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Abstract The effects of increased temperature and CO2 levels on the effectiveness of four fungicides and one microbial 

treatment on disease development in zucchini-Podosphaera xanthii and leaf beet-Phoma betae pathosystems, kept under 

phytotron conditions, have been evaluated in this study. Six CO2 and temperature combinations have been tested for each 

pathosystem in four experimental trials.Penconazole and sulphur treatments, applied under a simulated CO2 and temperature 

increase scenario, have shown an efficacy in powdery mildew control that ranged from 85.0 to 88.9 % for penconazole and 

from 89.9 to 92.6 % for sulphur, and the treatments have therefore resulted to be equally effective compared to that observed 

under 400-450 ppm conditions. The disease control provided by A. quisqualis was significantly improved under an increased 

CO2 concentration of 800-850 ppm at 26-30°C, by 23.3% for disease incidence and 22.8 % for disease severity. The 

effectiveness of both mancozeb and azoxystrobin against Phoma leaf spot is affected by high levels of CO2. The efficacy of 

mancozeb and azoxystrobin has been improved significantly by 15.3% and 20.6%, respectively, under 800-850 ppm of CO2  

and 22-26°C, compared to the efficacy observed under standard conditions of CO2. More attention should be paid to the 

efficacy of chemical and biological control measures considering the predicted future climate changes.   
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Although there is ample evidence that the global climate is changing, there is still no consensus on the nature, magnitude, 

long-term impacts and geographical distribution of such changes (Michaels and Balling, 2009). Carbon dioxide and 

temperature are both key variables that affect plant and disease development, and different approaches have been used to 

study the effect of climate changes on plant diseases. It has been estimated that the atmospheric CO2 concentration at the end 

of this century will increase from the current level of about 380 ppm to between 500 and 800 ppm, depending on the future 

emissions scenarios (Meehl et al., 2005), also affecting plant diseases (Chakraborty 2013; Gautam et al. 2013). Over the last 

decade, the effects of increased temperature and CO2 on plant diseases have been studied, under phytotron conditions, in 

several pathosystems (Ainsworth and Long 2005; Chakraborty 2005; Garrett et al. 2006; Grünzweig 2011; Pugliese et al. 

2012a,b; Ferrocino et al. 2013; Singh et al. 2014; Gilardi et al. 2016; Chitarra et al. 2015).  

An analysis of the impacts of climate changes on plant systems should consider the potential interactions of several different 

factors, including disease management strategies. Although the use of chemicals for disease control is common practice, their 

effectiveness may be affected by climate changes, due to the influence on pathogen epidemiology, host susceptibility and the 

behavior of the chemicals on and in the plant (Coakley et al. 1999; Ghini et al. 2008; Juroszek and von Tiedemann 2011).  



Phoma leaf spot and powdery mildew are typical key foliar diseases of various economically important crops in Mediterranean 

countries, where they cause severe losses in open fields and in greenhouses.  

Phoma betae [Pleospora betae] (de Gruytera et al. 2009) is a seed-borne, sugar beet (Beta vulgaris var. saccharifera L.) 

pathogen, which has recently been observed in Italy on leaf beet (Beta vulgaris subsp. vulgaris L.) (Garibaldi et al. 2007), an 

economically important leafy vegetable commercialized as fresh-cut leaves. No cultivar is known to be resistant or tolerant 

to P. betae (Gilardi et al., 2009), and chemical control is the only known effective strategy on cultivations grown under field 

conditions. Azoxystrobin, which belongs to the Quinone outside inhibitor (QoI) fungicide family, has been applied extensively 

to leafy vegetables in Italy, while the use of mancozeb is prohibited on leaf beet,  although its use has been expanded to other 

herbs (minor crops) such as rocket, basil and parsley (Gullino et al. 2010).  

Powdery mildew, which is incited by Podosphaera xanthii (previously known as Sphaerotheca fuliginea and S. fusca), is a 

severe cucurbit disease throughout the world (Sitterly 1978), commonly managed by using resistant cultivars and fungicides.  

Biological control agents and natural compounds have been proposed and evaluated as possible alternatives to the use of 

chemicals in numerous pathosystems, and have shown different and mostly limited degrees of success. Among the various 

biocontrol agents suggested for use against powdery mildews, A. quisqualis has been accepted for use in several countries 

(Jarvis and Slingsby 1977; Copping 2004; Gilardi et al. 2008).  

