
Multi Software Product Lines in the Wild
Michael Lienhardt

michael.lienhardt@unito.it
Università di Torino

Italy

Ferruccio Damiani
ferruccio.damiani@unito.it

Università di Torino
Italy

Simone Donetti
simone.donetti@unito.it
Università di Torino

Italy

Luca Paolini
luca.paolini@unito.it
Università di Torino

Italy

ABSTRACT
Modern software systems are often built from customizable and
inter-dependent components. Such customizations usually define
which features are offered by the components, and may depend
on backend components being configured in a specific way. As
such system become very large, with a huge number of possible
configurations and complex dependencies between components,
maintenance and ensuring the consistency of such systems is a
challenge.

In this paper, we propose a Multi Software Product Line model to
capture the complexity of such systems and pave the way to formal
studies on them. We applied and implemented our model on a full
Linux Distribution of almost 40,000 interconnected components
and 3 million features, and present some initial analysis we did on
this model.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; Software product lines; Feature interaction;Abstraction, mod-
eling and modularity; Software libraries and repositories; Software
creation and management;

KEYWORDS
Software Product Line, Multi Software Product Line, Configurable
Software, Variability Modeling, Composition, Linux Distribution
ACM Reference Format:
Michael Lienhardt, Ferruccio Damiani, Simone Donetti, and Luca Paolini.
2018. Multi Software Product Lines in the Wild. In VAMOS 2018: 12th Inter-
national Workshop on Variability Modelling of Software-Intensive Systems,
February 7–9, 2018, Madrid, Spain, Malte Lochau (Ed.). ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3168365.3170425

This research has been partially funded by: EU Horizon 2020 project Hy-
Var (www.hyvar-project.eu), GA No. 644298; ICT COST Action IC1402
ARVI (www.cost-arvi.eu); Ateneo/CSP D16D15000360005 project RunVar
(runvar-project.di.unito.it);

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VAMOS 2018, February 7–9, 2018, Madrid, Spain
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5398-4/18/02. . . $15.00
https://doi.org/10.1145/3168365.3170425

1 INTRODUCTION
A Software Product Line (SPL) is a set of similar programs, called
variants, with a common code base and well documented variabil-
ity [1, 6, 19]. Modern software systems are often built as complex
assemblages of customizable components that out-grow the expres-
siveness of SPLs. Consider for instance a core wordpress web server.
Such system is built from at least five components: i) the actual
wordpress php code; ii) a web server; iii) a php interpreter; iv) a
database to host the wordpress data; and v) the data in the database.
Interestingly, many of these components can be realized by differ-
ent software tools: the most common choice for the web server and
for the database is apache and mysql, but other options (like nginx
and berkley-db) are possible. Moreover, these components are cus-
tomizable in order to satisfy various functional and non-functional
requirements of the users. For instance, apache can support many
authentication protocols, many scripting languages (for which it
may required a backend interpreter) which may be activated or not
by the user, depending on its requirements. In our example, apache
must have its php support enabled in order to execute wordpress,
which requires a php interpreter, but activating more of its features
may just add to its memory and computation load without any
benefit for the overall system.

In such composed systems the concept of SPL can be used to
describe each customizable software individually, while additional
mechanisms are needed to describe the relationship between dif-
ferent SPLs (either requirements like in our example where apache
requires a php interpreter, or conflicts where two SPLs cannot be
used together) and to describe the concept of components that can
be realized by different SPLs with similar functionalities. There-
fore these systems can be described as Multi Software Product Lines
(MPLs): an MPL is a sets of interdependent SPLs that need to be
managed in a decentralized fashion by multiple teams and stake-
holders [15].

In this paper, we build upon previous works [10, 22] to define
a formal model of MPL that aims to: i) capture the notion of rela-
tionship between different components; ii) be flexible enough to
describe different real composed systems; and iii) support the con-
struction of tools to help in designing, maintaining and analyzing
composed systems. More precisely, the contributions of this paper
are:

• a formal definition of SPL agnostic on a number of imple-
mentation details, so it encompasses SPLs built with different
SPL approaches (we refer to [21] and [26] for a survey of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302255649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3168365.3170425
www.hyvar-project.eu
www.cost-arvi.eu
https://doi.org/10.1145/3168365.3170425


VAMOS 2018, February 7–9, 2018, Madrid, Spain Michael Lienhardt, Ferruccio Damiani, Simone Donetti, and Luca Paolini

different approaches for implementing and analyzing SPLs,
respectively);
• a formal definition of MPL based on the notions of: Depen-
dent SPL which extends SPLs with dependencies capable of
expressing both requirements and conflicts; and SPL sub-
typing which describes the commonalities shared between
different SPLs, thus capturing the concept of components;
• an implementation of this MPL model on top of the Linux
Gentoo distribution [13];
• a use of this implementation to extract interesting statistical
data on how MPLs are used in practice; and
• a discussion on the benefits of using a formal MPL model in
designing such large collection of components.

The rest of the paper is structured as follows: Section 2 constructs
step by step our MPL model; Section 3 introduces portage, the
package manager of the Gentoo Linux distribution, and shows how
it can be mapped into our model; Section 4 presents our analysis
on portage and its MPL structure while Section 5 discusses some
limitations of portage and how our model, together with some
extensions, could help in designing, maintaining and analysing
composed systems; finally, Section 6 discusses related work and
Section 7 concludes the paper.

