
 

 

  

  

This is an author version of the contribution published on: 

Questa è la versione dell’autore dell’opera: 

 [Biological Conservation, 221: 209-218, 2018, DOI: 10.1016/j.biocon.2018.03.008] 

  

The definitive version is available at: 

La versione definitiva è disponibile alla URL: 

https://www.sciencedirect.com/science/article/pii/S0006320717319109 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302255546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.biocon.2018.03.008


Past and future impact of climate change on foraging habitat suitability in a high-

alpine bird species: management options to buffer against global warming effects 

 

Mattia Brambilla*
a,b

, Jaime Resano-Mayor*
c
, Davide Scridel*

a,d
, Matteo Anderle

a,
, Giuseppe 

Bogliani
d
, Veronika Braunisch

c
, Federico Capelli

a,e
, Matteo Cortesi

a,e
, Nathan Horrenberger

c
, Paolo 

Pedrini
a
, Beatrice Sangalli

e
, Dan Chamberlain

f
, Raphaël Arlettaz

c
, Diego Rubolini

e
 

 

*shared first-authors 

a 
Museo delle Scienze, Sezione Zoologia dei Vertebrati, Corso della Scienza e del Lavoro 3, I-

38123 Trento, Italy 

b
 Fondazione Lombardia per l’Ambiente, Settore Biodiversità e Aree protette, Largo 10 luglio 1976 

1, I-20822 Seveso, MB, Italy 

c
 University of Bern, Institute of Ecology and Evolution, Division of Conservation Biology, 

Baltzerstrasse 6, CH-3012 Bern, Switzerland 

d Dipartimento di Scienze della Terra e dell’Ambiente, Università degli Studi di Pavia, Pavia, Italy 

e
 Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy 

f
 Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia 

Albertina 13, 10123, Turin, Italy 

Corresponding author: Mattia Brambilla, email: brambilla.mattia@gmail.com 



Abstract 

The majority of predictions about the impacts of climate change on wildlife have relied either on the 

study of species’ physiological tolerance or on broad-scale distribution models. In comparison, little 

attention has been paid to species' mechanistic responses to fine-grained, climate-induced 

modifications of habitat suitability. However, such studies would be pivotal to the understanding of 

species' ecological requirements, and hence their adaptive potential to environmental change which 

can act as a basis for designing management strategies. We investigated foraging microhabitat 

selection in a climate-change endangered, high-elevation bird species, the white-winged snowfinch 

Montifringilla nivalis, during the breeding season in the European Alps. Our microhabitat selection 

model considered various topographical and ground cover variables, as well as sward height, 

comparing environmental characteristics within a 5-m radius at foraging and random locations, the 

latter serving as controls. Foraging habitat selection of M. nivalis was positively affected by 

grassland cover but negatively by sward height. The response to snow cover was quadratic, with an 

optimum around 40%; the birds also avoided anthropized (urban areas, roads) sites. We estimated 

past (1976) and future (2066) climate-driven changes in foraging microhabitat suitability, assuming 

a progressively earlier date of snowmelt due to increasing temperatures over this entire time span. 

We then modelled the potential impact of snow-melt (and related sward height) on habitat 

suitability under two scenarios: maintaining the current situation (i.e. some seasonal grazing) and 

implementing targeted management (e.g.grazing) in an attempt to mitigate impacts of earlier 

snowmelt. Predicted foraging habitat suitability (estimated as the fraction of suitable plots) 

significantly declined over time, with a 23% reduction in the number of suitable plots between 1976 

and 2016, and a further 32% loss by 2066. However, model outputs demonstrated that maintaining 

sward height below 6 cm on breeding grounds (e.g. by grazing) would significantly decrease the 

predicted loss of suitable foraging habitat. Our study shows that detailed information about patterns 

of resource exploitation not only allows the identification of mechanistic, functional responses of 



species to environmental change, but also enables an evaluation of habitat options that can buffer 

against the detrimental effects of global warming. 
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Introduction 

Anthropogenic climate change is increasingly threatening ecosystems and species worldwide 

(IPCC, 2013; Rosenzweig et al., 2008). Evidence from a wide range of taxa and ecological systems 

suggests that climate change has already started to affect biodiversity at a global scale (e.g. 

Carnaval and Moritz, 2008), for instance by modifying species distributions, altering their habitats 

or increasing extinction risk due to rapid shifts in abiotic conditions (Chen et al., 2011; Parmesan 

and Yohe, 2003). Based on forecast climatic scenarios, several studies have furthermore attempted 

to predict future climatic impacts on biodiversity (e.g. Bellard et al., 2012; Thomas et al., 2004).  

