borges (1997), Drosopoulos (2003), 109 

Maryańska-Nadachowska et al. (2012), Rodrigues et al. (2014), and further 110 

references.  111 

 112 

Geographical range 113 

P. spumarius is widely distributed, covering most of the Palearctic regions, 114 

and extending to Nearctic, as well as most of the temperate regions of earth 115 

and oceanic islands (Stewart and Lees 1996; Drosopoulos and Asche 1991; 116 

Drosopoulos and Remane 2000). Its distribution ranges from north Lapland 117 

to the Mediterranean in Europe, including Turkey. It has been reported for 118 

North Africa, several parts of the former Soviet Union, Afghanistan, Japan, 119 

USA, Canada, Azores, Hawaii, New Zealand (Yurtsever 2000). The meadow 120 

spittlebug was probably introduced in new continents, as North America, as 121 

overwintering eggs in straw stubble (Whittaker 1973). Its distribution in 122 

Europe and world-wide has been summarized by EFSA (2015). In Greece, 123 

Drosopoulos and Asche (1991) reported P. spumarius at an altitude ranging 124 

from the sea level to more than 2000 m. Climate change may significantly 125 

have affected the distribution of P. spumarius: Karban and Strauss (2004) 126 



suggested that the species Northward shift in California since 1988 is related 127 

to variations in humidity and temperature.  128 

 129 

Host plants and feeding behavior 130 

P. spumarius is highly polyphagous, and occurs in most of the terrestrial 131 

habitats (Stewart and Lees 1996). According to Maryanska-Nadachowska et 132 

al. (2012), the common ancestor of the species belonging to the genus 133 

Philaenus may have used lily as its main host plant, a character that still 134 

remains in P. maghresignus, P. italosignus, P. tarifa and P. signatus. On the 135 

contrary, the exploitation of a wide range of hosts belonging to 136 

monocotyledonous and dicotyledonous may have been the leading factor 137 

promoting the geographical expansion of the species. P. spumarius is a 138 

xylem feeder, either as nymph or adult: the spittlebug ingests considerable 139 

amount of sap from the main transpiration stem without causing vessels 140 

cavitation, overcoming dramatically high tension reaching -10 bars, and 141 

showing a mean excretion rate of 280 times its body weight in 24 hours 142 

(Wiegert 1964; Horsfield 1978; Crews et al. 1998; Malone et al. 1999; 143 

Watson et al. 2001; Ponder et al. 2002). The association with symbionts 144 

potentially relaxes the severe energy limitations related to xylem sap 145 

feeding, being the xylem sap nutritionally poor and energetically costly to 146 

extract (Thompson 2004; Koga et al. 2013). Nymphs and adults feed 147 

preferentially on actively growing parts (Mundinger 1946; Wiegert 1964). 148 

Nitrogen fixing legumes and other plants with high aminoacids 149 

concentration in the xylem sap (Medicago sativa L. (1753), Trifolium sp. L., 150 

Vicia spp. L., and Xanthium strumarium L. (1753)) are the preferred hosts 151 

(Horsfield 1977; Thompson 1994). Overall, P. spumarius seems to prefer 152 

plants that transport fixed nitrogen as aminoacids and amides than those 153 

that transport fixed nitrogen as ureides (Thompson 1994). Nymphal 154 

excretion rate has been proven to be positively correlated with aminoacids 155 

concentration in the xylem-sap (Horsfield 1977). Nymphs and adults thrive 156 



on various plants in habitats moist enough to provide them with sufficient 157 

humidity to keep them alive, such as meadows, abandoned fields, waste 158 

grounds, roadsides, streamsides, hayfields, marshlands, parks, gardens, and 159 

cultivated fields (Yurtsever 2000). Gulijeva (1961) reported cereals, 160 

Asteraceae, legumes and Lamiaceae as the most favorable hosts. 161 

Ossiannilsson (1981) states that P.spumarius is the most polyphagous insect 162 

currently known, with a host lists that exceed 1000 plants. Dicotyledonous 163 

plants tend to be used more often than monocotyledonous (Wiegert 1964; 164 

Halkka et al. 1967; Halkka et al. 1977). Pasture mowing or a general 165 

decrease of succulence of herbaceous hosts, cause a dispersal of the adults 166 

that may settle in high numbers plants such as grapevine, olive, peach, 167 

almond, besides several trees and shrubs as holm oak, myrtle, and lentisk 168 

(Goidanich 1954; Pavan 2006; Cornara et al. 2016b). For a P. spumarius 169 

complete host list, refer to Delong and Severin (1950) and Weaver and King 170 

(1954).  171 

 172 

Biology and ecology  173 

Life history and behavior 174 

P. spumarius is a univoltine species, overwintering as egg. First mature eggs 175 

are found in the ovaries starting from the end of August, and then increase 176 

until November (Weaver 1951). Females are polyandrous; the multiple 177 

mating does not influence the number of progeny, but provide great genetic 178 

and evolutionary benefits to the meadow spittlebug, as shown in many 179 

polyandrous species (Smith 1984). Yurtsever (2000) hypothesized that P. 180 

spumarius very diverse habitats is a consequence of the advantages derived 181 

from multiple mating. Mating occurs readily after adult appearance, and 182 

continues throughout the seasons; the spermatogenesis and release of 183 

sperma in the spermatheca is designed so that delayed fertilization could 184 

take place (Robertson and Gibbs 1937). Weaver and King (1954) observed a 185 

peak of development for eggs not occurring until 2nd week of September, 186 



with no significant difference due to geographical location. The failure in 187 

spittlebug control with treatments in the first week of September, is a 188 

further evidence that oviposition takes place after this period (King 1952). In 189 