Fungicides and biological control agents may be affected by climate changes. The impact of combined environmental factors, 

such as temperature and CO2, on the most commonly adopted strategies to control powdery mildew of zucchini and Phoma 

leaf spot of leaf beet is basically unknown. The present study has used phytotrons, in which the temperature and CO2 

concentration have been manipulated, in order to evaluate the effect of possible future climate change scenarios on the efficacy 

of chemical and biological control measures against the powdery mildew of zucchini, and the leaf spot of leaf beet. Both 

diseases require the adoption of solid management strategies, because severe epidemics and crop losses could occur without 

effective control measures.  

Four experimental trials have been carried out, for each pathosystem, as replicated studies in phytotrons under completely 

controlled environmental conditions (Table 1).   During the experiments, each phytotron was maintained at a relative humidity, 

RH, of 85-95 %. A 14/10-h day/night photoperiod was provided by means of two lighting systems (master-color CDM-TD 

metallic iodure discharge lamps and TLD 18-830 Philips neon lamps). A gradual change in the light intensity was introduced 

with three irradiation steps (0, 1/3, 2/3, 3/3) from 0 to 1200 mol m-1, to simulate natural daylight conditions. The light, 

temperature, CO2 and RH conditions were regulated in the same way and monitored in all six phytotrons (Gullino et al. 2011).  



The highly susceptible  zucchini cv. Genovese (Furia Sementi, Parma, Italy) (trials 1-4) and leaf beet cv. Bietola verde da 

Taglio (Ortis, Emilia, Italy) (trials 5-8) plants were grown in 2 L plastic pots filled with a steamed (90°C for 30 minutes) mix 

of white peat: perlite, 80:20 v/v (Turco Silvestro, Albenga, Italy). The plants were kept at 22-24°C in a greenhouse until the 

phenological stage of the first true leaf was reached. One zucchini plant/pot and 25 leaf-beet plants/pot were used. Six pots 

per treatment were arranged in a completely randomized block design (one pot per block design) in each phytotron. A total 

of 18 and 24 pots were used in each replicated trial for Phoma leaf spot of leaf beet and powdery mildew of zucchini, 

respectively. The zucchini and leaf beet plants were transferred to phytotrons when the first true leaf stage had been  reached, 

and were kept under six different combinations of temperature and CO2: 1) 400-450 ppm CO2, 18–22 °C; 2) 800-850 ppm 

CO2, 18–22 °C; 3) 400-450 ppm CO2, 22–26 °C, 4) 800-850 ppm CO2, 22-26 °C, 5) 400-450 ppm CO2, 26-30 °C; 6) 800-850 

ppm CO2, 26-30 °C (Table 1). 

The artificial inoculations were carried out with a population of P. xanthii (Braun et al. 2000), obtained from diseased zucchini 

plants, while a strain of P. betae, isolated from diseased B. vulgaris subsp. vulgaris (Garibaldi et al. 2007), was prepared from 

a 10-day old culture of the fungus, grown on PDA at 24°C and 12 h of light/darkness. The artificial inoculation of the zucchini 

and leaf beet plants was carried out 24 h before the treatments by spraying a conidial suspension at 1x105 conidia/ml. 

Inoculated and untreated plants were used as controls. After inoculation, the plants were  covered with a transparent 

polyethylene film (50 microns thick) in a plastic container (100 ×100 ×50 cm) and incubated for 7 days in order to maintain 

very high RH and prolonged leaf wetness (Table 1). 

Two chemicals, penconazole and sulphur, and one biocontrol agent were applied against the powdery mildew of zucchini, 

while two other fungicides, mancozeb and azoxystrobin, were used against the Phoma leaf spot of leaf beet. Ampelomyces 

quisqualis was used at 29 g/100L (AQ 10, CBC Europe, 58 % a.i.) as a commercial formulation and applied  as a foliar spray 

at the suggested dosages recommended by the manufacturer; penconazole was applied at 4.06 g/100L (Topas10 EC, Syngenta 

Crop Protection S.p.A., Milano, Italy, 10.2 % a.i.),  sulphur at 200 g/100 L (Tiovit Jet, Syngenta Crop Protection S.p.A., 

Milano, Italy, 80 % a.i), azoxystrobin at 18.6 g/100L (Ortiva, Syngenta Crop Protection S.p.A., Milano, Italy, 23.2 % a. i.) 

and mancozeb at 262.5 g/100L (Dithane DG, Neotec., Italy,75 % a.i.).  