The potential effects of climate, and hence of climate change, on animal species have been 

mostly assessed either by experimental approaches evaluating physiological tolerance to climate 

variations (e.g. temperature) at the individual level (Johnson, 1968) and under controlled 

environments (Chapin et al., 1995), or via large-scale distribution models, the latter representing 

one of the commonest ways to explore potential changes in species distributions owing to climate 

change (Fitzpatrick and Hargrove, 2009; Hijmans and Graham, 2006). Eco-physiological 

investigations usually include field observations and laboratory measurements that aim to detect 

how alterations of environmental constraints influence species’ physiological responses and hence 

population processes (Arlettaz et al., 2000; Pörtner and Knust, 2007). In contrast, correlative models 

of species distribution (Guisan and Thuiller, 2005) rely on environmental factors such as climate, 

land-cover and topographical variables, which are usually linked with species occurrence at a broad 

scale. They can, to a certain extent, be downscaled to the territory/home-range size of a target 

species (Brambilla et al., 2015; Braunisch et al., 2013), but often remain fairly crude in their 

predictive power as they may miss essential mechanistic components (Williams and Jackson, 2007) 

linked to patterns of resources exploitation, such as food acquisition, i.e. they may not embrace 

species’ niche complexity as a whole (Brambilla et al., 2015; Braunisch et al., 2013). Despite this 



serious caveat, species distribution models remain the most used (and scalable) and widespread 

approach to assess species’ spatio-temporal responses to climate change (Moritz and Agudo, 2013). 

Correlative in essence, such models may both over- and underestimate extinction risk due to climate 

change (Bellard et al., 2012). There is therefore a need for complementary approaches that integrate 

finer-scale ecological information for, on the one hand, improving our mechanistic understanding of 

the tolerance and resilience, i.e. adaptive potential of target organisms to shifting environmental 

conditions (e.g. Baudier et al., 2015; Bennett et al., 2015), and, on the other hand, modelling 

appropriately the consequences of environmental changes upon population dynamics (e.g. Fedy and 

Martin, 2011). This could be addressed by considering the impacts of climate change upon fine-

scale habitat structure and availability (henceforth, microhabitat), which eventually drives habitat 

suitability. However, this aspect has received comparatively very little attention so far, despite its 

crucial importance in understanding mechanistic responses of species to environmental change, in 

particular their adaptive potential, for more accurate forecasts. Fine-grained species-habitat 

associations are essential to understand how changes in microhabitat due to climate change will 

affect species’ habitat suitability at local and broader scales, which will ultimately influence a 

species’ ability to respond to climate-induced environmental changes (Scheffers et al., 2014).  

Studies of the effects of microhabitat alteration due to changing climatic conditions have 

mostly focused on small-sized organisms (e.g. invertebrates) that are very sensitive to local 

climatic/habitat variation, especially due to their strong temperature-dependent life-cycles (Davies 

et al., 2006). Pincebourde et al. (2016) have shown that microhabitat properties shape species 

responses to climate change. Research has generally focused on species with limited mobility (e.g. 

plants (Pradervand et al., 2014), benthic invertebrates (Schiel et al., 2004)). In contrast, studies on 

the distribution of terrestrial and highly-mobile species usually deal with broad spatial scales, 

despite the fact that habitat selection in these species operates at multiple scales. In birds for 

instance, this concerns the selection of breeding sites (Jedlikowski et al., 2016; Rauter et al., 2002), 



foraging grounds (Brambilla et al., 2017b; Martínez-Miranzo et al., 2016; Schaub et al., 2010), and 

even shelters to avoid unsuitable climate (Visinoni et al., 2015). An absence of information about 

microhabitat preferences can lead to serious biases in predictions of climate change effects on 

species distributions (cf. Bellard et al., 2012). As a matter of fact, microhabitat characteristics may 

allow species persistence when the general climate of the region appears to have become unsuitable, 

and vice versa. Studies of microhabitat suitability are thus pivotal to our basic understanding of 

species’ ecological requirements and to efficient conservation management of climate-sensitive 

biodiversity. Several such studies have emerged recently (Suggitt et al., 2011; Turlure et al., 2010), 

which have established the importance of both microhabitat and microclimate to understand the 

sensitivity of species to environmental shifts and, ultimately, their population dynamics and 

distribution patterns (Fedy and Martin, 2011; Frey et al., 2016). The basic question here is to which 

extent can microhabitat characteristics and potential management thereof buffer against any 

detrimental effects of overall climate change (e.g. Braunisch et al., 2014)? 