2 MPL MODEL
To motivate an illustrate our model, we use a running example
based on the main use case of the EC H2020 project HyVar which
models software systems in a car. This use case is structured in three
Electronic Control Units (ECUs) with their dedicated functionalities
• ECU_A is responsible for the core functionalities of the car,
which include i) the mandatory emergency call that auto-
matically calls the police in case of a crash using either the
european union (EU) or the russian protocol; and ii) an op-
tional connnection Gateway that allow message exchanges
between different ECU in the car.
• ECU_B hosts the optional services of the car, that include i)
a gear advice that hints the driver in when switching gear;
and ii) a brake advice that gives useful information about the
brake status.
• ECU_C hosts the UI of all the services of the car.

Each of these ECUs are implemented by their dedicated teams, us-
ing different implementation languages and variability approaches
to encode the ECU customization. Hence, for our model to be able to
capture this use case, its notion of variant must be able to describe
any kind of structure, may it be code, library, data, etc. One impor-
tant property of variants however is that they can be composed in
order to buid up composed systems, like in our car use case, which
is composed of three ECUs. Note however that not every variants
can be composed together, e.g., two java jar files could declare the
same class. We thus get the following definition for variants:

Definition 2.1 (Variants). The set of all variants V is a set of
software components equipped with a structure of a partially com-
mutative monoid (PCM) [12, 27], i.e., a triple (V, ⊕, ε ) where ⊕ is a
partial and commutative composition operator and ε is its neutral
element. More precisely, writing x⊥y when x ⊕ y is defined, we
have the following properties:

(1) x⊥y implies y⊥x and x ⊕ y = y ⊕ x ;
(2) y⊥z and x⊥(y ⊕ z) imply x⊥y, (x ⊕ y)⊥z and x ⊕ (y ⊕ z) =

(x ⊕ y) ⊕ z;
(3) ε⊥x and ε ⊕ x = x .

Our definition of Software Product Line build upon this abstract
notion of variant, to which it adds variability (or customization) us-
ing a feature model and a generator function that maps the different
products of the feature model to its corresponding variant:

Definition 2.2 (Feature Model, Software Product Line). A Feature
ModelM is a pair (F ,P) where F is a set of features and P ⊆ 2F
is a set of products.M∅ = (∅, ∅) is the empty feature model.

A Software Product Line L is a pair (M,G) where M is the
feature model of the SPL and G is the generator of the SPL, i.e., a
partial function from the products ofM to variants v ∈ V .

Note that in this definition, the generator of the SPL G can be
partial, i.e., some product may not have a corresponding variant, to
also capture SPLs that are ill-defined and contains errors that make
impossible the generation of a product’s variant. Note also that our
notion of generator does not specify how variants are generated
from a specific product. This allows our model to capture several
SPL approaches, like annotative product lines [1] (e.g., where the
generator works by applying the C preprocessor on some source
code), Feature-Oriented Programming [1] (where the generator
works by combining the artifacts stored in the selected features’
modules), or Delta-Oriented Programming [20] (where the gen-
erator works by applying selected delta modules on a intial core
artifact).

Feature models can be graphically represented as feature dia-
grams, arranging the features in a tree structure with additional
cross-tree constraints to describe their dependencies (see, e.g., [3]).
Figure 1 presents the feature models of the different ECUs in our
running example. As previously discussed, ECU_A (in Figure 1a)
has a mandatory feature called eCall implementing the emergency
call procedure that calls the police in case of a car crash, and that
has two aternative sub-features corresponding to the two possible
call protocols. Additionally ECU_A has one additional optional fea-
ture called Gateway that implements communication between the
different ECUs in the car. ECU_B on the other hand (in Figure 1b)
has two optional features: GearAdvice that corresponds to the gear
advice service, and BrakeAdvice that corresponds to the brake ad-
vice service. Finally, ECU_C has one optional feature per possible
user interface: eCallUI corresponds to the UI of the emergency
call functionality (implemented in ECU_A), GearAdviceUI corre-
sponds to the UI of the gear advice service and BrakeAdviceUI
corresponds to the UI of the brake advice service (both services
being implemented in ECU_B).

While the feature models in Figure 1 describe the variability of
each ECU of the car, they do not express their intrinsic relationships.
For instance, for the feature GearAdviceUI (in ECU_C) to make
sense, the gear advice service must be present in ECU_B (so the
data to put in the user interface would be computed), and the
communication between the ECUs (implemented in ECU_A) must
be available (so the data computed in ECU_B could be sent to
ECU_C). Hence, in this example, the features of ECU_C depend on
the activation of some features in ECU_A and ECU_B.



Multi Software Product Lines in the Wild VAMOS 2018, February 7–9, 2018, Madrid, Spain

ECU_A

eCall

EU Russia

Gateway

(a) Feature Model
of ECU_A

ECU_B

GearAdvice BrakeAdvice

(b) Feature Model of ECU_B

ECU_C

eCallUI GearAdviceUI BrakeAdviceUI

(c) Feature Model of ECU_C

Legend:

Mandatory

Optional

Altenative

Figure 1: Feature Models of the ECUs

To capture such dependencies, we consider a notion ofDependent
SPL (DPL) that extends the concept of SPL with an explicit notion
of dependency. We illustrate this notion with our ECU_C example:
this SPL thus must be extended to explictly state that: i) it depends
on some features of ECU_A and ECU_B; and ii) how precisely
its own features are related to the ones of ECU_A and ECU_B.
Syntactically, the ECU_C DPL could be written as in Listing 1 below:
the dependencies toward ECU_A and ECU_B are explicitly stated
with the keword depends on, while the three constraints at the end
of the declaration precisely describe the dependencies between the
features of ECU_C and the service implemented in ECU_A and
ECU_B.

