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Abstract	

Alternaria species are common pathogens of fruit and vegetables able to produce secondary metabolites 

potentially affecting human health. Twenty-nine isolates obtained from cabbage, cauliflower, wild and cultivated 

rocket were characterized and identified based on sporulation pattern and virulence; the phylogenetic analysis 

was based on the β‐tubulin	 gene. Isolates were identified as A.	 alternata, A.	 tenuissima, A.	 arborescens, A.	

brassicicola and A.	japonica. Pathogenicity was evaluated on plants under greenhouse conditions. Two isolates 

showed low level of virulence on cultivated rocket while the other isolates showed medium or high level of 

virulence. Isolates were also characterized for their mycotoxin production on a modified Czapek-Dox medium. 

Production of the five Alternaria toxins, tenuazonic acid, alternariol, alternariol monomethyl ether, altenuene 

and tentoxin were evaluated. Under these conditions, about 80% of the isolates showed the ability to produce at 

least one mycotoxin. 
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Introduction		

Most Alternaria species are saprophytes and ubiquitous in the environment, however some are plant pathogenic, 

inducing diseases on a large variety of economically important crops like cereals, oil-crops, vegetables and fruits 

(Pitt and Hocking, 1997). Most of Alternaria spp. produce chains of conidia with transverse and longitudinal 

septa, with a tapering apical cell. Conidial size, presence and size of a beak, the pattern of catenation and 

longitudinal and transverse septation are key taxonomic features for this genus (Joly 1964; Ellis 1971 and 1976, 

Simmons 1992). Simmons (1992) proposed different species groups each with a typified representative, e.g. the	

Alternata group with small, catenate spores, while the porri species-group has large, long-beaked, non-catenate 

spores. Other species-groups include the brassicicola, the cheiranthi, the infectoria, and the tenuissima	group 

(Simmons 1995, Woudenberg et al., 2015). In addition, some Alternaria spp. have a clinical significance 

producing toxic secondary metabolites that are involved in cancer development in mammals (Ostry 2008). 

Alternaria toxins can be divided into five different chemical classes: dibenzo-α-pyrones; tetramic acid 

derivatives; perylenes; AAL-toxins (abbreviation for A.	alternata f. sp. lycopersici toxins) and a class containing 

miscellaneous structures. A.	 alternata in particular is also known as an human pathogen in 

immunocompromised patients (Rossman 1996). Furthermore, Alternaria spores are well known as one of the 

most important airborne allergens (Thomma 2003). Alternaria diseases of crucifers are mainly caused by two 

species, A.	brassicicola, and A.	brassicae, and occasionally also by A.	alternata. Depending on the species involved, 

the symptoms on crucifers are referred to as black, grey or dark leaf spot. Brassica hosts can be affected in all 

stages of growth and typical symptoms include black necrotic lesions surrounded by chlorotic areas on 

seedlings, leaves, stems and siliquae (Neergaard 1945; Humpherson-Jones 1989; Mac Kinon et al., 1999). Spots 

on leaf caused by A.	brassicicola are generally similar to those caused by A.	brassicae except that the lesions are 

gray-black in colour (Kolte 1987; Verma and Saharan, 1994). Spots can vary in size from 1.1 to 3.0 mm dark 

circular spots, when young, to black, brown or tan spots from 5 to 7.5 cm when older (Mac Kinon et al., 1999; 

Singh et al., 2012). Yellow halos may or may not surround leaf lesions. Larger spots may have a dark green-black 

coloration of fuzzy growth in the spots, usually concentrated in the center (Neergaard 1945). A.	japonica has 

been reported on cultivated and wild rocket (Garibaldi et al., 2011), mainly as seed infection, causing reduced 

germination and seedling vigour, in addition to pre- and post-emergence damping-off (Gilardi et al., 2014). 

Symptoms caused by A.	japonica on wild and cultivated rocket are usually black-brown lesions, 1 to 30 mm in 

diameter, which progressively turned black. Lesions usually start on the upper side of older leaves at the leaf 



iris-AperTO 
University of Turin’s Institutional Research Information System and Open Access Institutional 

Repository 

margins and tips and developed a yellow halo. Eventually, lesions also affect leaf veins and stems (Garibaldi et al., 

2011). However, A.	japonica is not as widespread as A.	brassicicola	(CABI 2007; Humpherson-Jones 2007).  