Apulia, oviposition was achieved in semi-artificial conditions in October on 190 

Sorghum halepense L., concomitantly with a decrease of average daily 191 

temperature below ca. 15°C; furthermore, the only eggs observed in the 192 

field were laid on the same plant along the orchard edges (Cornara and 193 

Porcelli 2014, FIGURE 1). Eggs are oviposited in stubble, herbs, dead parts of 194 

plants, plant residue, cracks and tree trunk barks, or in the litter; the 195 

majority of eggs are laid close to the ground between two apposed surfaces 196 

(Barber and Ellis 1922; Weaver and King 1954; Yurtsever 2000). 197 

Furthermore, Weaver and King (1954) reported that the presence of straw 198 

within experimental cages caused an increase of 65% in egg deposition. Oat, 199 

Johnson grass, dwarf broad bean, alfalfa, red clover, and timothy, were 200 

reported as experimental hosts for oviposition (Weaver and King 1954; 201 

Halkka et al. 1966; Stewart and Lees 1988; Cornara and Porcelli 2014). Eggs 202 

are elongated, ovoid and tapering in shape, yellowish-white with a dark 203 

pigmented orange spot at one end. If the egg is fertilized, the orange spot 204 

gets bigger and a black lid-like formation develops on it (Yurtsever 2000). 205 

Eggs are laid in masses of one to 30 elements, with an average value of 206 

seven, held together by a hardened frothy cement (Weaver and King 1954; 207 

Ossianilsson 1981). Mundinger (1946) and Weaver and King (1954) agreed 208 

upon the number of eggs oviposited being around 18 to 51 per female, 209 

although a lower estimate, about 10 to 20 per female, was reported by 210 

Wiegert (1964). On the contrary, Yurtsever (2000) claims that an individual 211 

female may produce up to 350-400 eggs. These conflicting data suggest that 212 

experiments under controlled conditions aimed at estimating prolificacy are 213 

needed to estimate this important biological parameter. The oviposition 214 

continues until the female dies naturally or is killed by severe frost (Weaver 215 

and King 1954). The pre-imago pass through five instars. Pre-imaginal 216 

development takes 5-6 weeks, although cold weather considerably reduces 217 



the speed of the cycle; consequently, nymphal period may take from 35 to 218 

100 days approximately (Weaver and King 1954; Yurtsever 2000; Halkka et 219 

al. 2006). The first instar nymph is approximately 1.35 mm long, orange, and 220 

produces a tenuous spittle. During the development the color became 221 

gradually green-yellow; the last two instars produce a great amount of 222 

spittle (Yurtsever 2000). Once hatched, nymphs crawl to the closest green 223 

succulent plant and began forming a spittle (Weaver and King 1954). 224 

Selection of a feeding site on a plant may occur after the insect has ingested 225 

and sampled xylem sap (Horsfield 1977). The first nymphs can be found on 226 

low rosettening plants or in plants that offer closely apposed leaf and stem 227 

surfaces; these hosts indeed provide a shelter from direct sun and drying 228 

winds (Weaver and King 1954; Grant et al. 1998). Apparently, the nymph is 229 

able to survive on almost any plant that provides them with sufficient 230 

moisture to maintain their feeding habits (Weaver and King 1954). Plant 231 

mechanical defences, as trichomes present on the stem of plants as 232 

Anaphalis margaritacea Benth & Hook (1873), or tissue hardness, may 233 

inhibit young nymphs from feeding, mechanically impeding stylet 234 

penetration (Hoffman and McEvoy 1985a; 1985b). The range of feeding sites 235 

exploited increases with nymphal development (Hoffman and McEvoy 236 

1985a). Wiegert (1964) observed peak densities of 1280 nymphs/m2 and 237 

466 adults/m2 in an alfalfa field. In Europe, nymphs density has been 238 

reported not exceeding 1000 nymphs/m2 (Zajac et al. 1984). Nymphs tend 239 

to aggregate on the host plants, sharing the same spittle. The aggregation, 240 

maintained within certain levels in order to avoid competition, ensures a 241 

bottom-up effect, for example overcoming physical barriers to feeding on 242 

xylem (Wise et al. 2006). Individuals of different Cercopid species may be 243 

found embedded in the same spittle mass (Halkka et al. 1977). As reported 244 

by Whittaker (1973), whereas nymphs mortality is inversely density 245 

dependent, in adults a slight although significant density dependent 246 

regulation exists. The same author found that, when P. spumarius is present 247 



in the field concomitantly with other spittlebug species as Neophilaenus 248 

lineatus L. (1758), both of the populations tend to be more stable.   249 

After the spittle is formed, the nymph is able to maintain its own micro-250 

climate; evaporation rate gradients ensure that spittles are largest close to 251 

the ground, where they are most available to non-flying predators, and 252 

greater insulation from high temperature is required (Whittaker 1970). The 253 

same author also inferred that the spittle is a form of protection from 254 

predators. At the time of the last molt, the nymph ceases to form the spittle, 255 

which progressively dries up, forming a chamber where the adult stage will 256 

appear (Weaver and King 1954). Adults appear in April and live until fall 257 

(Weaver and King 1954), although they may survive throughout the 258 

successive spring in case of mild winters (Saponari et al. 2014). The callow 259 

adult is nearly white with a slight greenish cast; it takes some minutes to 260 

acquire its characteristic colored pattern (Weaver and King 1954). Industrial 261 

melanism for P. spumarius has been suggested (Lees and Dent 1983). 262 

Thompson (1973) claimed that P. spumarius color pattern warns the 263 

predator about the insect’s exceptional escape ability through leaping. 264 

Therefore, a learned predator tends to avoid the meadow spittlebug 265 

because it associates the color pattern to a wasted effort in preying, due to 266 

the strong and rapid leaping of the prey (Gibson 1974). Males appear earlier 267 

than females and, over the year, the number of males declines in 268 

comparison to females (Edwards 1935; Halkka 1964; Drosopoulos and Asche 269 

1991).  270 

  271 

Phenology, developmental thresholds and temperature-dependent 272 

development 273 

Difficulties faced by researchers for decades in rearing P. spumarius 274 

continuously in the lab, strongly suggests that the entire life cycle relies on a 275 

specific combination of environmental variables still not fully understood. A 276 

deep knowledge about phenology and developmental threshold is 277 



mandatory in order to set up an effective forecasting model for P. spumarius 278 

control. Two are the key factors regulating P. spumarius development: 279 

humidity and temperature. 280 

According to Weaver and King (1954), several evidences such as the 281 

behavior of nymphs seeking sheltered places, the production of foam and 282 

the necessary structure to produce it, the adult migration during the 283 

summer period, the delay until cool weather for the deposition of the eggs, 284 

the manner of placing and cementing the eggs between two apposed 285 

surfaces so that water losses are minimized, suggest that the entire life cycle 286 

depends on humidity and water availability. Even a cornea thicker in the 287 

adults compared to the nymph, that reduces water losses, might be 288 

considered a further evidence of the fact that water represents the key 289 

element around which the meadow spittlebug biology spins (Keskinen and 290 

Meyer-Rochow 2004). Weaver and King (1954) stated that the highest 291 

concentration of spittlebugs are contained within the regions of highest 292 

humidity. Humidity likely elicits hatching. Indeed, if eggs hatch in a high 293 

humidity environment, first instar nymph would survive to dehydration, and 294 

could find a suitable tissue to settle on. The first plants on which nymphs are 295 

