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Abstract—The aim of this paper is (i)to study breast cancer
growth by mean of a mathematical model describing cell popu-
lation dynamics during cancer growth, and (ii)to use this model
to reproduce and explain experimental data.

We started from a linear model describing cancer subpopu-
lations evolution based on the Cancer Stem Cell (CSC) theory,
and we added feedback mechanisms from the cell populations to
mimic micro- environment effects in cancer growth. In details,
we hypothesized two feedback mechanisms and we studied their
effects both separately and combined together. In this way we
obtained three new models that we tuned using data derived by
TUBO Cancer cell line and describing the evolution of the total
cell population and the subpopulations over time. Finally, we
exploited these three models to understand which combination
of feedback mechanisms better describe the experimental data.

Index Terms—Breast cancer growth model, Cancer Stem Cell
theory and mathematical models.

I. INTRODUCTION

Cancer Stem Cells (CSCs), a small population of cancer
cells endowed with stem-like properties, play a crucial role in
tumor initiation and progression, but CSCs also take part into
therapy failure [2]. CSC-based tumors, like breast cancer, show
a hierarchical organization with CSCs at the apex, Progenitor
Cells (PCs) as the main proliferating population, and Totally
differentiated Cells (TCs) forming the main tumor mass, [10].
CSCs reside in specific tumor regions called niches, which
provide them nutrients and protection at the same time, [12].
This particular spatial organization in addition to the CSC
phenotyoic properties may explain why current therapies are
still ineffective on this small population of cancer cells, [3].
Complex dynamics characterize the mechanisms underlying
the CSC hierarchy, such as cell fate decision and regulatory
feedbacks. Multi-disciplinary approaches, which combine ex-
perimental studies with mathematical modeling, represent the
winning strategy to address these open questions, [5]. In fact,
a countless number of experiments can be performed in silico

Identify applicable funding agency here. If none, delete this.

allowing to simulate different dosing schedules and therapies,
and then testing only the most promising in vitro and/or in
vivo.

From a mathematical point of view, cancer cell models
range from deterministic to stochastic. Deterministic models
are typically used for large population, while stochastic models
are appropriate if single cell behaviours are interesting for
the study [11]. Focusing on deterministic models, different
choices can be done, as Partial Differential Equations (PDEs),
Delay Differential Equations(DDEs) or Ordinary Differential
Equations (ODEs) [11]. In this paper we chose ODEs to model
breast cancer cell growth. Thus, in Sec. III three new models
are introduced to extend with feedback mechanisms the one
proposed in [1]. Then, in Sec.IV we describe how these new
models can be tuned exploiting biological data. A discussion
on the ability of these models to mimic the real cell growth
is instead reported in Sec.V. Finally, in Sec. VI we conclude
presenting some future works.

II. BACKGROUND

First in this section we introduce the Breast cancer compart-
ment model proposed in [1], that it is the starting point for the
new models proposed in this paper. Secondly we describe the
weighted least squares method used for the data fitting task.
Then different techniques for estimating the goodness-of-fit of
a statistical model are reported.

A. Breast cancer compartment models

In [1] we proposed a model to describe the evolution of an
Erb2+ mammary cancer based on the CSC theory. A schematic
representation of this mode is provided in Fig. 1 in which
we considered m+ 1 stages corresponding to one CSC stage
followed by m Progenitor Cell (PC) stages. We stated that
CSCs can proliferate only symmetrically: a CSC generates two
CSC-like daughter cells with probability p, and it generates
two first generation PC (PC1) with probability (1− p). CSCs



Fig. 1. Schematic representation of Breast Cancer compartment model (m+1
states).

proliferation rate is ωs. We affirmed that a PC of generation i
produces two PCs of generation i+1, for i = 1, ..,m−1, with
rate ωp. PCm are terminally differentiated cells, i.e. they can
not proliferate and they will die for natural death or for mitotic
failure. Each subpopulation is affected by a death rate specific
for each cell type: δS , δP and (δM + λ) respectively. Finally,
we considered de-differentiation from PCi, i = 1, ..,m − 1,
into CSC as proposed by Tang et al. in [2].

The obtained model in case of proliferation potential equal
to 2 (i.e. m=2) was described through the following ODE
system:

dNCSC

dt = (2p− 1)ωSNCSC + γNPC1 − δSNCSC
dNPC1

dt = 2(1− p)ωSNCSC − γNPC1
− ωPNPC1

−δPNPC1

dNPC2

dt = 2ωPNPC1 − (δP + λ)NPC2

NCSC(0) = N0
CSC

NPC1
(0) = N0

PC1

NPC2
(0) = N0

PC2

(1)
where NCSC , NPC1 , NPC2 are the total number of CSCs,
PCs1 and PCs2 respectively.

Observe in the rest of the paper we assume for simplicity
m = 2, however all the obtained results can be easily extended
for a generic m.