The present work was aimed at studying the variability within Alternaria isolates originating from different 

Brassica host plants and contaminated seeds, by using molecular and morphological characteristics, 

pathogenicity, virulence and mycotoxin production.  

	

Materials	and	Methods	

Isolates	collection	

Alternaria spp. were isolated from diseased wild and cultivated rocket and Brassica (cabbage, cauliflower) plants 

(15 isolates) and infected seeds (14 isolates) listed in Tables 1 and 2. Alternaria isolates were obtained by plating 

infected tissue (from wild and cultivated rocket, cabbage and cauliflower) onto Potato Dextrose Agar (PDA) 

medium, incubated at 25 °C for 7 days. Isolates from seeds were obtained by testing different seed samples; 400 

seeds per seed sample were placed on Petri plates (10 seeds/plate) as described by Maude and Humpherson-

Jones (1980). Isolations were made from seeds either non disinfected or surface disinfected for 1 min in 1 % 

sodium hypochlorite, washed in sterile water for 5 min and dried under a sterile hood. The Petri dishes were 

incubated at 22°C in 12 h light and 12 h darkness at 75% R.H. for 7-10 days. The fungal colonies developing from 

seeds, morphologically identified as Alternaria sp. were transferred from Potato Dextrose Agar to Potato Carrot 

Agar (PCA). 

After incubation, the isolates were transferred onto Potato Carrot Agar (PCA) medium amended with 0.5 mg/ml 

streptomycin sulphate, and incubated for 7 days at 25 °C. Single-spore cultures were prepared for each isolate by 

dilution of conidial suspension; about 50 conidia were plated on PDA medium. Germinated conidia were picked 

under the stereomicroscope and transferred again to PDA plates. The different isolates were maintained on PDA 

at 8 °C. Isolates were re-grown on PCA at 25 °C for 10 days immediately before being tested for their 

pathogenicity/virulence.  

 

Pathogenicity	assay	in	host	plants	

The virulence of isolates, obtained from leaves and seeds, was tested on the host plants of origin. The plants, 

grown in pots, were inoculated, when 30-40 day-old, by spaying leaves with a conidial suspension at 1-5x105 

conidia/ml. Inoculated plants were covered with plastic bags for 5-7 days and kept in greenhouse and/or in 
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growth chambers at 25 ± 1 °C. Ten to fifteen days after artificial inoculation, the percentage of infected leaf area 

of ten leaves per plant was estimated by using a disease index scale ranging from 0 to 100. Isolates tested were 

classified as non-pathogenic (NP); low virulent: 10–30% leaf necrosis (L); moderately virulent 31–60% leaf 

necrosis (M); and highly virulent: 61–100% (H) (Van der Waals et al., 2004). 

 

DNA	extraction	

DNA extraction was carried out using the NucleoSpin Plant kit (Macherey-Nagel GmbH and Co., Duren, DE, USA), 

according to the manufacturer’s instructions. Fresh mycelium was scraped from the surface of the colony and 

transferred into a 2 mL tube containing 400 µl of lysis buffer and two tungsten beads (Qiagen Stainless Steel 

Beads, 5 mm). Mycelium was homogenized using Qiagen TissueLyser for 3 min at 28 repetitions per minute; the 

lysate obtained was used for DNA extraction. DNA concentration was measured using a NanoDrop 

spectrophotometer and stored at -20 °C until further use. 

	

PCR	amplification	

Amplification of β‐tubulin was performed with the primers T1 5'-AACATGCGTGAGATTGTAAGT-3' (O’Donnell 

and Cigelnik, 1997) and Beta-tub-2 5'-ATCATGTTCTTGGGGTCGAA-3' (Peever et al., 2004) able to produce a 

1100 bp amplicon. PCR reactions were performed using a T100 Thermal Cycler (Biorad) in a 20 µl reaction 

mixture containing: 30 ng/µL of genomic DNA, 1 µL (10 µM stock, Invitrogen) of each primer, 1 unit of Taq DNA 