observed are those exhibiting dense lateral growth, thus limiting air 296 

movements and having a higher RH (relative humidity). Furthermore, 297 

nymphs tend to congregate on closely apposed surfaces where the humidity 298 

can be maintained at high levels, as noticed both in field and lab conditions 299 

using Sonchus sp. L. as a rearing plant (Morente et al. unpublished). As 300 

reported by Weaver and King (1954), early in the morning nymphs can be 301 

found at the tip of the plant, but as the temperature raises, the masses dry 302 

and they leave them to move down on the plant. The foam secreted by 303 

nymphs creates an excellent protection against dehydration and UV 304 

radiation. Indeed P. spumarius foam case can block as much as 88% of the 305 

UV incident radiation (in the 250 to 400 nm range) (Chen et al., 2017). In 306 

spite of the indications on P. spumarius preference for moist environments, 307 

other reports point out that the meadow spittlebug colonizes  nearly all 308 



habitats including wet or dry meadows and dry mediterranean forests 309 

(Guglielmino et al. 2005). Consistently, P. spumarius can be very abundant 310 

on herbaceous vegetation within and surrounding olive groves in the Apulia 311 

Region of Italy, as well as in vineyards (Nicoli Aldini et al. 1998; Braccini and 312 

Pavan 2000; Pavan 2006). Olive and grapevine are rain fed Mediterranean 313 

crops that grow in dry environments. Thus, it can be concluded that P. 314 

spumarius has the potential to live under different environmental 315 

conditions, from moist to relatively dry, as long as the host plants are 316 

actively growing and not subjected to severe water stress. Due to the 317 

exceptionally wide area of distribution of this species, it cannot be excluded 318 

that the spittlebug requirement for humidity depends upon the 319 

geographical area the population lives in, or that different populations 320 

within the species have different humidity requirements. 321 

Along the years, several authors have tried to establish correlations 322 

between the meadow spittlebug development and temperature. According 323 

to Medler (1955), eggs hatch after an accumulation of 150 degree days (DD), 324 

with a maximum daily accumulation of 10 degrees over ca. 4.4 °C. King 325 

(1952) failed to speed up egg development by decreasing temperature to 326 

10°C and diminishing day length to 13 hours/day. Stewart and Lees (1988) 327 

succeeded in achieving oviposition in lab conditions, exposing eggs to 10°C 328 

for 75 to 100 days, photoperiod 12/12 light/dark, 100% HR and then 329 

increasing the temperature up to 15°C until hatching occurred.  Chmiel and 330 

Wilson (1979) stated that the 1st hatch can be predicted using an 331 

accumulation of 120 HU (heating units calculated based on a threshold 332 

temperature of 6.5°C from the 1st of January). Weaver and King (1954) 333 

hypothesized that hatching occurs at temperatures of ca. 10 to 21°C, and 334 

that cold temperatures may have a conditioning effect, that speeds up eggs 335 

development. Nevertheless, the same authors reported that eggs never 336 

exposed to less than ca. 15°C were able to hatch early in February.  Masters 337 

et al. (1998), reported that milder winters resulted in an early hatching, with 338 

no significant effect on nymphal development. Weaver and King (1954) 339 



stated that in areas where the spring weather is variable and short cold 340 

periods are interspersed with warm periods, the hatching may be prolonged 341 

over a long period. According to Zajac et al. (1989), upper and lower 342 

threshold for nymphal development are 2.8°C and 26.7°C, respectively. The 343 

first through the fifth instar nymphs and adults began appearing in the field 344 

at 2, 154, 262, 364, 472, and 660 HU respectively, as calculated from the 345 

first eggs hatching. The mean residence time of the five instars had been 346 

calculated in 154, 103, 101, 113, 181 HUs, respectively (Zajac et al. 1989). All 347 

this information, often based on substantially different estimations of the 348 

lower temperature thresholds, reveals that no clear and consistent data on 349 

the influence of temperature on spittlebug development are available and 350 

new studies are needed to fill the gap. 351 

Manipulation of  the life cycle under controlled conditions in order to obtain 352 

more than one generation per year,  thus extending the period for biological 353 

investigations of this species, does not seem an easy task, especially if we 354 

consider that termination of egg diapause requires a prolonged period of 355 

low temperatures, from 83 to 100 days (West and Lees, 1988; Yurtsever, 356 

2000). Also, experimental data on the viability of eggs stored at low 357 

temperature for several months in order to obtain nymphs later in the 358 

season are lacking. This represents a constraint in the studies of biology and 359 

behavior of P. spumarius under controlled conditions because the 360 

experiments need to be carried out in a limited period of the year when  361 

nymphs or adults are available. 362 

 363 

Movement 364 

Although the nymphs live inside a spittle, they can actively crawl on short 365 

distances, thus moving from one herbaceous plant to another, as observed 366 

by Bodino et al. (2017)., Adults are much more mobile, both actively and 367 

passively. They can fly but, more often, they crawl or leap (Ossianilsson 368 

1981). Hind legs, usually dragged while walking, are the structures 369 



underlying the P. spumarius amazing jumping ability. Power muscles 370 

contracting slowly and storing energy, plus a peculiar joint interlocking 371 

mechanism, allow the insect to generate a force of 414 times its body 372 

weight, with a jump acceleration of 2800-4000 m/s2 (Burrows 2003). A 373 

migratory behavior has been observed by several authors, with females 374 

migrating further and more readily than males (Weaver 1951; Weaver and 375 

King 1954; Lavigne 1959; Halkka 1962; Wiegert 1964; Halkka et al. 1967; 376 

Drosopulos and Asche 1991; Grant et al. 1998). P. spumarius active dispersal 377 

is probably made possible by its high polyphagy (Halkka et al. 1967). The 378 

meadow spittlebug distribution largely depend on the distribution of 379 

suitable host plants, which often occur aggregated, and frequently form a 380 

discrete pattern (Biederman 2002). First dispersal is likely to happen when 381 

the adults are still tender and immature, and can be related to harvest of 382 

the host crop or to a general decline in succulence of the host plant (Weaver 383 