The chemical and biofungicide applications were carried out using a volume of 800 L ha-1. The treatments were carried out 

24 h after the artificial inoculation with the pathogen. One application was made for the chemical fungicides, while A. 

quisqualis was applied twice at a 7-day interval (Table 1). 

 The plants were checked weekly for disease development, and the percentage of infected leaves and the affected leaf area  

were evaluated, starting from the appearance of the first symptoms. Six to ten leaves of zucchini from each pot were examined 



visually: the number of infected leaves was counted (disease incidence, DI), and the approximate leaf area affected by the 

disease was evaluated (disease severity, DS). DI and DS were estimated on 50 leaves/treatment for the leaf beet plants. 

 The severity of both plant diseases was evaluated using the following rating scale calculated as [∑(Number of leaves × i 0-

5) / (total number of leaves recorded)] with i 0-5, where the index rating i value represents the midpoint of disease severity 

according to the following scale: 0=no symptoms, healthy plants; 1=1 to 10 % of affected leaf area (midpoint 5 %); 2=11 to 

25 % of affected leaf area (midpoint 15 %); 3=25 to 50 % of affected leaf area (midpoint 35 %); 4=51 to 70% of affected leaf 

area (midpoint 60 %): 5=over 70% of affected leaf area (midpoint 75%). 

The efficacy of different treatments in controlling the powdery mildew of zucchini and Phoma leaf spot on leaf beet (DI and 

DS controls) was calculated as:  

% 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝑏𝑎𝑠𝑒𝑑 𝑒𝑖𝑡ℎ𝑒𝑟 𝑜𝑛 𝐷𝐼 𝑜𝑟 𝐷𝑆) =  
𝐿𝑆𝑖 − 𝐿𝑆𝑡

𝐿𝑆𝑖
× 100 

where LS = Leaf spot index (percentage of leaves affected, for DI, percentage of leaf surface affected, for DS)  

i = inoculated control (leaves artificially inoculated with the pathogen without treatments). 

t = treatments.  

The efficacy values were statistically analyzed by means of analysis of variance (ANOVA), in which the effects of 

temperature, the CO2 concentration and product application, and their interactions on the disease development were tested. 

The analyses were conducted with SPSS software 22, and data from individual replicates are transformed are analyzed of the 

disease assessments derived from counting were arcsine-transformed before the statistical analysis. Since a preliminary 

ANOVA showed no significant effect of the repeated trials, the trials were considered as replicates. When the interaction of 

the tested factors was significant at P<0.05 and P<0.1, one-way ANOVA was carried out to evaluate the combined effect of 

the involved factors on percent disease control,  on the basis of disease incidence, DI, or disease severity, DS (Table 2). 

Multiple comparisons of the effects of fixed factors were made by means of the Tukey–Kramer honestly significant difference 

(HSD) test.  

In the four trials on the P. xanthii-zucchini pathosystem, the one-way Anova analysis showed as treatments (P<0.0001), CO2 

levels (P=0.012) and their interaction significantly (P<0.001) influenced percent powdery mildew control for DS (Table 2). 

An increase in CO2 from 400-450 to 800-850 ppm significantly improved the powdery mildew control provided by A. 

quisqualis, by 8.6 % and 16.1% for DI and DS, respectively (Table 3). The efficacy of the penconazole and sulphur treatments 

was not affected by the higher CO2 regimes that were tested (Table 3). Surprisingly, temperature was not a significant factor 

of influence on disease control as DI and DS (P=0.192; P=0.215, respectively), while the interaction with ‘treatments’ was 



significant for P=0.052 and P=0.054, respectively (Table 2). A.quisqualis only provided a moderate disease control 12 days 

after the last application for all the tested temperature regimes (Table 4). However, its control was significantly improved for 