Polymerase (Qiagen), 2 µL of PCR buffer (10X, Qiagen), 1 µL of dNTPs (10 µM, VWR), and 0.8 µL of MgCl2 (25 

mM, Qiagen). The cycling conditions included an initial denaturing step at 94 °C for 5 min, followed by 35 cycles 

of denaturation at 94 °C for 1 min, annealing at 60 °C for 1 min, extension at 72 °C for 2 min, and final extension 

at 72 °C for 7 min. A negative control (no template DNA) was included in all experiments. Amplifications were 

verified by electrophoresis on 0.8% agarose gel (Agarose D-1 LOW EEO, Eppendorf). After purification with 

QIAquick PCR purification kit (Qiagen), PCR products were measured using a NanoDrop spectrophotometer and 

sent to BMR genomics sequencing service (http://www.bmr-genomics.it/). Sequence contigs were assembled 

using DNAbaser software, and sequences were deposited at GenBank with accession numbers reported in Table 

3. 

	

Alignment	and	phylogenetic	analysis	
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Similarity searches (blastn, default parameters) were performed for all sequences. The sequences obtained were 

used for CLUSTALW multiple sequence alignments through MEGA6 software set to default parameters. Manual 

corrections were performed for each alignment in order to delete trimmer regions and incomplete sequences 

were discarded. Phylogenetic tree was constructed with MEGA6 (Tamura et al., 2007) using Maximum 

Likelihood method with 1000 bootstrap repeats and pairwise deletion. The evolutionary distances were 

computed using the Kimura 2-parameter model method and were given as units of the number of base 

substitutions per site. In each analysis sequences derived from reference Alternaria isolates obtained from the 

CBS-KNAW Fungal Biodiversity Centre (http://www.cbs.knaw.nl/) were included together with the sequence of 

Pleospora	herbarum (CBS 191.86) used as outgroup (Woudenberg et al., 2013). 

 

Morphological	evaluation	

The Alternaria monoconidial isolates were grown in Petri dishes with PCA media amended with streptomycin 

sulphate (25 mg/L) as reported by Simmons et al. (2007). Isolates were maintained in growth chambers with 

cool white fluorescent illumination at 23 °C and 10/14 h light/dark cycle for 7 days. The observations of conidia 

morphology were carried out with a NIKON (Eclipse55t) microscope at 40x magnification. Conidial 

characteristics, body and beak length, shape, and number of longitudinal and transverse septa of twenty conidia 

per isolate were measured. The type of sporulation was evaluated under Stereo microscope (Leica M165C) by 

considering the length of conidial chains and type, if present, of branching. 

	

Secondary	metabolites	production	

Production of secondary metabolites was tested by growing isolates on a modified Czapek-Dox liquid medium 

according to Brzonkalik et al. (2011). Cultures were inoculated with three mycelial plugs in 20 mL. All cultures 

were performed in triplicate and statically incubated in the dark at 28 °C. After 8 days, cultures were filtered and 

the clear medium was analyzed. 

	

Chemicals	and	standard	preparation	

Standards of tenuazonic acid (TeA) copper salt from A.	 alternata	 (purity ≥ 98%), alternariol (AOH) from 

Alternaria	spp. (purity ≥ 94%), alternariol monomethylether (AME) from Alternaria	alternata	(purity ≥ 98%), 

altenuene (ALT) from Alternaria	spp. (purity ≥ 98%) and tentoxin (TEN) from Alternaria	tenuis	(purity ≥ 99%) 
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were purchased from Sigma-Aldrich (St Louis, MO, USA) in crystallized form. For each mycotoxin, a stock 

solution of 1000 μg/mL and a working solution of 10 μg/mL were prepared in methanol and kept at -20 °C. 

Standard solutions for HPLC calibration and for addition experiment were prepared by diluting the working 

solution in mobile phase (H2O:CH3OH 6:4 both with NH4HCO3 2mM).  

	

Extraction	of	secondary	metabolites	from	fungal	cultures	

Alternaria mycotoxins were extracted by liquid-liquid extraction. Each sample was adjusted to pH 2 with HCl, 

and an aliquot (5 mL) was transferred in a separating funnel. Ten mL of dichloromethane was added three times, 

and the mixture was shaken for 1 min, then the lower dichloromethane extracts were collected in a flask. The 

final extract was evaporated to dryness in a rotary evaporator at 35 °C. The residue was dissolved in 1 mL of 

H2O:CH3OH 1:1 for the HPLC-MS/MS analysis. 