and King 1954; Waloff 1973). Luxuriant foliage of newly seeded plants 384 

gradually but constantly attracts the spittlebug from the surroundings 385 

(Weaver 1951). The dissemination of the adults from the meadow is 386 

concomitant with an increase in population in other crops (Putman 1953). 387 

Migration continues until September, when adults gradually lessen their 388 

migratory activity. The diminishing of this tendency could be associated 389 

both with cooler temperatures, and with the fact that females devote their 390 

energy to oviposition (Weaver and King 1954). An indirect evidence of the 391 

migration behavior is also provided by Drosopoulos and Asche (1991), that 392 

suggest the presence of a bivoltine P. spumarius population in Greece, with 393 

two peaks in adults collection, in May and October. Since the author did not 394 

find nymphs during summer, it can be speculated that the two peaks 395 

coincide with the migrations driven by loss of succulence in host plants and 396 

oviposition. The same author also observed a drastic reduction in population 397 

densities likely caused by spring and summer drought, with P. spumarius 398 

becoming a rare species in some years. Weaver and King (1954) observed 399 

marked P. spumarius travelling more than 30 meters with a single flight, and 400 



moving as much as 100 meters within 24 hours from the release point. The 401 

same authors stated that the spittlebug may hop for several feet but are 402 

poorly balanced, so that they land on their back. Adults mainly move at a 403 

height of 15-70 cm from the ground; higher movements seems unlikely, 404 

although observations of adults flying up to 6 meters high are reported 405 

(Weaver and King 1954; Wilson and Shade 1967; Halkka et al. 1971). 406 

However, according to Freeman (1945), adults of P. spumarius can actually 407 

fly much higher than data reported by other authors. Indeed, Freeman 408 

collected one individual of P. spumarius and eight individuals of 409 

Neophilaenus lineatus with nets located 84 m above ground in the area of 410 

Lincolnshire (UK). Although in the mentioned paper the author reported 411 

these specimens generically as Cercopidae, actually it refers to N. lineatus 412 

and P. spumarius (Don Reynolds, personal communication). Such 413 

information suggests that P. spumarius can be transported by wind currents 414 

and is potentially capable of long distance migration. Passive dispersal over 415 

great distances is mediated by wind and human activities (Weaver and King 416 

1954). Dispersal power is sufficient to colonize all the micro-habitat within 417 

an island and to reach nearby islands (Halkka et al. 1971; Schultz and Meijer 418 

1978). Passive dispersal due to transportation by cars has been observed 419 

(Bosco, personal observation). A seasonal movement of adults from the 420 

herbaceous vegetation of olive groves to the olive canopy and other 421 

evergreen and deciduous trees/shrubs on late spring-early summer has 422 

been observed in Northern and Southern Italy (Cornara et al. 2016b; Bodino 423 

et al. 2017). This movement is likely not only due to drying of the 424 

herbaceous hosts, as it can be observed also where the grass cover persists 425 

over the summer. An opposite movement occurs at the end of summer-426 

beginning of autumn when adults, mostly females, re-colonize herbaceous 427 

vegetation looking for suitable sites of oviposition. 428 

 429 

Direct damage  430 



The meadow spittlebug began to receive attention during 1940’s, as a 431 

consequence of the built up of large population and large infestations in 432 

meadow crop in the USA. As reported by Weaver and King (1954), during late 433 

40’s in Ohio approximately every legume hay field was heavily infested, with 434 

the complete loss of the first hay cutting. Moreover, the species has been 435 

regarded as a pest of strawberry (Mundiger 1946; Zajac and Wilson 1984). 436 

Outside the USA, P. spumarius had never been considered a pest). Direct 437 

damages by adult meadow spittlebugs seem unlikely, especially in view of the 438 

large number of adults congregating on a crop (Weaver and King 1954). On 439 

the contrary, losses associated with large infestation by nymphs on alfalfa, 440 

red clover, carrot, peas and strawberries in areas where P. spumarius was an 441 

alien pest have been reported in the USA, with nymphal feeding causing 442 

mainly dwarfing (Fisher and Allen 1946; Scholl and Medler 1947; Poos 1953; 443 

Weaver and King 1954). No effects of the spittlebug feeding on white clover 444 

(Trifolium repens) seed production was observed (Pearson 1991).  445 

 446 

Philaenus spumarius as a vector of plant pathogens 447 

While direct damages seem unlikely, transmission of plant pathogens 448 

represents the most serious threat posed by the meadow spittlebug to 449 

agriculture and landscape. P. spumarius has been erroneously reported as 450 

vector of the peach yellow virus, while further tests disproved its involvement 451 

in pathogen transmission (Severin 1950). Phytoplasmas have been detected 452 

in P. spumarius by several authors (Pavan 2000; Landi et al. 2007; Ivanauskas 453 

et al. 2014), and in one case the species was claimed to be a vector of ash 454 

yellows phytoplasmas (Matteoni and Sinclair 1988). However, this latter 455 

finding was not confirmed by further works (Sinclair and Griffith 1994; Hill and 456 

Sinclair 2000) so that P. spumarius cannot be considered a vector of 457 

phytoplasmas until new convincing evidences are provided. Moreover, the 458 

spittlebug has been reported as a passive carrier of the plum mite (Mundinger 459 

1946). P. spumarius was first reported as a vector of the bacterium Xylella 460 



fastidiosa Wells (1987) by Severin (1950). The ability of the meadow 461 

spittlebug in transmitting the bacterium was confirmed by further research, 462 

although it was suggested that this insect might play only a marginal role in 463 

X. fastidiosa epidemiology in the American outbreaks (Purcell 1980; Almeida 464 

et al. 2005; Sanderlin and Melanson 2010). It was not until 2014 that P. 465 

spumarius became a serious threat to European agriculture, when it was 466 

reported as the major vector of X. fastidiosa in the Apulia region, Southern 467 

Italy (Saponari et al. 2014; Cornara et al. 2016b) 468 

 469 

Role of P. spumarius in the first outbreak of X. fastidiosa in Europe, and 470 

remarks on other potential vectors 471 

X. fastidiosa establishment in Europe is a clear example of the consequences 472 

related to pathogen introduction and emergence in a new environment, 473 

where the pathogen itself finds a suitable vector able to drive disease 474 

epidemics (Almeida and Nunney 2015; Fereres 2015; Martelli et al. 2016). X. 475 

fastidiosa is a gram-negative xylem limited gamma-proteobacterium, order 476 

Xanthomonadales, family Xanthomonadaceae, present throughout America. 477 

It causes diseases in many crops of economic importance such as grapevine, 478 

citrus, almond, and others (Purcell 1997). According to EFSA (2015), its host 479 

list embraces 309 plant species belonging to 63 families. In Europe the first 480 

establishment of the bacterium was reported by Saponari et al. (2013) on 481 

olive plants in Apulia showing severe symptoms of leaf scorch and dieback. 482 

This first detection was followed by findings of several subspecies and strains 483 

of X. fastidiosa in Corsica, mainland France, Germany and Spain (Denance et 484 

al. 2017; Olmo et al. 2017). The introduction is supposed to be related with 485 

trade of infected plant materials (Loconsole et al. 2016; Giampetruzzi et al. 486 