Line ECU_C:
depends on ECU_A
depends on ECU_B
eCallUI⇒ECU_A.eCall ∧ECU_A.Gateway
GearAdviceUI⇒ECU_B.GearAdvice ∧ECU_A.Gateway
BrakeAdviceUI⇒ECU_B.BrakeAdvice ∧ECU_A.Gateway

Listing 1: Declaration of the ECU_C DPL

Formally, the depends on syntax corresponds to the ECU_C’s
feature model including the features of ECU_A and ECU_B so it can
relate to them, while the constraint syntax specify the structure of
the ECU_C’s products that encodes the dependencies between the
features of the different ECUs, in the same way as the product of an
SPL encodes the dependencies between the features within the SPL.
Our definition is based on a notion of feature model extension that
derives from the more complex notion of feature model composition
presented in [22].

Definition 2.3 (Extension of a FM, Dependent SPL). A feature
model M = (F ,P) is an extension of a feature model M ′ =
(F ′,P ′), writtenM ′ ↪→ M, iff F ′ ⊆ F and for all p ∈ P, there
exists p′ ∈ P ′ ∪ {∅} such that p ∩ F ′ = p′.

A Dependent SPL L is a triple (M,G,D) where (M,G) is an
SPL and D is a set of dependencies, i.e., a set of DPLs {Li =
(Mi ,Gi ,Di )}i ∈I such thatMi ↪→M for all i ∈ I .

Note that every SPLs (M,G) can seamlessly be extended into
the DPL (M,G, ∅): in the rest of the document, we will consider
that an SPL is a DPL with an empty set of dependencies. Hence,
in our example, ECU_A and ECU_B are indeed DPLs, and ECU_C
does correspond to this definition. In particular, it is the constraint
Mi ↪→ M that enforces that the features of ECU_A and ECU_B
are correctly transfered in the ECU_C DPL in our example.

The above definition of Dependent SPL is strongly-coupling: a
DPL L depends on a set of specific DPLs, and if one of them is
replaced by a new version, thenL must be changed to update its de-
pendencies. Moreover, such a strongly coupling forbids the designs
of systems as discussed in the introduction, where a web server
component (i.e., dependency) could be filled by several equivalent
SPLs. To solve this issue, we consider a notion of subtyping. Namely,
we assume that some SPLs do not actually generate concrete code
(like interfaces in Java 7), and that there is a subtyping relation that
allow to establish whether a concrete SPL implements an abstract
SPL. This subtyping relation must validate some consistency prop-
erties. In particular, variability must be preserved by subtyping: if
the DPL L is a subtype of L′, then all the products of L′ must be
extensible into a product ofL. This property, inspired by the notion
of feature model interface defined in [22], enables a DPL depending
on another DPL L′ to seamlessly use the products of L to resolve
its dependencies. With this, we can give the definition of a Multi
Software Product Line:

Definition 2.4 (Concrete/Abstract DPL, Refinement of an FM, MPL).
Consider the set of variantsV to be partitioned into two subsets:
the set of concrete variantsVc and the set of abstract variantsVa .
A DPL (M,G,D) is concrete if it generates only concrete variants:
im(G) ⊂ Vc . A DPL (M,G,D) is abstract if it generates only
abstract variants: im(G) ⊂ Va .

A feature modelM = (F ,P) is a refinement of another feature
modelM ′ = (F ′,P ′), writtenM ▷M ′ iff F ′ ⊆ F and for all
p′ ∈ P ′, there exists p ∈ P with p ∩ F ′ = p′.

An MPL is a pair K = (S, ⪯) where S is a set of concrete and
abstract DPLs and ⪯ is a subtyping relation between the DPL in K
(⪯ ⊂ S × S) that validates the following properties:

(1) if L is concrete, there exists no L′ such that L′ ⪯ L
(2) if L is abstract, there exists L′ with L′ ⪯ L
(3) L1 ⪯ L2 and L2 ⪯ L3 implies L1 ⪯ L3
(4) (M,G,D) ⪯ (M ′,G′,D ′) impliesM ▷M ′

In our car example, the MPL is simply the collection of the three
ECU_A, ECU_B and ECU_C DPLs, with an empty subtyping rela-
tion. It would however make sense to add an abstract SPL on top of
the ECU_A: indeed, per design, this ECU is closely bound to the ar-
chitecture of the car, and so, if in the future other car models would
be supported, new ECU_A DPLs would have to be implemented.
Our MPL thus becomes the collection of four DPLs: ECU_A, ECU_B,
ECU_C and the new Int_ECU_A DPL with ECU_A ⪯ Int_ECU_A,



VAMOS 2018, February 7–9, 2018, Madrid, Spain Michael Lienhardt, Ferruccio Damiani, Simone Donetti, and Luca Paolini

ECU_C now depending on Int_ECU_A instead of ECU_A, and the
feature model of Int_ECU_A being:

Int_ECU_A

eCall Gateway

Note that the feature model of Int_ECU_A does not include the
features EU and Russia of ECU_A: these two features are not used
by ECU_B nor ECU_C, and our definition of refinement allows
for such a simplification. Such flexibility also means that other
implementations of ECU_A could also have a feature model rather
different from the current one, and could still be useable by ECU_C
as long as they have a mandatory feature eCall and an optional
feature Gateway.