	

Analysis	of	secondary	metabolites	

Chromatographic separation was carried out using a 1260 Agilent Technologies system consisting of a binary 

pump and a vacuum degasser, connected to a Varian autosampler Model 410 Prostar (Hansen Way, CA, USA) 

equipped with a 20 μL loop. The separation was performed using a Kinetex PFP (100 x 2.10 mm 2.6 μ, 

Phenomenex) under a flow of 200 μL/min and with a temperature set at 35 °C. Solvent A was H2O with 2mM 

NH4HCO3, solvent B was CH3OH with 2mM NH4HCO3. A linear gradient from 40% to 100% of solvent B in 12 min 

was used. Detection was done by using Varian 310-MS TQ Mass Spectrometer equipped with an electrospray 

(ESI) ion source operating in negative ion mode.	For the Multiple Reaction Monitoring (MRM) experiments two 

transitions were selected for each compound. MRM transition used for quantification were m/z 196>139 CE 20V 

for TeA, m/z 257>213 CE 22V for AME, m/z 271>256 CE 22V for AOH, m/z 291>229 CE 12V for ALT, and m/z 

413>271 CE 16V for TEN. 

	

Results	

	

Pathogenicity	assay	

First	Alternaria symptoms were observed on old leaves. All isolates were pathogenic, but expressed different 

degrees of virulence on their host of origin (Table 4). Isolates Ruc PMP8 and Ruc PMP9 showed a low virulence, 
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all other isolates were moderately virulent (18 isolates) or highly virulent (8 isolates). There was no correlation 

between degree of virulence and host plants and /or Alternaria species. 

	

Phylogenetic	analysis  

Sequence analysis of β‐tubulin gene as molecular marker showed a Maximum Likelihood tree with 4 different 

Alternaria clades (Fig. 1). The first clade included isolates identified by sporulation pattern as A.	alternata, A.	

arborescens and A.	tenuissima. This first clade also included the reference strains. The second clade included only 

the Ruc PMP 4 isolate with a reference strain of A.	brassicicola	while the third clade represent the A.	brassicae 

reference strain. In the last group, we found all isolates with sporulation pattern close to A.	japonica.  

	

Morphological	evaluation	

On PCA medium all isolates tested showed moderate to high sporulation with the exceptions that did not 

produce any conidia (Table 5). Isolates from seeds of wild rocket, 37Q-16NL, 38Q-1NL, 38Q-9 NL, 38Q-19NL, 

43Q-1L showed dark colonies. The presence of numerous, intercalary chains of hyphal chlamydospores of 8.9-

17.2 (mean 12.58) μm in length were easily recognized. Ruc PMP4 showed the same conidial length to those 

identified as A.	japonica, but had fewer longitudinal septa and did not show any chlamydospores. 

Isolates Ruc 5/10, Ruc 9/10, Ruc 12/10 showed a conidia chain length ranging from 12 to 37.6 (mean 29.3) μm, 

with 3-8 transversal septa, while occasionally longitudinal septa were present. Young conidia were verrucose. 

Conidia were produced in branched chains with long primary conidiophores. Those characters correspond to A.	

arborescens morphotype. 

For isolates Cav 3/10, Cav 12/10, Cav 15/10, Ruc 5/10 and Ruc 13/10, conidia were in chains of 7 to 20 

elements. Mature conidia were golden brown and showed frequently a median septum, with a total body length 

ranging from 19.0 to 50.8 (mean 34.4 μm). Those characters correspond to A.	tenuissima	morphotype. Conidia of 

Cav 7/10 and Ruc PMP 19 were clearly smaller than the previously described isolates and produced mature 

conidia with a body length of 16.6 to 34.1 (mean 27.0 μm) in chains of up of 20 units, which correspond to A.	

brassicinae	morphotype. Alternaria isolates coded Ruc 2/10, Ruc PMP 12, and Ruc PMP 9 showed conidia chains 

with lateral branches with a conidia size ranging from 16.7 to 40.1 (mean 27.7 μm). 