2017). X. fastidiosa is transmitted exclusively by xylem-sap sucking insects 487 

(Frazier 1965). All the members of superfamilies Cercopoidea (commonly 488 

known as froghoppers or spittlebugs), Cicadoidea, and the subfamily 489 

Cicadellinae within the family Cicadellidae (also known as sharpshooters), are 490 



considered xylem-sap feeders (Novotny and Wilson 1997). Epidemiological 491 

data suggestive of an insect involvement in pathogen spread in USA, resulted 492 

in the identification of sharpshooters as vectors of X. fastidiosa to grapevine 493 

(Hewitt et al. 1942; Frazier and Freitag 1946). Thereafter, Severin (1950) 494 

discovered that, besides sharpshooters, also spittlebugs (Hemiptera: 495 

Aphrophoridae) were able to transmit the bacterium. Nevertheless, the 496 

epidemiological relevance of spittlebugs seems negligible in the Americans 497 

outbreaks. Almeida et al. (2005) suggests that spittlebugs might maintain the 498 

inoculum in pastures surrounding diseased vineyard. On the contrary, 499 

spittlebugs seem to play an important role in pecan leaf scorch in Louisiana 500 

(Sanderlin and Melanson, 2010). Furthermore, cicadas have been claimed to 501 

transmit the bacterium, although only two reports with limited datasets are 502 

available, and the level of uncertainties about cicadas role as vectors is 503 

currently very high (Paião et al. 2002; Krell et al. 2007; EFSA 2015). Overall, 504 

the amount of data about X. fastidiosa transmission by and interaction with 505 

sharpshooters is much larger than the whole background about spittlebugs 506 

and cicadas. Noteworthy, in Europe, only nine sharpshooter species are 507 

present (Fauna Europaea 2016), and few of them are common and abundant. 508 

Conversely, the widespread candidate vectors of X. fastidiosa in Europe seem 509 

to be spittlebugs (or froghoppers) and, possibly, cicadas (EFSA 2015).  510 

The first vector survey during 2013 in Apulia, and successive transmission 511 

tests on periwinkle and olive plants, led to the identification of P. spumarius 512 

as vector of X. fastidiosa within the first European bacterium outbreak 513 

(Saponari et al. 2014). During the first tests carried out in October-November 514 

2013, P. spumarius transmitted the bacterium only to periwinkle plants but 515 

not to olive (Saponari et al. 2014). The role of P. spumarius in the transmission 516 

of the fastidious bacterium from olive to olive was proven by successive tests 517 

carried out during June-July 2014 (Cornara et al. 2016b). Furthermore, during 518 

2014 it was observed that adults emerged in spring on ground cover within 519 

olive orchards tested negative to X. fastidiosa by qPCR. First positive 520 

individuals of 2014 were collected from infected olive canopies, with a great 521 



population colonizing this host approximately from sprouting to fruit setting 522 

(Cornara et al. 2016b, FIGURE 2). These elements, although not entirely 523 

conclusive, strongly suggest: i) the role of olive plants as the main bacterium 524 

reservoir within the olive orchard; ii) the implication of P. spumarius as the 525 

main species involved in the secondary spread of X. fastidiosa from olive to 526 

olive. P. spumarius movements within the olive orchard are still unclear: if the 527 

spittlebug follows the general rules for xylem-sap feeders, movement would 528 

be influenced by plants physiology and biochemistry, with P. spumarius 529 

moving from plant to plant according to daily fluctuation of nutrient elements 530 

into the xylem sap (Andersen et al. 1992). Another important factor 531 

influencing spittlebugs movement is humidity (as previously discussed). 532 

During summer, when ground cover dries up and temperature dramatically 533 

increases, the spittlebugs find a perfect shelter in the olive canopies, where 534 

they can acquire the bacterium. After X. fastidiosa acquisition, P. spumarius 535 

would play an important role either in secondary transmission within the 536 

olive orchards, or in primary transmission to plants surrounding the orchard 537 

or several kilometers apart. Short-range bacterial dispersal after acquisition 538 

seems to rely on active spittlebug movements, whereas anthropogenic 539 

factors may have played a major role in long-range dispersal of infective 540 

individuals in Apulia. This theory is consistent with the spotted distribution of 541 

the outbreaks within Lecce's province (Martelli et al. 2016). Sumatra clove 542 

disease, caused by Pseudomonas syzigii, transmitted by Machaerotidae, 543 

sister taxon of Aphrophoridae, shows an analogous pattern, with sources of 544 

primary spread several kilometers far from new hotspots (Eden-Green et al. 545 

1992). Furthermore, the large number of spittlebugs present within the olive 546 

canopy for several weeks/months, may dramatically increase the probability 547 

of infection, and reduce the disease incubation period (Daugherty and 548 

Almeida 2009). According to Purcell (1981), the probability of a plant being 549 

infected with X. fastidiosa, is directly proportional to four factors: vector 550 

infectivity (i), transmission efficiency (E), number of vectors (n), and time they 551 

spent on the host (t). As shown by Daugherty and Almeida (2009), i and E are 552 



proportional to n and t: practically speaking, even if the vector is relatively 553 

inefficient, the infection is inevitable when large population settles on the 554 

host plant for long time. Incubation time on olive is still unknown: Saponari 555 

et al. (2016) stated symptoms appear 12 to 14 months after artificial 556 

inoculation on young olive plants in greenhouse conditions. Nevertheless, 557 

incubation period in the field may differ from lab results, mainly because of 558 

the different age of the plants and their previous and concomitant exposition 559 

to biotic and abiotic stresses, and number of inoculation events. Regarding P. 560 

spumarius transmission efficiency, Cornara et al. (2016c) estimated the daily 561 

value in ca. 20% using as a proxy grapevine plants and X. fastidiosa subsp. 562 

fastidiosa strain STL. Within grapevine, X. fastidiosa reaches very high 563 

population, likely 100 to 1000 times greater than in olive (Saponari et al. 564 

2016): taking into account that the main factor influencing transmission is 565 

bacterial population present within the source plant (Hill and Purcell 1997), 566 