DI by 15.3% and for DS by 6%, when the temperatures were increased from 22-26°C to 26-30°C (Table 4). The disease 

control provided by the two fungicides was quite high, ranging from 85.0 to 88.9 % for penconazole and from 89.9 to 92.6 % 

for sulphur, and no significant effect of increased temperature and CO2 on their efficacy was observed. A significant effect of 

the combined CO2×temperature factors on powdery mildew control was observed (P=0.001 for DI) (Table 2). The disease 

control provided by A. quisqualis was significantly improved under an increased CO2 concentration of 800-850 ppm at 26-

30°C, that is, by 23.3% for DI and by 22.8 % for DS, while no differences in efficacy were observed for the chemical 

fungicides (Table 5). 

In the P. betae-leaf beet pathosystem, the same analysis revealed that the temperature (P=0.002), CO2 levels (P=0.011; 

P=0.029) and treatments (P<0.001, P<0.001) were significant for DI and DS. The Anova model also showed that the 

combinations of CO2 × temperature, CO2 × treatments, treatments × temperature, and treatments × CO2 × temperature 

significantly influenced disease control, for both DI (P =0.053) and DS (P=0.035) (Table 2 and Table 6).Ten to twelve days 

after the last treatment, azoxystrobin and mancozeb provided significant disease control, which ranged from 42.6 to 64.7 % 

and 63.7 to 88.8 %, respectively (Table 6). Mancozeb provided a somewhat better disease control than azoxystrobin for 

standard CO2 levels, that is, from 63.8 to 73.5 %, than from 58.6 to 62.9 %. The effectiveness of both fungicides was 

significantly improved at 22-26°C for higher CO2 levels of 15.3% for DI and 20.2% for DS for mancozeb and 20.6 % for DI 

for azoxystrobin (Table 6).  

The different temperature and CO2 combinations tested under the present experimental conditions have provided clear 

evidence of a significant improvement of 23.3% for disease incidence and of 22.8 % for disease severity in powdery mildew 

control after the application of A. quisqualis at high CO2 values at 26-30°C. However, little is known about the underlying 

mechanisms. An elevated CO2 level may affect canopy size and reduce the nitrogen concentration in plants, thus providing a 

reduced susceptibility to powdery mildew (Thompson et al. 1993), or cause a delay in primary infection in some crops 

(Hibbenrd et al. 1996). Temperature may directly or indirectly affect the uptake, persistence and degradation of fungicides 

(Chen and McCarl 2001). Moreover, some BCAs are only active over a narrow temperature and relative humidity range. For 

instance, the antagonistic activity of many Trichoderma isolates has been found to be higher at 28°C (Gullino et al. 1987), 

and to be inhibited by low temperatures when applied against Heterobasidium annosum (Tronsmo and Dennis 1978) and 

Botrytis cinerea (Tronsmo 1980). The optimum temperatures for spore germination of A. quisqualis was found to be  25°C; 

germination decreased above 30°C and eventually stopped at 37°C (Kiss et al. 2004).  In the present study, the increase in 



temperature had a significant effect on powdery mildew control provided by A. quisqualis, that improved by 15% for 

temperatures of 26 to 30°C. 

A change in disease progress has important implications on the effectiveness of protectant fungicides such as mancozeb and 

sulphur, which do not penetrate the cuticle and mainly exhibit preventative activity. At the same time, the morphological and 

physiological changes of plants grown under a high CO2 level may affect the uptake and penetration of systemic fungicides, 

such as azoxystrobin and penconazole (Coakley et al. 1999). In the present study, the penconazole and sulphur treatments 

applied under a scenario of simulated CO2 and temperature increases showed an efficacy in powdery mildew control that 

ranged from 85.0 to 88.9 % for penconazole and from 89.9 to 92.6 % for sulphur, and therefore resulted equally effective to 

that observed under 400-450 ppm of CO2 level. On the contrary, the highest Phoma leaf spot control value has been provided 

by mancozeb, at 22-26°C under doubled CO2 level, with a better efficacy of 20.2% for DS and 15.3% for DI than those 

observed at a 400-450 ppm CO2 level. However, even though  azoxystrobin has generally resulted to be less effective against 

Phoma leaf spot than mancozeb, its efficacy has resulted to have been improved by 20.6% at 22-26°C and 800 -850 ppm CO2.  