	Average size of conidia of Alternaria isolates varied within a broad range (Table 5). The length of conidia body 

and beak, used to draw an approximate boundary line among the Alternaria species identified in the present 
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study, provided evidence of a good correlations among the morphological parameters and the Alternaria species 

(Figure 2). Moreover, the identification performed by sporulation pattern yielded a good correspondence to the 

clustering in the phylogenic tree.  

 

Production	of	secondary	metabolites	

The analytes were investigated using the external calibration method, and a calibration curve was built for each 

analyte. Good linearity was obtained for all analytes (R2 > 0.999). Recovery experiments were done spiking the 

matrix before extractions with a standard solution at 100 μg/L for each mycotoxin. The calculated recovery 

ranged between 80 and 100%. TeA was the main mycotoxin produced and was detected in more than 80% of 

analyzed Alternaria isolates. Benzopyrone derivatives, AOH, AME, and ALT, were identified in more than 50 % of 

samples. TEN was produced only by four isolates (Cav 3/10, Cav 12/10, Ruc 9/10 and Ruc 12/10) (Table 4). As 

showed in Fig. 3 samples in clade 1 and 4 have a different production. Only two samples (Ruc PMP 19J and 

38Q1NL) in clade 4 produced mycotoxins, while all the strains in clade 1 produce at least one mycotoxin. In fact, 

all strains were able to produce TeA, the benzopyrone derivatives (AOH, AME and ALT) were synthesized by 

almost the same strains. AOH and AME were produced by more than 70% of the strains, with some differences in 

the concentrations. Ruc PMP 4 belonging to clade 2 produced only TeA. 

 

Discussion	

Within the genus Alternaria, taxonomy is rather complex and species differentiation is usually based on a 

combination of morphological observations and molecular characterization (Simmons, 2007). However, 

especially within the small-spored Alternaria species, a large variation in morphological aspects was observed 

depending mainly on growth conditions, and even with molecular methods species identification is difficult 

(Andersen et al., 2009). In some cases, separation has been achieved at species-group level (Andersen et al., 

2002; Polizzotto et al., 2012). Lawrence et al. (2013) identified A.	arborescens and the A.	tenuissima species-

groups together with A.	alternata into one section, with more than 50 additional species that were not always 

correlated with the species-group based on morphological characters (Woudenberg et al., 2013). More recently, 

Woudenberg et al. (2015) have identify A.	arborescens species complex, whereas A.	alternata and A.	tenuissima 

have been joined together in the section Alternaria. In our experimental setup based on β‐tubulin sequences, we 

found two big groups of isolates, the first including A. alternata,	A.	arborescens	and	A.	tenuissima, and the second 
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closely related to A.	japonica. Interestingly, no isolate close to the A.	brassicae was found, while only one isolate 

was related to A.	brassicicola (isolate Ruc PMP 4 obtained from rocket). In most cases, three Alternaria species 

(A.	brassicicola,	A.	brassicae and A.	japonica) have been reported as the causal agents of black spot disease of 

crucifers (Peruch et al., 2006; Reis and Boiteux, 2010, Gilardi et al., 2015). Also, Aneja et al. (2014) described A.	

brassicae, A.	brassicicola and A.	alternata to be present on oilseed Brassicas with A.	brassicae as a dominant 

species. However, A.	 tenuissima was found as a principal species on cabbage in Iran (Rahimloo and Ghosta, 

2015).  

In general, morphological observations and in particular the sporulation pattern confirmed the results obtained 

by phylogenetic analysis (clustering) except for isolate Cav 7/10 that featured an atypical morphological aspect. 

However, there were no statistical differences between different clusters when mean conidia size was 

considered. 

Our results show that Alternaria isolates from rocket and cabbage plants are able to infect their original host 

with different levels of virulence. A.	japonica was found to be the most prevalent specie within the isolates of 

Alternaria from wild and cultivated rocket plants and seeds, however	 A.	 tenuissima,	 A.	 brassicicola and A.	

arborescens have been here also identified. The results of the present study suggest that these species are a 

potential threat of rocket. However, it is well known the broad range of hosts from which these species may be 

isolated (Neergaard, 1945; Simmons 2007, Farr and Rossman, 2016).  