The last part of our model concerns the variant generation within
an MPL. With the added notion of dependency, generating a vari-
ant in an MPL does not consists of only choosing the product of
a DPL and applying its generator G on it: we need to consider
the DPL’s dependencies, choose a product and generate a variant
for each of them, and combine all these variants into a complete
one. Additionally, the chosen products for the dependencies must
validate the constraints specified in the DPL: e.g., when generating
a variant for ECU_C with the feature GearAdviceUI selected, the
corresponding variant of ECU_A must have the feature Gateway
implemented. Hence, a variant generation within an MPL is not
defined by only one product, but by what we call a multi-product
which states how every DPL of the MPL is used in the MPL variant
generation. More precisely, a multi-productm is a partial function
from the DPLs of the MPL to one of their product, where: i) the
domain of m defines which DPLs are used in the generation of
that multi-product’s variant; ii)m(L) is the product of L which is
used in the generation of that multi-product’s variant; and iii) the
products in the image ofm must be consistent w.r.t. the constraints
specified in the different DPL as previously discussed. This notion
of multi-product is formalized as follows:

Definition 2.5 (Multi-product, Generator of an MPL). A multi-
product of an MPL K = (S, ⪯) is a partial function m from the
DPLs of K to one of their respective product such that:

(1) L = (M,G,D) ∈ dom(m) implies that:

∀L′ = ((F ′,P ′),G′,D ′) ∈ D,L′ ∈ dom(m)∧m(L)∩F ′ =m(L′)

(2) L = ((F ,P),G,D) ∈ dom(m) and R = {L′ | L′ ⪯ L} , ∅
implies that R ∩ dom(m) , ∅ and:

∀L′ ∈ R ∩ dom(m),m(L′) ∩ F =m(L)

The generator GK of an MPL K is a partial function from the
multi-products of K defined as follows:

GK (m) =




⊕
L=(M,G,D)∈dom(m)

G (m(L)) if defined

undefined otherwise

To illustrate this definition of multi-product, suppose we want to
generate the variant of a car with the features EmergencyCallUI
and GearAdviceUI of ECU_C activated. A possible multi-product

that validates this selection could bem defined as follows:



m(ECU_C) = eCallUI, GearAdviceUI,
Int_ECU_A.eCall, Int_ECU_A.Gateway

m(ECU_B) = GearAdvice
m(Int_ECU_A) = eCall, Gateway
m(ECU_A) = eCall, Gateway, EU

3 PORTAGE PACKAGE MANAGER
Gentoo [13] is a Linux distribution focused on optimization and
customization. Like many Linux distributions, the core of Gentoo
is its package manager, called Portage [14], that eases the installa-
tion and management of software on the computer. Unlike most
package managers, Portage is a source-basedmanager, i.e., installing
a package with portage consists in downloading the source code
of the software, compiling and installing it locally. This approach
allows for the compiled packages to use all the functionalities of
the host hardware (thus enabling optimization), but also to be cus-
tomized by the user who can select, during the compilation process,
which features he wants installed in the software. In that sense,
each package in portage is an SPL, and the full package repository
of Portage forms a collection of SPLs, i.e., an MPL. We illustrate in
this Section how our model captures the MPL structure of Portage’s
repository.

Like most package managers, Portage’s packages are specific ver-
sions of standard software, like apache-2.2.32 or antlr-4.5.1,
developed by their own teams. Consequently, the actual implemen-
tation language of each package, together with its variability are the
responsability of that software’s development team. Most softwares
are implemented in C or C++ and use the preprocessor’s #ifdefs
to encode variability, with a configure script to select the features to
compile; but projects based on another programming language can
use a different compilation mechanism to implement variability.
One of the main functionality of Portage is to offer a unified layer
on top of the specific implementation of each package that captures
all the important aspects of package configuration and installation.
This unified layer is in most part defined by a set of .ebuild files, one
per package, each of them containing the following information:
• the feature model of the package, declared with a list of
features (called USE flags in Portage) and an additional con-
straint that specifies which features can be selected together;
• the dependencies of the package, declared in a similar fashion
as the constraints in Listing 1 (the depends on statements
are implicit in Portage); and
• the generator function of the package, defined with a set of
different scripts relating the feature selection to the compila-
tion process of that package.

Portage supports modularity by means of atoms: instead of ref-
erencing a specific SPL in a constraint (like we did in Listing 1),
Portage allows to use atoms, i.e., a kind of pattern that can be
resolved in more than one SPL. We illustrate our description of
Portage with Listing ?? which shows an excerpt of the .ebuild file
corresponding to the package of the version 16.02-r1 of the p7zip
archiver.
KEYWORDS="alpha amd64 ~arm hppa ia64 ppc [. . . ]"
IUSE="abi_x86_x32 amd64 x86 doc kde pch rar static wxwidgets"

REQUIRED_USE="kde? ( wxwidgets )"



Multi Software Product Lines in the Wild VAMOS 2018, February 7–9, 2018, Madrid, Spain

DEPEND="wxwidgets? ( x11-libs/wxGTK:3.0[X] )

abi_x86_x32? ( >=dev-lang/yasm-1.2.0-r1 )

amd64? ( dev-lang/yasm )

x86? ( dev-lang/nasm )"

src_prepare() { [. . . ] }
src_compile() { [. . . ] }
src_install() { [. . . ] }

Listing 2: Excerpt of the p7zip-16.02-r1 Package

In this example, KEYWORDS lists the hardware architectures on
which the package can be installed (we trucated the list in our ex-
ample, as the full list is long), IUSE lists the features of this package,
REQUIRED_USE describes how features can be selected together
and DEPEND is the constraint defining the dependencies of this
package. Additionally, the three functions src_prepare, src_compile
and src_install implement the generator of the package, specifying
respectively how to prepare the source code, how to compile it and
how to install the resulting variant on the system.

The constraint in the REQUIRED_USE variable states that select-
ing the kde feature requires also selecting wxwidgets. The dependen-
cies listed in the DEPEND variable is structured in three constraints.
The first one states that if the wxwidgets feature is selected, then
a package implementing the atom x11−libs/wxGTK:3.0 must be also
installed. Moreover, the [X] syntax means that this package must be
installed with the feature X selected. The second constraint states
that if the abi_x86_x32 feature is selected, then a version greater or
equal to 1.2.0-r1 of the yasm program must be installed, while
the third line does not give any restriction on the version of yasm
that must be installed in case the feature amd64 is selected. Finally,
the x86 feature requires any version of nasm to be installed.