Among terrestrial organisms, high-elevation cold-adapted species seem to be particularly 

vulnerable to climate change (Dirnböck et al., 2011; Lagerholm et al., 2017), with their future 

distribution being either expected to contract towards higher elevations due to ambient temperature 

warming (La Sorte and Jetz, 2010; Braunisch et al., 2013; Chamberlain et al., 2013; Pernollet et al., 

2015; Sekercioglu et al., 2008), or to vary in a complex way in response to shifts in precipitation 

regimes that remain difficult to forecast (e.g. Tingley et al., 2012). Mountain areas are indeed 

subject to higher rates of warming compared to the global average (e.g. Böhm et al., 2001; Brunetti 

et al., 2009), yet at the same time, they are also experiencing strong changes in landscape and land 

use (e.g. forest encroachment in abandoned pastures, upward treeline shift or loss of areas 

permanently covered by snow). High-elevation ecosystems thus represent an ideal setting to 

investigate the fine-grained impact of environmental change on habitat and biocenoses, especially 

due to the complex topography, including steep altitudinal gradients, that generates a large range of 



microhabitats and microclimates (hereafter topoclimates) and offers numerous refugia opportunities 

(Körner and Ohsawa, 2006). Such heterogeneity may per se represent a chance to maintain 

biodiversity, either naturally (Brambilla et al., 2016b) or through informed conservation 

management (Braunisch et al., 2014). However, to the best of our knowledge, mitigation strategies 

to maintain niche opportunities for high-alpine biodiversity facing climatic risks have never been 

investigated so far (Shoo et al., 2011; Turlure et al., 2010). 

In this study, we investigated the foraging microhabitat selection in a high-elevation, cold-

adapted passerine bird, the white-winged snowfinch Montifringilla nivalis (Aves: Passeridae; 

henceforth: snowfinch), during the nestling rearing period, a crucial phase of the life-cycle – 

especially for short-lived species such as the snowfinch – which is likely to drive overall population 

dynamics (Hanssen et al., 2005). We first identified key habitat characteristics that influence site 

selection for food collection by parents and current habitat suitability in the Central Alps. As snow 

cover appears crucial (Brambilla et al., 2017b; this study), we then constructed past and future 

distribution models based on longitudinal data (both historical and projected) on the timing of 

snowmelt, exploring recent past and future variation in foraging habitat suitability in parts of the 

Italian and Swiss Alps. More specifically, our aims were: 1) to identify key habitat factors driving 

foraging microhabitat selection during food provisioning to chicks by parents; 2) to evaluate past 

and forecast future changes in foraging microhabitat suitability in relation to changing climatic 

conditions (snowmelt date; (Klein et al., 2016); and, 3) to assess whether habitat management 

operations could maintain microhabitat suitability in the face of climate change. To the best of our 

knowledge, this is the first study to explicitly model the potential impact of climate change on 

foraging microhabitat suitability in a terrestrial vertebrate, which paves the way for better forecasts 

of wildlife responses to climate-induced alterations of habitat, and provides targeted conservation 

guidance for maintaining suitable foraging grounds in the face of climate change. 

 



Methods 

Study species 

The snowfinch is a mountain specialist bird breeding at high elevations above the treeline (in 

the European Alps mostly between 1800 and 3000 m asl; Cramp and Perrins, 1994). Nests are 

usually located in rock crevices or human-built infrastructure such as mountain buildings or ski-lift 

pylons (Cramp and Perrins, 1994), where at the end of May-early June snowfinches lay 4-5 eggs. 

After two weeks of incubation performed exclusively by the female, hatching occurs and nestlings 

fledge at ca.18-22 days of age (del Hoyo et al. 2009). During the nestling rearing period, adults 

collect invertebrate prey in the proximity of nest sites, usually within 300 m of the nest, frequently 

on or at the margin of melting snow patches and in alpine grasslands (Antor, 1995; Brambilla et al., 

2017b; Catzeflis, 1975; Cramp and Perrins, 1994; Strinella et al., 2007). 

A recent study of foraging habitat selection by breeding snowfinches in the Italian Alps 

highlighted the importance of habitat factors that are largely climate-dependent, such as snow cover 

(positively selected), height of the grass sward (lower sward preferred), and solar radiation (lower 

values favoured, especially late in the season, indicating avoidance of warmer sites). That study was 

based on 314 m
2
 plots (i.e. at meso-scale) and did not explicitly address the key question of climate 

change effects on habitat suitability (Brambilla et al., 2017b). Based on the outcome of correlative 

distribution models which accounted for climatic, topographic and land-cover variables (both at the 

landscape (Maggini et al., 2014) and the territory level (Brambilla et al., 2016b), the snowfinch is 

expected to undergo a marked range contraction in the Alps because of climate change, and 

especially due to ambient temperature increase and habitat loss, snow cover being a key component 

in the species' ecology (Brambilla et al., 2017b). Our objectives were to quantifying the magnitude 

of foraging habitat loss , and to identify habitat management measures that might help mitigate any 

detrimental effects. 