P. spumarius transmission efficiency to olive could be lower than the value 567 

reported for grapevine. Altogether, data gathered from transmission 568 

experiments with grapevine, showed that X. fastidiosa transmission by P. 569 

spumarius does not differ from the dynamics reported for sharpshooters. 570 

Nevertheless, whereas several authors reported no correlation between 571 

bacterial population in the vector foregut and pathogen transmission (Hill and 572 

Purcell 1995; Almeida and Purcell 2003; Rashed et al. 2011), Cornara et al. 573 

(2016c) showed that for P. spumarius this correlation exists. Moreover, either 574 

in the experiment with grapevine carried out with Californian population of 575 

the spittlebug, or analyzing insects collected from infected olive canopies in 576 

Apulia, the bacterial population found within the insect was ten to one 577 

hundred times lower than that reported for sharpshooters (Cornara et al., 578 

2016a, Cornara et al, 2016c). Thus, despite similarities in overall transmission 579 

dynamic, P. spumarius showed two novel unexplored characteristics in 580 

relation to better studied sharpshooters: the insect hosts a relatively low 581 

population of bacterial cells, around 100 to 1000 cells for individual; 582 

moreover, the extent of the population is directly correlated with 583 



transmission efficiency. Furthermore, Killiny and Almeida (2009) reported 584 

that, once acquired, X. fastidiosa starts to multiply at a constant rate within 585 

the foregut, saturating the available space in ca. 7 days, reaching a population 586 

of 10000 to 50000 cells/insect. Quantitative PCR analyses of the individuals 587 

used for transmission experiment on grapevine, revealed that the bacterium 588 

within the foregut of P. spumarius reaches the population peak of ca. 1000 589 

cells/insect in less than three days (Cornara et al. 2016c). Cornara et al. 590 

(2016c) hypothesized two possible explanations underlying the observed 591 

phenomenon: the first relies on cuticle chemistry and potential bacterial 592 

receptors within the foregut; the second is related to insect probing behavior. 593 

During acquisition, X. fastidiosa adhesins bind to insect cuticle, likely on the 594 

part of the precibarium proximal to cibarium (Almeida and Purcell 2006; 595 

Killiny and Almeida 2009); chitin, the main cuticle polysaccharide, is used by 596 

the bacterial cells as a carbon source (Killiny et al. 2010). P. spumarius foregut 597 

may host few bacterial cells because of differences in availability of 598 

polysaccharides or sites where the first binding or the successive 599 

multiplication take place. Alternatively or concomitantly, the observed 600 

difference may be related to P. spumarius probing behavior: the meadow 601 

spittlebug has been demonstrated to feed on the main xylem stream, where 602 

tremendous tension even greater than -10 bars occurs (Malone et al. 1999 ). 603 

To feed on xylem mainstream P. spumarius has to overcome this tension, 604 

loading the cibarial muscles until balancing vessel negative pressure. As 605 

shown with sharpshooters, the cibarial pump performs one up-and-down 606 

movement every second, and the fluid flows within the foregut very rapidly 607 

(Purcell et al. 1979; Dugravot et al. 2008). Under these conditions, bacterial 608 

cells binding should not be straightforward, but the feeding behavior of P. 609 

spumarius may make either binding or multiplication even more challenging. 610 

Electrical penetration graph (EPG) is a technology devised by McLean and 611 

Kinsey in 1964, then improved by Tjallingii in 1978, and to date considered an 612 

essential tool in research on probing behavior and pathogen transmission by 613 

piercing-sucking insects (Walker 2000). A detailed EPG-assisted study of P. 614 



spumarius probing behavior in relation to X. fastidiosa transmission, may 615 

shed the light on this phenomenon, providing useful data for blocking 616 

pathogen transmission, following the approach illustrated by Killiny et al. 617 

(2012) and Labroussaa et al. (2016).  618 

Besides olive, Cornara et al. (2016a) showed that P. spumarius transmits X. 619 

fastidiosa pauca ST53 to several host plants, namely oleander, periwinkle, the 620 

stonefruit rootstock GF677, and sweet orange, but not grapevines. For 621 

transmission tests, groups of five insects per plant were used; as expected, 622 

the number of infective spittlebugs was directly correlated with transmission 623 

probability. The same authors reported that systemic colonization does not 624 

take place neither in GF677 nor in sweet orange, consistently with bacterial 625 

artificial inoculation data reported by Saponari et al. (2016). Furthermore, X. 626 

fastidiosa was never detected in hundreds of Citrus spp. plants monitored 627 

within the infected area (Martelli et al. 2016). Eventually, the above reported 628 

findings demonstrate the main role of P. spumarius as vector of X. fastidiosa 629 

in the Apulian outbreak. Besides the meadow spittlebug, three other xylem 630 

"specialist" feeders have been found in surveyed Apulia olive orchards: N. 631 

campestris, Cercopis sanguinolenta Scopoli (1763), Cicada orni L. (1758) 632 

(Cornara et al. 2016b). Whereas either N. campestris or C. sanguinolenta 633 

seem not to play a significant role in the transmission of X. fastidiosa to olive, 634 

the impact of these species as vector of the bacterium should be investigated 635 

on other host plants and agro-ecosystems (Cornara et al. 2016b). Regarding 636 

C. orni, in a recent natural infectivity test Cornara et al. (unpublished) found 637 

three out of 160 cicadas positive to X. fastidiosa by qPCR, while no 638 

transmission to olive recipient plants occurred. Eventually, more research 639 

efforts are needed in order to understand the epidemiological relevance of 640 

either P. spumarius or other candidate vectors in agro-ecosystems different 641 

from olive orchards, and across others European epidemics. 642 

 643 

Control: integrated pest management and sustainable control perspectives 644 



Integrated pest management strongly relies on effective sampling and 645 

surveillance methods. Unfortunately, to date, an effective method for P. 646 

spumarius sampling is still missing. Sweep net is the most common method 647 

used for adult collection; however, as remarked by Purcell et al. (1994), 648 

sweep net is a poorly effective tool for sampling insects from a tree canopy, 649 

in contrast with its high efficacy on the ground cover. Although sweep net is 650 