Portage can be encoded in our model in the following way: all
Portage’s packages are concrete SPLs, while atoms are abstract SPLs
without any variant but with a set of concrete SPLs implement-
ing them: the matching function between an atom and a package
in Portage corresponds to our model’s subtyping relation. For in-
stance, the p7zip-16.02-r1 package can be encoded as described
in Listing ??, where the root feature of any SPL is called self.
Line p7zip−16.02−r1:

depends on x11−libs/wxGTK:3.0
depends on >=dev−lang/yasm−1.2.0−r1
depends on dev−lang/yasm
depends on dev−lang/nasm
kde⇒wxwidgets
wxwidgets⇒"x11−libs/wxGTK:3.0".X
abi_x86_x32⇒">=dev−lang/yasm−1.2.0−r1".self
amd64⇒"dev−lang/yasm".self
x86⇒"dev−lang/nasm".self

Listing 3: Declaration of the p7zip-16.02-r1 DPL

self

abi_x86_x32 amd64 x86 doc kde pch rar static wxwidgets

We invite the interested reader to look at [17] for more details
on Portage and its MPL structure.

4 EXPLORING PORTAGE
Due to its size and its large user and developer communities, we
believe that Portage could be a valuable source of information on
how MPLs are used in the wild. We thus implemented a prototype
version of our model, together with an importer that extracts the
MPL structure from Portage and analysis tools that compute some
information from that structure. For our analysis, we considered the
Gentoo 201703 (CLI Minimal) version of the osboxes Gentoo
Virtual Machine1.

This version of Portage contains 38907 concrete SPLs and 31264
abstract SPLs. The feature model of a concrete SPL has in average
71.75 features. However this number is artificially large because
Portage adds many (between 68 and 191) hardware-related fea-
tures to all concrete SPLs, even those that do not use them. Our
estimation (looking at the constraints in the feature model and
at the generator function) is that only 4 or 5 features are actually
used per concrete SPL in average. Interestingly, most concrete SPLs
(30038) have a very simple feature model where all the features
are optional and so most concrete SPLs have between 16 and 32
products. Consequently, we can estimate an over-approximation
of the number of multi-products for portage: considering that we
must choose one product per SPL (the SPL not being installed cor-
responding to the empty product), and considering an SPL to have
24 products (i.e., between 16 and 32), we obtain an approximation
of 2439807 multi-products. Note that in Portage, abstract SPLs do
not have explicit feature models: they implicitly inherit the feature
models of the concrete SPLs that implement them. Moreover, as
their configuration is closely related to the configuration of their
concrete SPL implementations, we did not consider them in our
analysis.

The second part of our analysis focuses on the dependencies and
the subtyping relation in Portage. To do so, we constructed a di-
rected dependency graph where the nodes are the SPLs (concrete
and abstract) of Portage, and where an edge from a concrete SPL to
an abstract SPL corresponds to a dependency, while an edge from
an abstract SPL to a concrete one corresponds to the subtyping
relation (in portage, abstract SPL do not have dependencies). Based
on this graph, we obtained that in average a concrete SPL has 9
dependencies, of which 3 are conditional and 2.2 requires specific
features to be selected or unselected in the abstract SPL. On the
other hand, abstract SPLs have in average 2.2 concrete SPLs that
implement them. We moreover noted that 2380 abstract SPLs do
not have any implementation: these abstract SPLs are mostly used
to declare possible conflicts to packages that do not exist anymore.
The dependency graph itself does not have a specific structure: it is
not connected, with 935 concrete SPLs that do not implement any
abstract SPL and without any dependencies; and it is not acyclic, as
it contains 113950 loops, with its biggest strongly connected compo-
nent containing 3009 concrete SPLs. Most of the lone concrete SPLs
are simple data or utility packages, like fonts (konfont-0.1) or
compression tools (lz5-2.0). On the other hand, while part of the
loops in Portage encode conflicts between versions, the motivation
for most of them and their size remains unknown.

Finally, we developed a visualization tool prototype, based on
tulip [2], to display parts of the Portage dependency graph. The

1Available at http://www.osboxes.org/gentoo

http://www.osboxes.org/gentoo


VAMOS 2018, February 7–9, 2018, Madrid, Spain Michael Lienhardt, Ferruccio Damiani, Simone Donetti, and Luca Paolini

main challenge in designing this tool was the size of the data to
display: with concrete SPLs having 9 dependencies in average, each
of them having 2.2 possible implementations, displaying just a part
of the dependency graph would include several hundred nodes. To
solve this issue, our tool uses two abstractions. First, it removes the
abstract SPLs, combining the edges so the concrete SPLs point di-
rectly the implementations of their dependencies. Second, it merges
the concrete SPLs that correspond to different versions of the same
software. Indeed, these SPLs have a very similar, if not equal feature
model and dependency set, so it is sound to unify them, allowing in
the process to reduce by 2 the size of the displayed graph. Figure 2
presents two sets of SPLs: on the left are shown all the SPLs of
the kde-frameworks category, while on the right are shown all
the SPLs of the gnome-base category. These two sets of SPLs are
interesting to display as they are an important example of com-
plex softwares that is still of a manageable size (kde-frameworks
contains 160 concrete SPLs while gnome-base contains 66 concrete
SPLs). The size and color of the nodes are defined by how many
SPLs depends on them, transitively. On the kde side, we thus see
clearly that kdelibs, which implements all the core functionalities
of kde, is indeed a core SPL in this graph. On the gnome side, it is
the gnome and gnome-extra-apps that are the main SPLs in this
set. Another important property of these graphs is that they are far
more dense (0.08) than the complete dependency graph (6 · 10−3).
Indeed, the original images were unreadable due to the number of
edges between the different SPLs: this was solved by bundling the
edges.