Study area and data collection 

We investigated foraging microhabitat selection by snowfinches breeding at 12 breeding sites 

in 8 different regions (Sorebois, Zermatt, Furka Pass, Valle Spluga, Stelvio, Gavia, Passo Sella, 

Rosetta) in the Swiss and Italian Alps (Fig. 1). The elevation of the study sites ranged from 1880 to 

2840 m a.s.l., adequately covering the altitudinal and macroclimatic gradient of snowfinch 

distribution in the Alps. All surveys were carried out between 14
th

 June and 26
th

 July 2016, focusing 

exclusively on snowfinches collecting food for nestlings (nestling-rearing period). First, by means 

of direct observations, we located snowfinch breeding pairs and active nests. Once an occupied nest 

was located, we adopted the following field protocols in order to record foraging and random non-

foraging points (hereafter, foraging and control plots).  

In Switzerland, we mist-netted at least one parent from each monitored breeding pair to attach 

a radio-transmitter (Holohil Systems Ldt., model BD-2, weight: 1.4 g – corresponding to 3.2-3.9% 

of our birds’ body mass, life span: 9 weeks) to its back using a leg-loop harness (Naef-Daenzer et 

al., 2001; Rappole and Tipton, 1991). Studies of the effects of radio-transmitters on passerines have 

shown no negative impact on physiology, behaviour or survival (Naef-Daenzer et al., 2001; 

Townsend et al., 2012) as long as tag weight is less than 5% of bird body mass. As soon as tagged 

birds were provisioning food to the nestlings, foraging events were monitored over 2-6 days with 

the aid of a hand-held three-element foldable Yagi antenna wired to a radio-receiver (Australis 26k, 

Lawnton, Australia). Radio-tagged birds were first located from a distance from the radio signal 

and, once the foraging bird was visually located, the exact site of a successful prey capture was 

located with the aid of binoculars and marked with a labelled stick. Then, a control plot was 

generated by selecting a random angle (0-359º) and a random distance (between 26-100 m) from the 

actual foraging plot.  



In Italy, breeding individuals were visually tracked when flying from the nest to foraging sites, 

with the help of binoculars (Brambilla et al., 2017b). Once a foraging event was encountered, the 

exact location was recorded with a GPS device or by mapping the point on a detailed aerial 

photograph. The foraging location was established as the first position where a food item was 

collected (or as the last location of the bird before returning to the nest, when we could not directly 

assess prey capture, since snowfinches usually provision food to the nest immediately after prey 

capture; Brambilla et al., 2017b). After the collection of 10 foraging locations per study pair, an 

equal number of control plots were randomly selected within a radius of 300 m around the nest 

(Brambilla et al., 2017b; Grangé, 2008; Strinella et al., 2007) so as to map habitat characteristics. 

Habitat cover and structure were recorded within a 5 m-radius around each foraging location 

and control plot. Habitat variables described vegetation and other ground cover, as well as sward 

height and the occurrence of grazing (Table 1). In addition, topographical features (slope, solar 

radiation) were calculated in a geographic information system (GRASS 7.04) using detailed Digital 

Elevation Models (resolution between 1 and 5 m) made publicly available by regional/provincial 

authorities in Italy and by SwissTopo maps for 2013 (Swiss Federal Office of Topography). Solar 

radiation was calculated as global radiation on 21
st
 June, taking into account the shadowing effect of 

the relief. 

Sward height was obviously not recorded where grass was absent (N = 16 locations out of a 

total of 470). Due to this absence, in exploratory analyses we compared the modelled relationships 

between foraging occurrence and sward height by setting sward height to zero at these 16 locations 

against omitting them from the analysis. Given that the coefficients for sward height were very 

similar between models with and without ‘filled gaps’ (-1.02 and -1.03, respectively), we 

considered it appropriate to apply the former option. 

 



Statistical analyses 

Foraging habitat selection 

Habitat variables were recorded at 470 locations (235 foraging and 235 control plots) obtained 

from 22 breeding pairs. All variables were standardized (i.e. centred on their mean and scaled by 

their standard deviation SD) prior to analyses. After checking for outliers and zero-inflated 

variables, sand and mud cover were discarded, and human-altered habitats (two types of roads and 

urbanized areas) were joined into a single variable (anthropized areas).  

We modelled foraging habitat selection by means of conditional logistic regression (Hosmer 

and Lemeshow 1989), which accounts for the intrinsically paired nature of the dataset. According to 

this approach, each set of foraging plots of a given breeding pair was matched to the respective 

control plots, henceforth taking into account the pair-based sampling design. Pair identity was thus 

specified as a so-called “stratum” variable. Study region was also tested as a random factor, but was 

subsequently discarded as no regional effect was found (P ~ 1). Conditional logistic regressions 

were run by using the ‘clogit’ function of the ‘survival’ package in R (R Development Core Team, 

2016). 