B. Weighted least squares method

The goal of data fitting is to find those parameter values that
best describe the relation between experimental conditions and
observations. The outcomes of the experimental measurements
are called observations y = (y1, . . . , yN ). They are dependent
on several conditions, described by a vector x = (x1, .., xN ).
Model parameters are described by a vector a = (a1, . . . , aM ).
Then, a model is given by y = f(x|a). Observations are
affected by random errors, and so we can reformulate the
problem as yi = f(xi|a)+εi with i = {1, . . . , Ns} where a is
an unknown and it is calculated through data fitting. methods.

Least-square method [4] is a data fitting technique that is
based on minimizing the squared residual error S between
observations yi and the values calculated through the model
function fi(xi|a), i.e. minimizing:

S =

N∑
i=1

[fi(xi|a)− yi]2 (2)

When observations are weighted, the method is called
weighted least squares method and it is based on minimization
of χ2 , defined as:

χ2 =

N∑
i=1

wi[fi(xi|a)− yi]2 (3)

where wi represents the reliability of the observations i, so that
a more uncertainty associated with yi correspond to lower wi
values. When the standard uncertainty σi of each yi parent
distribution is known, the optimal weight is equal to wi = 1

σ

C. How to evaluate the Goodness-of-fit

Goodness-of-fit of a statistical model, in general, measures
how well the observed data correspond to the fitted model.
Typical methods to evaluate the goodness of fit of a model
consist in using some statistical coefficients, as for instance the
coefficient of determination (R2) and the Root Mean Standard
Error (RMSE), or/and in the residual analysis.

The residuals are defined as the differences ei = yi−ŷi, with
i = {1, 2, . . . , N}, where yi is an observation and ŷi is the
corresponding fitted value obtained by the model. Weighted
residuals are instead defined as:

Resi =
yi − ŷi
σi

Then, the residuals contain information on how the model
can fit the data [6]. Some of the most popular goodness-of-fit
methods are:
1. The Sum of Squared Residuals (SSR) is the sum of the
weighted squares of residuals:

SSR =

N∑
i=i

wi(yi − ŷi)2

and it is a measure of the discrepancy between the data and
the fitting model.

2. Coefficient of determination (R2) is defined for linear
models and it measures how well the fit explains the variation
in the data. R2 is defined as the ratio of the explained sum
of squares (SSE) and the total sum of squares (SST) [7].
Indicating with ȳ the mean of the observations yi, i = 1, ..., n,
SSE is defined as:

SSE =

N∑
i=1

wi · (ŷi − ȳ)2

and SST is defined as:

SST =

N∑
i=1

wi · (yi − ȳ)2

where SST = SSR + SSE. Given these definitions, R2 is
expressed as:

R2 =
SSE

SST
= 1− SSR

SST

It is important to observe that the use of R2 to evaluate
and choose among nonlinear models can lead to not robust



results [8].

3. The Root Mean Standard Error(RMSE) is the square
root of the variance of the residuals [6]. It is defined as:

RMSE = s =
√
MSE

where
MSE =

SSR

N − k
with k indicating the number of parameters and N the
number of observations. It indicates how close the observed
data points are to the model predicted values. Moreover,
RMSE penalizes the lack of parameter parsimony in a model.

4. Akaike’s information criterion (AIC) [9] is especially
used to compare models with different number of parameters
by penalizing those that use a greater number of parameters.
It is defined as:

AIC = N ln

(
SSR

N

)
+ 2p

5. Residual Analysis assumes that if the fitting model is correct,
then the residuals approximate the random errors. Thus, when
the residuals appear to behave randomly then the model fits
the data well. Therefore, after fitting experimental data with
weighted least squares method, it is necessary to check the
residual plots in order to validate the model. The normality of
the residuals can be checked in different ways, for example
with histograms, probability plots or with the Kolmogorov-
Smirnov test [6].

III. BREAST CANCER COMPARTMENT MODEL

In this section we introduce three new Breast cancer com-
partment models that extend the model presented in the previ-
ous section II to take into account micro-environment in cancer
growth. Indeed recent works have underlined the importance of
the micro-environment in cancer growth, indicating that it can
be modeled as a feedback mechanism from the cell populations
in themselves. In particular, spatial limitation can results in
a slow down of CSC proliferation when the PC population
increased.

Hence, to describe such an auto growth limitation process,
we hypothesized two feedback mechanisms that modulate
CSC proliferation rate and probability of CSC self-renewal:
both separately and combined together. In details, we propose
to replace CSC proliferation rate ωS with:

ωS(PC1 + PC2) =
ωS

1 + α(NPC1
+NPC2

)
(4)

and/or the probability of CSC self-renewal p with

p(PC1 + PC2) =
p

1 + β(NPC1 +NPC2)
(5)

Feedback mechanism in Eq. 4 acts on CSC proliferation
rate, slowing it down as subpopulations PC1 and PC2 grow.
Consequently, CSC self renewal and CSC symmetric differen-
tiative division are both slowed down. The parameter α at the

denominator of Eq. 4 represents the feedback intensity and
we imposed it to be positive and less than one. Moreover,
it is reasonable to think that it cannot be too small, because
otherwise it could delete feedback effects.