5 DISCUSSION
The preliminary results of the application of our model on Portage
suggest that most of the MPL structure of Portage can be encoded
in our model. For instance, important features of Portage’s pack-
ages, like their feature models or their dependencies, can be easily
captured in our model.

There are, however, some crucial differences between our MPL
model and the MPL structure in Portage. For instance, like many
other package managers, Portage defines several installation steps
for its packages, each of them with its specific set of dependencies.
On the opposite, our model does not consider installation steps, and
our SPLs have only one set of dependencies. Consequently, when
we imported the Portage MPL in our model to perform our analysis,
we had to merge together all the dependencies of each package.
On the other hand, the notion of atom in Portage is quite weak
compared to the notions of dependency and subtyping in our model.
While atoms are easy to manipulate (writing one atom implicitly
declares an abstract SPL and its subtyping relation), they are not
expressive enough to directly capture our wordpress example in
the introduction: it is impossible in Portage to declare an atom that
corresponds to any implementation of a web-server. Portage par-
tially circumvents this issue using virtual packages, i.e., declaring
concrete SPLs in place of abstract ones, and using dependencies
instead of subtyping. Moreover, the capability of our abstract SPL
to hide away parts of the feature model of its implementations is
not present in Portage. This limitation of Portage’s atoms is actually
natural: hiding, i.e., defining a clear an consistent API for a soft-
ware, is out of the scope of Portage as its goal is to offer a unified

interface for the variability of all of its packages; instead, hiding is a
concern for the teams that implement the packages. Unfortunately,
the fact that atoms do not have an explicit feature model, and the
difficulty to understand the modeled subtyping relation is a cause
for many bugs in Portage. This problem, as well as some other issues
in Portage’s design are clearly visible on its bug-tracker2. While
many bugs in Portage are compilation errors, due to a problem
in the package’s generator function, many other bugs are caused
by the difficulties to define correct atoms, correct feature models
(e.g., bugs 578658 and 517252), and to analyse them. In some cases,
a package cannot be installed and the user does not understand
why due to the unclear semantics of the constraints used to define
the feature model. In other cases, the default configuration of the
package (written by the package’s maintainer) is not a valid prod-
uct of the feature model (e.g. bug 607360). Some other bugs are
caused by wrongly written atoms that declare dependencies that
do not have any implementation (e.g., bugs 360019 and 618540).
Also, the unclear semantics of atoms is the cause of several bugs
in the dependency resolver of Portage itself (e.g., bugs 528836 and
608546).

We believe that making the notions of atoms and constraints in
Portage more formal could help in avoiding some of the bugs in
its package definitions. Moreover, having a more formal notion of
atoms and constraints in Portage could lead to a declaration of a
feature model that could be analyzed by existing tools, like [4, 18,
24]. Finally, adopting a more formal notion of constraints for its
feature model implementation could help Portage to use a more
robust off-the-shelf constraint solver as back-end to its dependency
resolver, thus making that central part of Portage less error-prone.

6 RELATEDWORK
This current paper is related to previous work [10] that introduced
a similar MPL structure on top of the Delta-Oriented Programming
(DOP) [20] approach for implementing SPL. The MPL structure
proposed in this paper however differs in various points from [10].
It is more general, as we use a generic notion of variant instead
of a specific programming language, and we also have a generic
notion of SPL instead of a specific implementation of the concept.
It is also more flexible, as we replaced its modularity mechanism,
based on SPL Signatures and Implementation relation, with a more
flexible notion of subtyping that allows for more freedom in how
dependencies are resolved and for refinement between declarative
SPLs. On the other hand, [10] constructs a theory of compositional
analysis of MPL that is not present in this current work.

A different approach for defining MPL on top of DOP has been
outlined in [11] by proposing linguistic constructs for defining an
MPL as an SPL that imports other SPLs. The feature model and the
generator of the importing SPL is deeply integrated with the feature
models and the generators of the the imported SPLs, respectively,
and so this model does not have a good support for modularity.

A formal model for SPL and MPL, with the goal of studying
refinement to allow safe evolution of MPL was proposed in [? ?
]. This model is close to ours, but less general as it enforces the
generator to implement a compositional approach [1] and adds
several constraints on the SPL definition to ensure sound refinement

2https://bugs.gentoo.org

https://bugs.gentoo.org/578658
https://bugs.gentoo.org/517252
https://bugs.gentoo.org/607360
https://bugs.gentoo.org/360019
https://bugs.gentoo.org/618540
https://bugs.gentoo.org/528836
https://bugs.gentoo.org/608546
https://bugs.gentoo.org