It is known that fungicidal activity can be affected by such environmental conditions as temperature, relative humidity, CO2, 

rainfall and soil properties. In addition, temperature may also affect disease progress, thus leading to the necessity of adapting 

the application frequency of the fungicides. An earlier occurrence in stem canker of oilseed rape epidemics has been blamed 

on climatic warming (Huang et al., 2007; Evans et al., 2008). However, early disease inoculum detection and identification 

are important to both stop epidemics and determine the spray timing for an optimal control.  

The effectiveness of biocontrol agents may also vary according to the environmental conditions. If biocontrol agents are to 

be used successfully as a pest management component, environmental conditions, such as the combined effect of temperature 

and CO2, should be considered.  

This study suggests that the activity of A. quisqualis against zucchini powdery mildew is generally improved in a climate 

change scenario. Moreover, the effectiveness of both mancozeb and azoxystrobin against Phoma leaf spot is affected by high 

levels of CO2 at 22-26°C while, penconazole and sulphur treatments, applied under a simulated CO2 and temperature increase 

scenario resulted to be equally effective to the efficacy observed under standard conditions.  

Further studies would be useful to better understand the mechanisms implicated in the differences on effectiveness provided 

by fungicides and BCA tested in phytotrons under increased temperature and CO2 combination, also with pathosystems and 

control measures.  
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Table 1 Main information on the conducted trials and operations, starting from the transfer of plants to the phytotrons. Host 

plants and diseases are indicated in first row of the table 

Main information Zucchini/powdery mildew trials Leaf beet/Phoma leaf spot trials 

 1a 2 3 4 5 6 7 8 

Age of plants from sowing until transfer to the 

phytotron 

14 days 8 days 9 days 8 days 14 days 7 days 8 days 8 days 

Artificial inoculations with the pathogen T7 T7 T7 T7 T7 T7 T7 T7 

1st treatment T8 T 8 T8 T8 T8 T8 T8 T8 

2nd treatmentb T15 T16 T14 T15 T15 - - - 

Appearance of the first symptoms  T15 T13 T18 T12 T12 T13 T15 T10 

Final Assessment T25 T23 T21 T18  T18 T20 T22 T14 

a The start of the trials corresponds to the transfer of the zucchini and leaf beet plants to the phytotrons: Trial 1 - 25/06/2015; 

Trial 2 - 14/07/2015; Trial 3 -  07/08/2015; Trial 4 -  29/09/2015; Trial 5 -   25/06/2015; Trial 6 -  14/07/2015; Trial 7 -  

31/08/2015; Trial 8 -  6/10/2015 

b One application was made for the chemical fungicides, while A. quisqualis was applied twice at a 7-day interval   



Table 2 Significance values for the CO2, Treatments and Temperature factors and their interactions on the Disease 

incidence (DI ) and Disease severity (DS) reduction of zucchini powdery mildew and leaf beet Phoma leaf spot  

Fixed factor  Zucchini/powdery mildew trials Leaf beet/Phoma leaf spot trials 

Sign. (% 

reduction DI) 

Sign. (% reduction 

DS) 

Sign. (% 

reduction DI) 

Sign. (% reduction 

DS) 

Trial 0.551 0.800 0.325 0.169 

CO2 concentration 0.076b 0.012a 0.011a 0.029a 

Treatments <0.0001a <0.0001a <0.0001a <0.0001a 

Temperature 0.192 0.215 0.002a 0.057 b 

CO2 × Treatment 0.022a <0.0001a 0.042a 0.020a 

CO2 × Temperature 0.001a 0.091b 0.001a 0.127 

Treatment × 

Temperature 

0.052a 0.054a 0.013a 0.237 

CO2 × temperature × 

treatment 

0.759 0.366 0.053 0.035 

a Significant effect at P<0.05 

b Significant effect at P<0.1 
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 1 
Table 3 Effect of different treatments (biological and chemical) at two CO2 concentrations (400-450 and 800-850 ppm) on 2 

zucchini powdery mildew expressed as percent disease control, based on Disease incidence (DI ) and Disease severity (DS) 3 