the tool largely used to collect P. spumarius, other methods, namely 651 

minicage (biocenometers), pitfall traps, sticky traps, aerial suction traps, 652 

beat tray, and tanglefoot bands have been tested. However, all these 653 

methods were proven to be less effective than sweep net (Weaver and King 654 

1954; Lavigne 1959; Wilson and Shade 1967; Novotny 1992; Pavan 2000; 655 

Bleicher et al. 2010). To the best of our knowledge, only one study focused 656 

on effectiveness of different color sticky traps in collecting the meadow 657 

spittlebug has been performed, with yellow resulting more attractive than 658 

green, red, pink, blue, and white (Wilson and Shade 1967). Nevertheless, 659 

preliminary results of observations conducted in Apulia and Spain, suggests 660 

the low efficacy of yellow sticky traps in P. spumarius collection and other 661 

colors need to be tested (Morente et al., unpublished data). Researches 662 

carried out on vibrational signals produced by Homalodisca vitripennis 663 

Germar (1821) opened new and interesting perspectives for the control of 664 

this X. fastidiosa vector in US vineyard (Nieri et al. 2017). The occurrence of 665 

communication through vibrations should be explored also for P. spumarius; 666 

the outcomes of such researches could open new venues in order to set up 667 

an effective monitoring tool. On the other hand, recent studies on the fine 668 

structure of antennal sensilla of the spittlebug allowed to identify 669 

chemoreceptors (Ranieri et al. 2016). Although the presence of olfactory 670 

receptors among the antenna is limited, it is possible that P. spumarius 671 

responds to olfactory attractants, e.g. plant attractants, thus providing new 672 

tools for monitoring and control. Unfortunately, so far pheromones have 673 

not been identified in spittlebugs, with the exception of an aggregation 674 

pheromone of the rice spittlebug Callitettix versicolor nymphs (Chen and 675 



Liang 2015) and therefore monitoring and control methods based on the use 676 

of pheromones are very unlikely to be developed for P. spumarius.  677 

To date, considering that X. fastidiosa eradication is no more feasible and 678 

Apulia had become a reservoir of the bacterium, an effective disease 679 

management strategy is mandatory for the survival of agriculture and 680 

landscape (Strona et al. 2017).  Strategies focused on disruption of only one 681 

single aspect of the complex interaction vector-plant-pathogen has proven 682 

many times to be unsuccessful (Almeida et al., 2005). X. fastidiosa provides 683 

one of the best example of an arthropod-borne pathogen whose control 684 

strongly depends on several interacting variables: crop; agricultural 685 

practices; weather; vector biology, host range and behavior; pathogen host 686 

range; transmission mode, primary or secondary (Almeida et al. 2005). 687 

Therefore, management of X. fastidiosa epidemics should be based on a 688 

combination of multiple tactics that partially interrupt more than one 689 

interaction of the pathosystem (Almeida et al. 2005). At least in Salento 690 

olive orchards, available data strongly suggests that P. spumarius transmits 691 

X. fastidiosa from tree to tree, with olive being the primary source of the 692 

bacterium. In such case of “secondary transmission”, the disease control 693 

strategy should be based on exclusion of the pathogen from propagative 694 

material, removal of infected plants, and vector control to reduce 695 

transmission within and between the orchards (Lopes and Krugner 2016). 696 

According to the funding theories of integrated pest management, an 697 

effective pest control strategy should target the most vulnerable stages of 698 

the insect life cycle, when the control tools can act on the residual pest 699 

population already affected by, or exposed to, biotic and abiotic factors 700 

(Lewis et al. 1997; Kogan 1998). Looking at P. spumarius life cycle and 701 

behavior, two are the weakest point on which control measures could 702 

achieve the best results: nymphal stage, and newly emerged non-infective 703 

adults shifting to olive plants. Nymphs develop in natural vegetation within 704 

and on the margins and hedgerows of olive groves during spring. Removal of 705 

ground cover hosting the nymphs either by mowing, soil tillage or herbicides 706 



within and surrounding olive orchards, could be effective in drastically 707 

reducing resident vector population. Nevertheless, indiscriminate removal 708 

of ground cover could be ecologically deleterious, with large-scale 709 

environmental impact (Civitello et al. 2015). Another alternative approach 710 

could be represented by the use of physical or chemical compounds that 711 

remove and further affect the spittle production, since the ability of the 712 

nymph to survive out of the spittle is very limited. Chemical control of 713 

nymphs was not yet been extensively investigated so far, but could also 714 

reduce resident vector population in olive groves. 715 

Adult control is mainly hampered by migration tendency, that would soon 716 

balance the amount of adults dead after insecticides application. King (1952) 717 

observed that treatments in mid-summer were ineffective in spittlebug 718 

control, since the population would be soon equalized by successive 719 

migration from surrounding habitats. P. spumarius adults control in olive 720 

orchards should be mainly focused on disrupting X. fastidiosa acquisition 721 

from olive plants, that likely occur when non-infective recently molted adults 722 

migrate from ground cover to tender olive sprouts. Carefully planned 723 

insecticides application to olive and surrounding plants before adult shift to 724 

olive would expose twice the spittlebug to the pesticide: once before and 725 

when the insects alight on infected tree; secondly, when potentially infective 726 

vectors move to healthy trees (Almeida et al. 2005). Currently, very few 727 

reports on the activity of insecticides against P. spumarius are available, 728 

because before the X. fastidiosa European outbreak the species was not 729 

considered a pest and therefore was not targeted with insecticides. A recent 730 

experiment carried out in Apulia on insecticide control of adults on olive 731 

showed that the neonicotinoids acetamiprid and imidacloprid and 732 

pyrethroids deltamethrin and lambda-cyhalothrin displayed a high mortality 733 

rate. The insect growth regulators buprofezin, and spirotetramat showed no 734 

acute lethal effect as well as the pyridine-azomethine pymetrozine. Among 735 

botanical insecticides, citrus oil showed a good insect mortality when applied 736 

at the volume of 2,000 L/ha (although its activity is not persistent at all), while 737 



no toxic effect was recorded using azadirachtin (Dongiovanni et al. 2016). 738 

Data on chronic effect or impact of the compounds in reducing X. fastidiosa 739 

transmission are still missing. Neonicotinoids were successfully used in Brazil 740 

against CVC-vectors, through roots and soil application on less than 3 years-741 

old citrus plant, and by spraying on elder plants (Lopes and Krugner 2016). 742 

Nevertheless, treatments with Imidacloprid proved to be ineffective in 743 

preventing grapevines infection with X. fastidiosa in areas with prevalent 744 

sources of inoculum and high vector abundance (Krewer et al. 2002). Besides 745 

the induced mortality, insecticides as neonicotinoids and repellent as the 746 

aluminium silicate kaolin, could interfere with X. fastidiosa-vector interaction 747 

by affecting vector orientation, host determination and feeding behaviour, as 748 

shown in H. vitripennis (Tubajika et al. 2007). Kaolin particles, that protects 749 

the hosts against the vector by camouflaging the plant with a white coating, 750 

making them visually unperceivable, or by reflecting sunlight, might represent 751 

a valid control tool especially for organic olive orchards (Puterka et al. 2003). 752 