Multi Software Product Lines in the Wild VAMOS 2018, February 7–9, 2018, Madrid, Spain

kxmlgui

kconfigwidgets

kdelibs-env

khelpcenter

kcodecs

kcmutils

kiconthemes

kdoctools

attica

kitemviews

ki18n

kdeclarative

kservice

kdesignerplugin

kwallet

kf-env

kjobwidgets

kbookmarks

kwindowsystem

kinit

kdelibs

karchive

kunitconversion

kpty

kde-cli-tools

kparts

kpackage

kauth

khtml

kcoreaddons

kconfig

kcrash

kdesu

kded

kjs

polkit-kde-agent

ktextwidgets

oxygen-icons

kdelibs4support

kwidgetsaddons

kio

extra-cmake-modulessonnet

kcompletion

kitemmodels

knotifications

kguiaddons

solid

kglobalaccel

kemoticons

kdbusaddons

(a) The kde-frameworks category

librsvg

gnome-user-docs

gnome-keyring

gnome-sudoku

gnome-shell-extensions

nautilus-tracker-tags libgnomekbd

gnome-chess

gnome-online-miners

gnome-power-manager

nm-applet

gnome-bluetooth

dconf

gnome-system-log

gnome-taquin

gnome

gnome-tweak-tool

gucharmap

gnome-terminal

gconf

gnome-shell

libgnome-games-support

gnome-menus

gsettings-desktop-schemas

gnome-documents

gvfs

mousetweaks

nautilus-sendto

gnome-autoar

gnome-search-tool

gnome-photos

gnome-desktop

gnome-doc-utils

gnome-extra-apps

gnome-color-manager

gnome-session

gnome-calendar

yelp

gnome-mines

nautilus

gnome-disk-utility

gnome-online-accounts

sushi

gnome-backgrounds

gnome-font-viewer

gnome-klotski

yelp-xsl

gnome-nettool

dconf-editor

gnome-nibbles

gnome-contacts

gnome-themes-standard

gnome-mahjongg

gnome-music

gnome-core-libs

gnome-tetravex

gnome-dictionary

libgtop

gnome-system-monitor

gconf-editor

gnome-calculator

gnome-characters

libgnome-keyring

gnome-settings-daemon

gnome-robots

eselect-gnome-shell-extensions

gnome-screenshot

gnome-user-share

gnome-weather

gdm

gnome-common

gnome-control-center

gnome-core-apps

evolution-data-server

(b) The gnome-base category

Figure 2: Two dependency sub-graphs of Portage

and correct MPL definition, but are incompatible with the structure
of Portage.

Schröter et al. [23] informally discussed the challenges in design-
ing anMPL, and identified several aspects that an SPL should expose
in addition to its variability in order to help SPL composition. In
particular, they discuss syntactical interfaces that correspond to the
variable API of an SPL, and behavioral interfaces that describe the
correct usage of this variable API. More recently, Schröter et al. [22]
proposed the concept of feature model interface that consists of
a subset of features and used it in combination with a concept of
feature model composition to support compositional analyses of
feature models. This current paper’s notions of feature model exten-
sion and refinement are inspired by the concepts introduced in [22],
and the different results of that work could be almost directly reused
here. Additionally, ways to effectively define and implement feature
model composition have been largely studied [? ? ? ] in the context
of the definition of a single SPL with a very large feature model.
These works are complementary to ours, and could be very useful
for designing an implementation of our MPL model.

Kästner et al. [16] proposed a variability-aware module and in-
terface system that allows for type checking modules in isolation.
Similarily to [10], this work is bound to a specific programming
language and a specific SPL implementation based on #ifdef pre-
processor directives and variable linking. Moreover, in contrast to
our declarative SPL and refinement relation, module interfaces do
not support hiding features and dependencies.

To the best of our knowledge, few works have studied the Pack-
age structure of Portage, and none drew a parallel between Gentoo

and the notion of MPL. Zeng et al. [28] compared the graph struc-
ture that raise from the dependencies between package in Portage
to complex networks, and developed two network growth models
to study the evolution of Portage over time. Bloemen et al. [5] pre-
sented how the set of packages evolved in Portage over time, and
in particular, they drew a picture of the dependencies in the KDE
project.

7 CONCLUSION
In this paper we presented a formal model for Multi Software Prod-
uct Line, based on the concept of Dependent Software Product Line
and subtyping.We used this model to encode the full set of packages
in the Gentoo Linux Distribution, thus showing that our model is
capable of expressing the variability and the dependencies of 19486
components corresponding to 38907 Software Product lines. We
then used our model to define few prototype analysis tools that
extracted some information on the variability and the dependencies
of these SPLs.

In future work, we plan to investigate using our model to directly
create an MPL. We also would like to prove some interesting prop-
erties, like stating which conditions are enough to ensure that an
MPL generator is a total function, and study how to extend existing
formal analysis on this model, like feature model analysis [? ], type
checking [9, 10], model checking [25] or abstract interpretation [?
]. Moreover, we would like to continue to work on the Gentoo
Linux Distribution and we plan to ask the Gentoo community for
comments and advice on our modeling experiments. In particular,
we would like to investigate the possibility of defining a correct



VAMOS 2018, February 7–9, 2018, Madrid, Spain Michael Lienhardt, Ferruccio Damiani, Simone Donetti, and Luca Paolini

and complete solver for our MPL model and to compare it with
the Portage ad-hoc dependency solver. Similar works were already
undertaken in the context of the debian package manager (were
packages have no variability) [? ? ] with good results.

REFERENCES
[1] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines: Concepts and Implementation. Springer, Berlin,
Germany.

[2] David Auber, Daniel Archambault, Romain Bourqui, Maylis Delest, Jonathan
Dubois, Bruno Pinaud, Antoine Lambert, Patrick Mary, Morgan Mathiaut, and
Guy Melançon. 2014. Tulip III. In Encyclopedia of Social Network Analysis and
Mining. Springer, Berlin, Germany, 2216–2240.

[3] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas.
In SPLC 2005 (Lecture Notes in Computer Science), Vol. 3714. Springer, Berlin,
Germany, 7–20.

[4] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-cortÃľs. 2007.
FAMA: Tooling a framework for the automated analysis of feature models. In
In Proceeding of the First International Workshop on Variability Modelling of Soft-
wareintensive Systems (VAMOS) (Lero Technical Report), Vol. 2007-01. 129–134.