reduction compared to the inoculated untreated control plotsb 4 

Treatment  CO2 (ppm) DI reduction DS reduction 

A.quisqualis 400-450  31.3 ±3.2 da 42.6 ±3.1 c 

A.quisqualis 800-850  41.7 ±3.1 c 58.7 ±3.2 b 

Penconazole 400-450  84.4 ±2.7 b 92.9 ±1.8 a 

Penconazole 800-850  88.8 ±2.7 ab 93.0 ±2.1 a 

Sulphur 400-450  93.0 ±1.8 a 97.4 ±0.8 a 

Sulphur 800-850  89.4 ±2.3 ab 94.9 ±1.4 a 

 5 

a Values with a common letter in the same column are not significantly different, according to Tukey’s Test (P<0.05). 6 

Values are the mean of the experimental replicates ± standard error 7 

b Average DI and DS for the inoculated untreated control plots at the end of the trials at temperatures of 18–22, 22-26 and 26-8 

30 °C  under CO2 at 400-450 ppm corresponded to:  DI  of 58.2, 69.8 and 60.9 and DS  of 19.3, 33.6 and 25.2. For CO2 at 9 

800-850 ppm corresponded to: DI of 63.2, 70.2 and 52.5 and DS of 28.9, 28.4 and 19.6, respectively 10 

 11 

 12 

  13 
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Table 4 Effect of different treatments (biological and chemical) at different temperatures (18-22, 22-26 and 26-30 °C) on 14 

zucchini powdery mildew, expressed as percent disease control, based on Disease incidence (DI ) and Disease severity (DS) 15 

reduction compared to the inoculated untreated control plotsb 16 

Treatment Temperature (°C) DI reduction DS reduction 

A.quisqualis 18-22 36.5 ±3.5 bca 54.3 ±3.9 b 

A.quisqualis 22-26 29.1 ±2.8 c 48.0 ±3.7 c 

A.quisqualis 26-30 44.0 ±4.2 b 54.1 ±4.2 b 

Penconazole 18-22 85.9 ±4.1 a 90.1 ±3.4 a 

Penconazole 22-26 88.9 ±2.5 a 94.6 ±1.7 a 

Penconazole 26-30 85.0 ±3.3 a 94.2 ±1.7 a 

Sulphur 18-22 91.0 ±2.6 a 96.3 ±1.5 a 

Sulphur 22-26 89.9 ±2.5 a 95.5 ±1.6 a 

Sulphur 26-30 92.6 ±2.4 a 96.8 ±1.2 a 

 17 

a Values with a common letter in the same column are not significantly different, according to Tukey’s Test (P<0.05). 18 

Values are the mean of the experimental replicates ± standard error 19 

b Average DI and DS for the inoculated untreated control plots at the end of the trials at temperatures of 18–22, 22-26 and 26-20 

30 °C  under CO2 at 400-450 ppm corresponded to:  DI  of 58.2, 69.8 and 60.9 and DS  of 19.3, 33.6 and 25.2. For CO2 at 21 

800-850 ppm corresponded to: DI of 63.2, 70.2 and 52.5 and DS of 28.9, 28.4 and 19.6, respectively 22 

 23 

 24 

 25 

  26 
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Table 5 Efficacy of fungicide treatments at different CO2 concentrations (400-450 and 800-850 CO2) and temperatures (18-27 

22, 22-26 and 26-30 °C) on zucchini powdery mildew, expressed as percent disease control, based on Disease incidence (DI 28 

) and Disease severity (DS) reduction compared to the inoculated untreated control plotsb 29 

Treatment 

 

Temperature 

(°C) 

CO2  

(ppm) 

DI reduction 

 

DS reduction 

 