At the same time, almost all isolates were able to produce at least three different mycotoxins under in vitro 

conditions. However, there was no clear correlation between virulence and mycotoxin production. In a wide 

range of plant pathogens, virulence level has been described to be independent of mycotoxin production, 

whereas virulence have been associated to mycotoxin production for other plant pathogens: Desjardins et al 

(1989) have demonstrated the essential role of thrichotecene 2 during pathogenesis of Fusarium	

sporotrichioides. In their experiments, the authors showed that a mutation blocking the T2 toxin biosynthesis 

resulted in a non-pathogenic phenotype, whereas pathogenicity was restored when the same mutant was 

complemented by the wild type. In Alternaria spp., the possible role of mycotoxins on virulence and/or 

pathogenicity was investigated in a study on the impact of osmotic stress on tomato that revealed that AOH 

biosynthesis is an important factor that supporting the tissue colonization of tomatoes (Graf et al., 2012, Geisen 

et al., 2015). Most isolates of our study produced TeA in	vitro confirming results obtained in our previous work 

(Siciliano et al., 2015). In fact, TeA contamination at rather high levels of tomatoes grown in southern Italy can be 
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a major issue, while alternariol and alternariol methyl ether were present at lower levels (Botalico and Logrieco, 

1998). Stinson et al. (1980; 1981) reported a high level of tenuazonic acid in infected tomatoes. 

Mycotoxin production depends on several factors (Sanchis and Magan, 2004). Water activity (aw) played an 

important role for the TeA, AME and AOH production in A.	alternata with an optimum value greater than 0.97. 

Furthermore, temperature affected mycotoxin production by A.	alternata in synthetic medium with an optimum 

around 28 °C for AOH and AME and 21 °C for TEA (Hasan, 1996). Moreover, AOH production has been shown to 

be influenced by light exposure with a reduced mycotoxin production compared to cultures grown in the dark 

(Häggblom, 1979; 1986). Finally, cultivation conditions, in particular carbon and nitrogen sources can influence 

mycotoxin production by A.	 alternata (Brzonkalik et al., 2011). Thus, mycotoxin production under natural 

conditions is strongly influenced by the species and cultivar of host plants, by growth, harvesting and 

environmental conditions (Lauren and Thaer, 2008). For all these reasons, it is not surprising that there was no 

obvious correlation between our in	vitro mycotoxin and virulence data set.	 	
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Table	captions	

Table	 1 Isolates of Alternaria spp. obtained from leaves of different hosts in northern Italy with accession 
numbers of β‐tubulin gene deposited on Genbank. (CN=Cuneo province; TO=Torino province; AT=Asti province)		
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Table	2 Isolates of Alternaria spp. obtained from seeds of different hosts with accession numbers of β‐tubulin 
gene deposited on Genbank. (FC=Forlì-Cesena province; VE= Venezia province; BG=Bergamo province) 

	

Table	3 Accession numbers of β‐tubulin gene deposited on Genbank of CBS strains used in this work. 
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Table	4 Identity, sporulation group, virulence and mycotoxin production of Alternaria isolates obtained from 
different hosts. 

	
a L, low virulence (10-30% of infected leaves); M, moderate virulence (31-60% of infected leaves); H, high 
virulence (61-100% of infected leaves) 
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Table	5 Size of conidia (µm, mean in parenthesis) of Alternaria spp. on PCA media.  
No conidia were developed for Ruc 6/10. No microscopic observations for 37Q-22NL; 37Q-13 NL; 36Q-4 NL; Ruc 
PMP 19. * Sporulation groups according to Simmons and Roberts (1993). ** Conidia mainly solitary o with chains 
of 2-3 spores  
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Figure	caption	
 
Fig.	1	Phylogenetic relatedness (tree) of Alternaria spp. based on β‐tubulin gene and analyzed by Maximum 
Likelihood method. 
The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-
parameter model. The tree with the highest log likelihood (-3253.8466) is shown. The percentage of trees in 
which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search 
were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated using the 
Maximum Composite Likelihood (MCL) approach. All positions with less than 95% site coverage were eliminated 
	

	
	
	 	



iris-AperTO 
University of Turin’s Institutional Research Information System and Open Access Institutional 

Repository 

Fig.	2	Length of conidia body and beak of Alternaria sp. isolates obtained on PCA media. 
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Fig.	3	Mycotoxin production of Alternaria sp. isolates obtained on inductive media incubated at 28 °C for 8 days 
in the dark. 

 