[5] Remco Bloemen, Chintan Amrit, Stefan Kuhlmann, and Gonzalo Ordóñez Mata-
moros. 2014. Gentoo Package Dependencies over Time. In Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, New York, NY, USA,
404–407.

[6] P. Clements and L. Northrop. 2001. Software Product Lines: Practices & Patterns.
Addison Wesley Longman, Boston, USA.

[7] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. ACM, New York, NY, USA, 238–252.

[8] Patrick Cousot and Radhia Cousot. 2014. Abstract Interpretation: Past, Present
and Future. In Proceedings of the Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM, New York, NY,
USA, 2:1–2:10.

[9] Ferruccio Damiani and Michael Lienhardt. 2016. On Type Checking Delta-
Oriented Product Lines. In IFM 2016 (LNCS), Vol. 9681. Springer, Berlin, Germany,
47–62.

[10] Ferruccio Damiani, Michael Lienhardt, and Luca Paolini. 2017. A Formal Model
for Multi SPLs. Springer, Berlin, Germany, 67–83.

[11] Ferruccio Damiani, Ina Schaefer, and Tim Winkelmann. 2014. Delta-oriented
Multi Software Product Lines. In Proceedings of the 18th International Software
Product Line Conference - Volume 1. ACM, New York, NY, USA, 232–236.

[12] A. Dvurečenskij and S. Pulmannová. 2000. New Trends in Quantum Structures.
Kluwer Academic Publishers, Dordrecht, The Netherlands.

[13] Gentoo Foundation. 2017. https://gentoo.org. (2017).
[14] Gentoo Foundation. 2017. https://wiki.gentoo.org/wiki/Portage. (2017).
[15] Gerald Holl, Paul Grünbacher, and Rick Rabiser. 2012. A systematic review and

an expert survey on capabilities supporting multi product lines. Information &
Software Technology 54, 8 (2012), 828–852. https://doi.org/10.1016/j.infsof.2012.
02.002

[16] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. 2012. A Variability-
aware Module System. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications. ACM, New
York, NY, USA, 773–792.

[17] Michael Lienhardt. 2017. https://github.com/HyVar/gentoo_to_mspl/blob
/translator/PORTAGE.md. (2017).

[18] Marcilio Mendonca, Andrzej Wąsowski, and Krzysztof Czarnecki. 2009. SAT-
based Analysis of Feature Models is Easy. In Proceedings of the 13th International
Software Product Line Conference. Carnegie Mellon University, Pittsburgh, PA,
USA, 231–240.

[19] K. Pohl, G. Böckle, and F. van der Linden. 2005. Software Product Line Engineering
- Foundations, Principles, and Techniques. Springer, Berlin, Germany.

[20] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. 2010. Delta-Oriented Programming of Software Product Lines. In Software
Product Lines: Going Beyond (SPLC 2010) (LNCS), Vol. 6287. SPringer, Berlin, Ger-
many, 77–91.

[21] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz
Botterweck, Animesh Pathak, Salvador Trujillo, and Karina Villela. 2012. Software
diversity. International Journal on Software Tools for Technology Transfer 14, 5
(2012), 477–495. https://doi.org/10.1007/s10009-012-0253-y

[22] Reimar Schröter, Sebastian Krieter, Thomas Thüm, Fabian Benduhn, and Gunter
Saake. 2016. Feature-Model Interfaces: The Highway to Compositional Analyses
of Highly-Configurable Systems. In 38th International Conference on Software
Engineering (ICSE). ACM, New York, USA, 667–678.

[23] Reimar Schröter, Norbert Siegmund, and Thomas Thüm. 2013. Towards Modular
Analysis of Multi Product Lines. In Proceedings of the 17th International Software
Product Line Conference Co-located Workshops. ACM, New York, NY, USA, 96–99.

[24] Sergio Segura, José A. Galindo, David Benavides, José A. Parejo, and Antonio
Ruiz-Cortés. 2012. BeTTy: Benchmarking and Testing on the Automated Analysis
of FeatureModels. In Proceedings of the Sixth InternationalWorkshop on Variability
Modeling of Software-Intensive Systems. ACM, New York, NY, USA, 63–71.

[25] Maurice H. ter Beek, Erik P. de Vink, and Tim A. C. Willemse. 2017. Family-Based
Model Checking with mCRL2. In Fundamental Approaches to Software Engineering
- 20th International Conference, FASE 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings (Lecture Notes in Computer Science), Vol. 10202. Springer,
Berlin, Germany, 387–405. https://doi.org/10.1007/978-3-662-54494-5_23

[26] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Comput. Surv. 47, 1 (2014), 1–45.

[27] Alexander Wilce. 1998. Perspectivity and congruence in partial abelian semi-
groups. Mathematica Slovaca 48, 2 (1998), 117–135.

[28] Xiaolong Zheng, Daniel Zeng, Huiqian Li, and Feiyue Wang. 2008. Analyz-
ing open-source software systems as complex networks. Physica A: Statistical
Mechanics and its Applications 387, 24 (2008), 6190 – 6200.

https://gentoo.org
https://wiki.gentoo.org/wiki/Portage
https://doi.org/10.1016/j.infsof.2012.02.002
https://doi.org/10.1016/j.infsof.2012.02.002
https://github.com/HyVar/gentoo_to_mspl/blob/translator/PORTAGE.md
https://doi.org/10.1007/s10009-012-0253-y
https://doi.org/10.1007/978-3-662-54494-5_23

	Abstract
	1 Introduction
	2 MPL Model
	3 Portage Package Manager
	4 Analyzing Portage
	5 Discussion
	6 Related Work
	7 Conclusion
	References