The negative effect of spittlebug migration from the surroundings on the 753 

effectiveness of insecticides applications could be mitigated by coupling 754 

insecticide treatments with installation around the olive orchard of screen 755 

physical barriers, that proved to be efficient in reducing GWSS population 756 

migrating from the surrounding citrus orchards into vineyards (Blua et al. 757 

2005). Nevertheless, even if effective, the benefits coming from proper 758 

control strategies would result in just a “hold back the tide” strategy, if the 759 

measures will not be extended to the widest possible area.  760 

The control of the meadow spittlebug with parasitoids and predators is still 761 

far from its application, and more research efforts are needed to find a 762 

suitable candidate to pursue this task. Indeed, detailed information about 763 

the meadow spittlebug natural enemies are still scattered and missing. 764 

Predation seems not to be an important source of mortality (Whittaker 765 

1973). Birds, frogs, Arachnids Phalangiidae, Hymenoptera, Diptera and 766 

Coleoptera Carabidae, prey P. spumarius (Phillipson 1960; Halkka et al. 767 

1976; Harper and Whittaker 1976; Henderson et al. 1990). Westwood in 768 



1840 (cited by Weaver and King 1954), and more recently Pagliano and Alma 769 

(1997), observed Argogorytes mystaceus L. (1761) (Hymenoptera: 770 

Sphecidae) (Gorytes mystaceus in Westwood 1840) dragging P. spumarius 771 

nymphs from their spittle masses. Very recently, the Reduviidae bug Zelus 772 

renardii Kolenati has been proposed as a biological control agent in olive 773 

orchards of P. spumarius (Salerno et al., 2017). The dipteran parasitoid 774 

Verrallia aucta Fallen (1817) (Diptera: Pipunculidae), found in Europe and 775 

Central Siberia, is responsible for adults sterility bringing them to death just 776 

in the last part of their cycle; parasitism rate is likely to be not greater than 777 

1% (Whittaker 1969; Whittaker 1973; Meyer and Bruyn 1984; van Driesche 778 

and Peters 1987). Furthermore, the nematode Agamermis decaudata Cobb, 779 

Steiner & Christie (1923), and the entomopathogenic fungi Entomophtora 780 

sp. Fresen (1856), attack the adults (Weaver and King 1954, Harper and 781 

Whittaker, 1976; Ben-Ze’Ev and Kenneth, 1981). Eggs are parasitized by 782 

Hymenoptera of the genus Ooctonus spp., Tumidiscapus sp., and Centrodora 783 

sp., which were found parasitizing around 10% of field collected eggs in 784 

1951 in Ohio (Weaver and King 1954).  785 

Promising researches focused on disrupting X. fastidiosa-vector interactions 786 

are ongoing. Deliver of lectins, carbohydrates and antibodies to a vector 787 

through artificial diet, significantly impacted bacterial acquisition and 788 

subsequent transmission (Killiny et al. 2012). Furthermore, recombinant 789 

peptides efficiently blocked X. fastidiosa acquisition and initial bind to 790 

foregut, while they did not interfere with successive steps of bacterial 791 

multiplication once the bacterium had been acquired and was bound to the 792 

cuticle (Labroussa et al., 2016). Nevertheless, such strategies, tested on 793 

sharpshooters, should be further assessed for P. spumarius, whose intimate 794 

relationship with the bacterium is different, to some extent, to the one of 795 

Cicadellinae (Cornara et al. 2016c). Moreover, deepening our knowledge 796 

about P. spumarius feeding behavior and X. fastidiosa transmission 797 

mechanism through a real-time observation device as EPG could open new 798 



venues in the discovery of an effective strategy to disrupt bacterium-799 

spittlebug interaction.  800 

 801 

Concluding remarks 802 

 The meadow spittlebug P. spumarius, never considered a pest in 803 

Europe, raised the attention of scientists and stake-holders after the 804 

discovery of its main role in the transmission of X. fastidiosa strain ST53 805 

to olive in the first reported European outbreak of the bacterium, 806 

occurred in Apulia (South Italy) in 2013. 807 

 P. spumarius is widely distributed, covering most of the Palearctic 808 

region, and extending to Nearctic. The spittlebug is highly polyphagous, 809 

occurring in most of the terrestrial habitats; furthermore, P. spumarius 810 

has the potential to live under different environmental conditions, from 811 

moist to relatively dry, as long as the host plants are actively growing, 812 

and not subjected to severe water stress.  813 

 Lack of key information on P. spumarius urgently calls for research on 814 

aspects considered fundamental for developing effective pest 815 

management strategies:  life history, ecology, phenology, population 816 

dynamics, movement and dispersal, tri-trophic relationships, host plant 817 

association and preference, reproductive biology, feeding behavior, 818 

vibrational communication , effect of plant volatiles on host search and 819 

recognition, insect microbiome, natural enemies.  820 

 X. fastidiosa-associated disease control strategies should include 821 

measures aimed at i) suppressing vector populations ii) suppressing 822 

sources of inoculum for the vector. To achieve these goals, we should 823 

consider the ecology and population dynamics of P. spumarius in 824 

different sites and crop systems, as there are no universally applicable 825 

solutions. As for suppressing P. spumarius population, control strategies 826 

should target two stages of the insect life history: nymphs, and newly 827 

emerged non-infective adults, that can move toward X. fastidiosa-828 



source plants. Moreover, as soon as research will provide new insights 829 

on vector-plant-pathogen interactions, innovative control strategies 830 

should be developed with the aim of targeting different aspects of these 831 

interactions. Finally, control measures should be applied on the widest 832 

possible area.  833 

 Eventually, the more we learn about the vector-bacterium-plant 834 

relationships, the faster we will find the way to cohabit with X. fastidiosa 835 

associated diseases, reducing the impact of a bacterium that, to date, 836 

represents one of the most frightening threat to European agriculture 837 

and landscape. 838 
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Figure 1: Biological cycle of Philaenus spumarius in Southern Apulia Region 1200 

of Italy (photos by A. Fereres and D. Cornara). 1201 

  1202 



Figure 2: Philaenus spumarius abundance on olive and ground cover during 1203 

the year, and hosts shifting in infected olive orchards in Apulia (South Italy). 1204 

Black line refers to P. spumarius adults abundance on olive plants, gray line 1205 

refers to ground cover. Figure elaborated from Cornara et al. (2016b). 1206 
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