A. quisqualis 18-22 400-450  34.6 ±5.8 da 46.2 ±5.8 d 

A. quisqualis 18-22 800-850  38.3 ±3.9 d 62.5 ±4.8 bc 

A.quisqualis 22-26 400-450  27.0 ±3.7 d 38.8 ±5.1 d 

A.quisqualis 22-26 800-850  31.2 ±4.2 d 48.0 ±5.5 cd 

A.quisqualis 26-30 400-450  32.4 ±4.6 d 42.7 ±5.3 d 

A.quisqualis 26-30 800-850  55.7 ±6.2 c 65.5 ±5.8 b 

Penconazole 18-22 400-450  88.8 ±4.8 ab 94.2 ±3.6 a 

Penconazole 18-22 800-850  82.9 ±7.0 ab 86.0 ±5.7 a 

Penconazole 22-26 400-450  85.2 ±4.0 ab 91.7 ±3.1 a 

Penconazole 22-26 800-850  92.6 ±2.7 ab 97.5 ±1.1 a 

Penconazole 26-30 400-450  79.3 ±5.4 b 92.8 ±2.6 a 

Penconazole 26-30 800-850  90.8 ±3.6 ab 95.6 ±2.3 a 

Sulphur 18-22 400-450  98.4 ±1.6 a 99.7 ±0.3 a 

Sulphur 18-22 800-850  83.7 ±4.6 ab 92.8 ±2.9 a 

Sulphur 22-26 400-450  91.6 ±2.8 ab 97.9 ±0.8 a 

Sulphur 22-26 800-850  88.1 ±4.2 ab 93.0 ±3.0 a 

Sulphur 26-30 400-450  88.9 ±2.3 ab 94.7 ±0.7 a 

Sulphur 26-30 800-850  96.3 ±4.0 ab 99.0 ±2.2 a 

 30 

a Values with a common letter in the same column are not significantly different, according to Tukey’s Test (P<0.05). 31 

Values are the mean of the experimental replicates ± standard error 32 
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b Average DI and DS for the inoculated untreated control plots at the end of the trials at temperatures of 18–22, 22-26 and 26-33 

30 °C  under CO2 at 400-450 ppm corresponded to:  DI  of 58.2, 69.8 and 60.9 and DS  of 19.3, 33.6 and 25.2. For CO2 at 34 

800-850 ppm corresponded to: DI of 63.2, 70.2 and 52.5 and DS of 28.9, 28.4 and 19.6, respectively 35 

 36 
 37 

 38 
Table 6 Efficacy of fungicide treatments at different CO2 concentrations (400-450 and 800-850 ppm) and temperatures (18-39 

22, 22-26 and 26-30 °C) against Phoma betae on leaf beet, expressed as percent disease control, based on Disease incidence 40 

(DI ) and Disease severity (DS) reduction compared to the inoculated untreated control plotsb 41 

Treatment Temperature (°C) CO2 (ppm) DI reduction DS reduction 

Mancozeb 18-22 400-450  74.9 ±4.2 a-ca 73.5 ±6.4 ab 

Mancozeb 18-22 800-850  86.2 ±2.9 ab 73.9 ±8.1 ab 

Mancozeb 22-26 400-450  73.5 ±3.6 b-d 65.2 ±5.0 ab 

Mancozeb 22-26 800-850  88.8 ±2.1 a 85.4 ±6.6 a 

Mancozeb 26-30 400-450  63.7 ±5.1 c-e 63.8 ±6.5 ab 

Mancozeb 26-30 800-850  69.3 ±4.3 cd 69.1 ±4.6 ab 

Azoxystrobin 18-22 400-450  64.8 ±3.6 cd 58.6 ±6.9 b 

Azoxystrobin 18-22 800-850  59.2 ±3.9 de 64.4 ±6.9 ab 

Azoxystrobin 22-26 400-450  42.6 ±5.3 f 58.9 ±4.7 b 

Azoxystrobin 22-26 800-850  63.2 ±4.5 c-e 68.5 ±6.2 ab 

Azoxystrobin 26-30 400-450  60.8 ±3.9 c-e 62.9 ±7.5 b 

Azoxystrobin 26-30 800-850  49.5 ±4.3 ef 53.9 ±7.6 b 

 42 

a Values with a common letter in the same column are not significantly different, according to Tukey’s Test (P<0.05). 43 

Values are the mean of the experimental replicates ± standard error 44 

bAverage DI and DS for the inoculated untreated control plots at the end of the trials at temperatures of 18–22, 22-26 and 26-45 

30 °C  under CO2 at 400-450 ppm corresponded to: DI  of 37.9, 44.3 and 39.5 and  DS  of 17.0, 20.2  and 20.6. Under CO2 at 46 

800-850 ppm corresponded to: DI of 42.6, 50.3 and 49.6 and DS of 18.6, 20.4 and 20.5, respectively 47 

 48 