Model selection was performed using an information-theoretic approach, based on the 

Akaike’s Information Criterion adjusted for small sample sizes (AICc) (Burnham and Anderson, 

2002). First, the explanatory variables were divided in two groups, vegetation and other variables 

(Table 1), and tested for within-group collinearity by calculating the variance inflation factor (VIF) 

using the package car in R. For all variables within a given group, there were no collinearity issues 

(VIF < 3 for all variables in both groups). Within each group, models with all possible variable 

combinations were constructed and models were ranked according to their AICc using the MuMIn 

package (Bartoń, 2016). The difference in AICc between each model and the top ranked model 

(ΔAICc) was calculated. Based on previous studies, we hypothesised that snowfinches would 



preferentially forage in sites with high grass cover but low sward height (Brambilla et al., 2017b). 

Therefore, we added a potential interaction term to the vegetation group (grassland cover × sward 

height in vegetation). Moreover, in order to test for selection of melting snow patch margins (see 

e.g. Antor, 1995) and on the basis of a preliminary data exploration (which suggested a potential 

curvilinear relationship for this factor), we also included a quadratic term for snow cover (in the 

other variables). Then, for each group we selected all the variables (and interactions) included in the 

most supported models (ΔAICc < 2) after the exclusion of ‘uninformative parameters’ (Arnold, 

2010; Jedlikowski et al., 2016). We finally combined the retained variables of both groups and 

carried out a further model selection using the same procedure (see e.g. Assandri et al., 2016; 

Brambilla et al., 2016a). In the latter process, given that snowfinches could preferentially forage in 

fine-scaled mosaics of snow and grass (Brambilla et al., 2017b), we added an interaction term 

(snow × grassland cover). 

Past, current and future habitat suitability 

To predict climate-driven changes in foraging habitat suitability, we modelled snow cover and 

sward height as a function of season progression and environmental characteristics, selected on the 

basis of a potential effect of climate on those two variables according to literature and general 

knowledge. We built models based on the control plots, which were randomly selected and thus 

ensured unbiased sampling. First, we built a model relating snow cover to Julian date, solar 

radiation, elevation and slope. Then, we modelled sward height as a function of solar radiation, 

elevation, slope, snow cover and grazing occurrence, excluding the few sites without grass cover. In 

both cases, we used linear mixed models (LMM) fitted by means of maximum likelihood and 

considering breeding pair as a random factor to take into account the spatial dependency of sites 

frequented by the same breeding pair. We estimated past and simulated future conditions based on 

the observed rate of change in the date of snow melt: research from the Swiss Alps reported a linear 

pattern of advance in snow melt timing by c. 6 days per decade (5.8 days/decade; Klein et al., 



2016). To hindcast past conditions (40 years ago), we therefore decreased the sampling date by 24 

days. To model conditions 50 years into the future (at year 2066), we added 30 days, assuming the 

trend in melting pattern will remain unaltered. We then recalculated predicted snow cover and 

grassland height for each of the three time steps (in the following termed ‘past’, ‘current’ and 

‘future’).  

Finally, we calculated for each plot (foraging or control, n = 470) the potential suitability under 

past, current and future conditions, by means of the final habitat selection model obtained in the 

previous analysis, and averaged predicted habitat suitability for all plots related to each breeding 

pair. We used modelled snow cover and sward height (instead of the values actually recorded in the 

field) also for the current conditions in order to obtain habitat suitability estimates that were 

comparable with past and future conditions.  

Mitigation scenarios 

To simulate and evaluate any potential benefits of targeted management actions to maintain 

foraging microhabitat suitability, we also modelled current and future suitability under two 

scenarios, with and without mitigation management. The ‘non-mitigation’ scenarios (without 

management) corresponded to the modelled habitat suitability as described above. For the 

mitigation scenarios (via habitat management), we assumed that sward height would be managed 

according to snowfinch optimal requirements by keeping grass height below 6 cm (see Fig. 2 and 

Brambilla et al., 2017b). We assumed that such optimal sward height could be achieved by mowing 

or controlled grazing. We therefore used the predicted sward height under current and future 

climate conditions, respectively, both adjusted by truncating the highest values at 6 cm. Finally, to 

evaluate whether habitat suitability significantly changed from past to current and from current to 

future conditions under both scenarios (with vs without management), we performed a Wilcoxon 

matched-pairs test on the mean plot suitability for each pair. For descriptive purposes, we also 



counted the number of plots with average plot suitability above 0.5 (suitable plots) for each time 

step (past, current, and future). 

 

 



Results 

Foraging habitat selection 

We obtained a single most supported synthetic model, as all other candidate models had a 

ΔAICc > 2. According to this model, foraging habitat selection by breeding snowfinches was driven 

by negative effects of both sward height and anthropized areas, a quadratic effect of snow cover and 

a positive effect of grassland cover, all terms being statistically significant (Table 2). The influence 

of these predictors on the probability of occurrence of foraging snowfinches is shown graphically in 

Fig. 2. 

Past, current and future habitat suitability 

The model for snow cover (intercept: -0.19±0.10; coefficients for standardized predictors) 

suggested, as expected, a positive effect of elevation (0.24±0.11) and negative effects of Julian date 

(-0.13±0.07), slope (-0.05±0.09) and solar radiation (-0.08±0.09), and had a R
2
 equal to 0.17. The 

model for sward height (intercept: 0.35±0.14; coefficients for standardized predictors) revealed a 

positive effect of solar radiation (0.26±0.09) and slope (0.47±0.09): well exposed steep slopes are 

likely those where snow disappears earlier and where the plant growing season may be earlier, 

leading to higher swards. As expected, a negative effect on sward height was found for grazing 

(grazing occurrence: -0.08±0.15), elevation (-0.60±0.14) and snow cover (-0.14±0.08), likely due to 

both different grass species at different elevations and to the delay in growing season caused by 

elevation and snow cover. The model for sward height had an R
2
 equal to 0.56.  

Foraging habitat suitability was predicted to have declined from 1976 to 2016, and to continue 

declining from 2016 to 2066 at all breeding sites (Fig. 3). The predicted average site-level plot 

suitability had significantly declined from 1976 to 2016 (Wilcoxon matched pairs test, Z = -4.11, p 

< 0.001, n = 22 breeding sites), and is expected to significantly decline further by 2066 (Z = -4.11, p 



< 0.001). The overall number of suitable plots (plots with habitat suitability higher than 0.5; n = 

470) declined from 364 (77%) to 281 (60%) from 1976 to 2016 (-23% in the number of suitable 

plots), and was predicted to further decline to 191 (41%) by 2066 (i.e. a further change of -32% in 

the number of suitable plots relative to the current situation).  

Mitigation scenarios 

The mitigation scenarios yielded higher current and future habitat suitability values than the 

estimates obtained without any intervention targeted at limiting sward height, especially for sites 

with most or some plots located at the lower end of the altitudinal range exploited by the species 

(Fig. 3). Under current conditions, if appropriate management actions were implemented, the 

number of suitable plots would be 359 (76%; which roughly corresponds to the figure back-

projected to 1976 without management), while the average territory-level plot suitability would be 

significantly higher (+0.07; Wilcoxon matched pairs test; Z = -3.52, p < 0.001, n = 22 breeding 

sites) compared to a scenario without management. The future number of suitable plots under an 

active mitigation scenario would be 268 (57%; very close to the number of currently suitable plots). 

Compared to a scenario with no management implemented in the future, average habitat suitability 

could thus be increased by 0.07 (Wilcoxon matched pairs test; Z = -3.52, p < 0.001, n = 22 breeding 

sites) via mitigation measures. 

 

 



Discussion 

Our retrospective and prospective modelling shows that a climate-sensitive species of high-

Alpine ecosystems, the white-winged snowfinch, is put at risk by habitat loss induced by climate 

warming. Not only has it seemingly already lost a substantial fraction (-17% of plots, or -23% of 

suitable plots, from 1976) of its suitable habitat area in the Central European Alps over the past 

decades, but the unabated habitat alterations induced by climate change will also continue to reduce 

habitat suitability in the decades to come (-19%, or -32% of suitable plots, by 2066). To the best of 

our knowledge, this is the first study that has quatified species’ fine-grained microhabitat 

requirements for reconstructing past, and constructing future, foraging habitat suitability in a high-

elevation species, i.e. a species occurring in an ecosystem that is more affected by climate change 

than the global average (see Moritz and Agudo, 2013 and references therein). Indeed, most research 

on the impact of climate change on biodiversity has so far dealt with modelling macro-ecological 

relationships between climate and species’ biological attributes (Bellard et al., 2012). This study is 

also one of the first to illustrate that mitigation measures (targeted sward management by grazing) 

could be implemented to maintain habitat suitability and thus buffer against the detrimental effects 

of climate change, in line with what Braunisch et al. (2014) have proposed for montane and 

subalpine forest bird species. This lack of fine-grained mechanistic studies of habitat selection is 

surprising as understanding species' ecological requirements is a prerequisite both for sound 

modelling of species-habitat relationships and for designing adequate mitigation strategies for 

conservation. In particular, microhabitat selection studies carried out during the main bottlenecks of 

a species’ life cycle, notably the critical and intense phase of food provisioning to chicks, are key as 

breeding output depends on parental investment into progeny, which, in short-lived species such as 

the Snowfinch, drives demographic trajectories. The mechanical links evidenced in our field 

surveys between environmental characteristics favouring foraging activity (snow cover and sward 

height) and the alterations of these characteristics induced by climate warming exemplifies how 



meaningful forecasting of future species distributions via spatial modelling should operate to gain 

predictive power. 

Habitat suitability for foraging snowfinches is affected by climate-related habitat 

variables and anthropization 

Breeding snowfinches collected food for nestlings in microhabitats characterized by the 

intermediate snow cover intermixed with short grassland, while avoiding human-altered areas, 

notably roads and buildings. These results are in line with former findings obtained at a much 

coarser scale in a largely overlapping study area (Brambilla et al., 2017b). The preference for an 

intermediate snow cover (optimum at ca 40%) reflects species’ foraging tactics: Snowfinches either 

collect invertebrate prey trapped on the snow surface (Antor, 1995), or exploit the margins of 

melting snow fields where tipulid larvae abound, one of their favourite prey (authors’ personal 

observations). Sward height constrains foraging opportunities: short grass is likely to boost prey 

availability, which is prey abundance modified by its accessibility (Schaub et al., 2010). Yet, to 

further refine our mechanistic understanding of microhabitat-species associations, future work 

should also investigate how prey abundance varies with respect to snow cover and the melting front 

of the snow field.  

Overall, our findings confirm that properly predicting mountain birds responses to global 

change necessitates the consideration of both climate and habitat factors simultaneously 

(Chamberlain et al., 2016). High-elevation species spend a large part of their life-cycle in extreme 

habitats. They have thus evolved specific adaptations to cope with harsh environmental conditions. 

However, climate change is accompanied by increased weather variability and an acceleration of 

extreme events, which represents a new evolutionary challenge for biodiversity in general (Di 

Marco and Santini, 2015) and high-alpine biodiversity in particular (Lu et al., 2009). Moreover, 

direct anthropogenic impacts on Alpine ecosystems are increasing: the tourism industry modifies 



high-altitude landscapes and biodiversity via new infrastructure (e.g. Rolando et al., 2007), 

recreational disturbance (e.g. Arlettaz et al., 2015, 2013, 2007) and other anthropogenic stressors 

(Chamberlain et al., 2016). Although the snowfinch, a partly synanthropic bird, can benefit from 

human infrastructures both for nesting (mountain buildings, skilift-pylons and even nest-boxes) and 

winter foraging (seed-feeding stations at ski resorts or mountain chalets) (Cramp and Perrins, 1994), 

our results show that roads, paths, buildings and other man-made structures decrease foraging 

habitat quality during the reproductive period. It would thus be particularly interesting to estimate 

the year-round costs and benefits of breeding in anthropized vs natural conditions for snowfinches.  

Climate change can threaten Alpine species to such an extent that the large-scale distribution 

of species like the snowfinch could shrink considerably (Brambilla et al., 2017a; Maggini et al., 

2014). Our study demonstrates a high sensitivity of the snowfinch towards climate-induced 

alteration of microhabitat conditions, notably in snow cover and sward, shedding light on the 

possible mechanistic causes behind the ongoing range contraction of this and other cold-loving 

species (Scridel et al., 2017) . Warming climate induces both an anticipation of the seasonal timing 

of snowmelt (Klein et al., 2016) and an earlier and faster grass growth at high elevations (Theurillat 

and Guisan, 2001), which affects the snowfinch as well as other elements of Alpine biocenoses 

(Pettorelli et al., 2007).  

Buffering climate change impacts via habitat management 

While slowing down climate warming requires global measures to drastically reduce society’s 

reliance on fossil energy sources, sward management through targeted grazing is amenable to local 

action. Our model outcomes suggest that the option to maintain sward height below ca 6 cm might 

offer some room to buffer the negative impacts of climate warming on foraging microhabitat 

configuration, especially for sites located at relatively low elevation, where grassland cover and 

sward height play a crucial role in determining habitat suitability for snowfinches. According to our 



various scenarios, a systematic (i.e. unfortunately quite unlikely) implementation of that 

management option would have compensated for the decline in structural habitat suitability that has 

occurred from the 1970s and could also strongly reduce the predicted reduction of foraging habitat 

suitability over the next 50 years. However, it remains to be seen whether implementing this 

measure would suffice to compensate for the diminution of the area of suitable foraging habitat due 

to a thinner and earlier retreating snow pack. If the dependence on accessible foraging grounds is 

the main factor, then this might work. However, if the conditions prevailing along the melting snow 

front dictate not only prey accessibility, but also prey abundance, this measure will likely not 

suffice, unless the species can alter its breeding phenology towards earlier nesting. This emphasizes 

the need to better understand, first, how invertebrate prey availability (which is, again, abundance 

modified by accessibility) drives foraging microhabitat selection (Vickery and Arlettaz, 2012); and, 

second, what is the adaptive potential of the species to environmental change, notably in terms of 

reproductive phenology. From that viewpoint, the results of our retrospective habitat suitability 

model suggest that the snowfinch might have a limited capacity to cope with environmental change, 

notably with the ongoing major alterations in snow cover conditions. Investigations of its long-term 

breeding phenology are also needed to further appraise its adaptive potential. Finally, preventing the 

construction of new infrastructures at high elevation, converting disused tracks at construction sites 

into grassland, as well as ski-piste revegetation (Caprio et al., 2016) may limit or reduce further 

losses of suitable habitats due to human activities. 

The present study highlights the importance of considering microhabitat selection for revealing 

fine-scale, functional and interacting effects of climate and land-use changes on climate-sensitive 

species and for identifying compensatory habitat management strategies that could to some extent 

allow buffering the negative effects of climate warming on high-Alpine biodiversity. 
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Table 1. List of habitat variables measured within a 5-m radius at foraging and control plots, with 

information about methods, metrics and descriptor category. Ground cover variables sum up to 

100%. 

 

Variable type / variable 

name 
Description Unit Group 

Vegetation structure   
 

Sward height 5 measurements of grass height at the plot 

centre and at 2.5 m along each of the four 

cardinal directions (or at the closest point with 

grassland cover, respectively) 

cm 

Vegetation Ground cover   

Grassland cover of grassy vegetation % 

Shrubs  dwarf-woody vegetation (e.g. Rhododendron, 

Juniperus, Salix…) 
% 

Snow snow-covered areas % 

Other variables 

Boulders rocks detached from the substrate % 

Bare ground bare soil (compact soil) % 

Rocks emerging rocky substrate (bedrock) % 

Scree small rocky material (a few cm in diameter) % 

Gravel roads unpaved roads, large footpaths % 

Paved roads roads, paved parking % 

Sand sandy soil (not compact) % 

Urbanized buildings, walls, pylons % 

Water lakes, ponds, watercourses % 

Other other uncovered categories % 

Pasture and/or presence of 

dung 
dung of current or previous year or active 

grazing 
yes / no 

Topography   

Slope angle in degrees (°) calculated at the plot center 

using a digital elevation model (resolution: 1-5 

m) 

degree 

Solar radiation calculated as global radiation for 21
st
 June 

based on a digital elevation model, 

incorporating the shadowing effect of the 

surrounding relief 

kWh/m
2 



 



Table 2. Best-fitting conditional logistic regression model for foraging habitat selection by breeding 

snowfinches during the nestling rearing period.  

 

Variable Estimate (SE) Z P 

Grassland cover 0.57 (0.14) 4.14 < 0.001 

Sward height -0.85 (0.16) 5.37 < 0.001 

Snow cover 2.00 (0.32) 6.18 < 0.001 

Snow cover 
2
 -0.72 (0.13) 5.32 0.003 

Anthropized -1.21 (0.45) 2.65 0.008 

 

 

 

 



Figure 1. Map of the study area showing the 12 study sites monitored in the Swiss and Italian Alps. 

The location of some major towns (Bern, Chur, Milano and Trento) is also given for a better 

interpretation of the geographical extent of the study area. The inset shows the location of the study 

area (rectangle) within the European Alps (grey). 

 

 



Figure 2. Habitat variables significantly (all P < 0.008; see Table 2) affecting the probability that a 

bird foraged in a given habitat patch according to the best-fitting conditional logistic regression 

model reported in Table 2. In each panel, the variable’s effects on predicted probability of habitat 

use (mean and 95% confidence interval) are shown while all other predictors included in the models 

are kept at their mean value.  

 

 



Figure 3. Upper half: boxplots of past, current and future habitat suitability of all sampled plots 

(n=470) within each study area (n = 8 areas), according to the best-fitting model of microhabitat 

selection and the simulated scenarios of managed vs. unmanaged grassland sward height (in the 

managed scenario, grassland sward was kept at a maximum height of 6 cm; see Methods for details 

of the procedure). For each area, boxes show from left to right habitat suitability for different time 

steps and scenarios: past (black), current – unmanaged (white), current – management scenario 

(grey), future – unmanaged (white), future – management (grey). Plots show median, upper quartile, 

lower quartile, maximum and minimum values excluding outliers, i.e. value above 1.5 the upper 

quartile or below 1.5 the lower quartile.  

Lower half: boxplot of plot (foraging and control) elevation within each study area. 
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