Feedback in Eq. 5 acts on the probability of CSC self-
renewal, slowing it down as subpopulations PC1 and PC2

grow. Consequently there is a decrement in CSC self-renewal
and an increase in CSC symmetric differentiative division. The
parameter β at the denominator, as α in Eq. 4, represents the
feedback intensity and we imposed it to be positive and less
than one.

Starting from the equations 4 and 5 we defined the following
three extensions of the ODE system in 1.

• Model 1: feedback only on CSC proliferation rate in
which ωs is replaced with Eq. 4:

dNCSC

dt = (2p− 1) ωS

1+α(NPC1
+NPC2

)NCSC

+γNPC1 − δSNCSC
dNPC1

dt = 2(1− p) ωS

1+α(NPC1
+NPC2

)NCSC

−γNPC1
− ωPNPC1

− δPNPC1

dNPC2

dt = 2ωPNPC1 − δP2NPC2

NCSC(0) = N0
CSC

NPC1
(0) = N0

PC1

NPC2
(0) = N0

PC2

(6)

• Model 2: feedback only on probability of CSC symmetric
division rate in which p is replaced with Eq. 5:

dNCSC

dt =

(
2 p
1+β(NPC1

+NPC2
) − 1

)
ωSNCSC

+γNPC1
− δSNCSC

dNPC1

dt = 2

(
1− p

1+β(NPC1
+NPC2

)

)
ωSNCSC − γNPC1

−ωPNPC1
− δPNPC1

dNPC2

dt = 2ωPNPC1
− δP2

NPC2

NCSC(0) = N0
CSC

NPC1(0) = N0
PC1

NPC2
(0) = N0

PC2

(7)
• Model 3: feedback on both CSC proliferation rate and

probability of CSC symmetric division rate in which ωs
and p are replaced with Eq. 4 and Eq. 5:

dNCSC

dt =

(
2 p
1+β(NPC1

+NPC2
) − 1

)
ωS

1+α(NPC1
+NPC2

)NCSC

+γNPC1 − δSNCSC
dNPC1

dt = 2

(
1− p

1+β(NPC1
+NPC2

)

)
ωS

1+α(NPC1
+NPC2

)NCSC

−γNPC1
− ωPNPC1

− δPNPC1

dNPC2

dt = 2ωPNPC1 − δP2NPC2

(8)
It is important to observe that in all these three extensions

the introduction of the auto growth mechanisms made system
non linear, so that these ODE systems are more complex to
be studied than the original one (see ODE system 1).



Repl1 TUBO Repl2 TUBO Repl3 TUBO
T Counts T Counts T Counts
0 100000 0 100000 0 120000
8 175000 8 125000 8 NaN

24 225000 24 200000 24 225000
32 262500 32 250000 32 300000
48 292500 48 437500 48 370000
56 300000 56 575000 56 NaN
72 350000 72 775000 72 400000
80 1338000 80 800000 80 500000

96 1368750 96 660000
104 1512500 104 NaN
120 1500000 120 1400000
144 1500000 144 1400000

152 1375000
TABLE I

CELL GROWTH OVER TIME IN TERM OF CELL COUNTS FOR THREE
INDEPENDENT REPLICATES.

Repl1 TUBO Repl2 TUBO Repl3 TUBO
T CD44+/CD24- T CD44+/CD24- T CD44+/CD24-
0 0.53 0 0.3 0 0.35

24 0.3 24 0.2 24 0.26
48 0.12 48 1 48 0.1
72 0.1 72 0.5 72 0.3

96 0.5
TABLE II

PERCENTAGE OF CD44+/CD24- CELLS OVER TIME, FOR EACH
INDEPENDENT REPLICATE.

IV. THE TUNING OF THE THREE MODELS

In this section we describe how to find those parameter
values that best describe the relation between experimental
condition and observations.

In particular the experimental data were generated via in
vitro experiments on TUBO cancer cells. TUBO cells are
cancer epithelial cells derived from BALB-neuT mice. These
mice are transgenic for ErbB2 gene and spontaneously develop
breast cancer few weeks after birth.

TUBO
MEAN ST. DEV

T
0 106666.67 9428.09
8 150000 25000

24 216666.67 11785.11
32 270833.33 21245.92
48 366666.67 59242.91
56 437500 137500
72 508333.33 189663.44
80 879333.33 346680.77
96 1014375 354375

104 1512500 346680.77
120 1450000 50000
144 1450000 50000
152 1375000 346680.77

CD44+/CD24-
T mean st dev
0 0.3933333 0.0987702
24 0.2533333 0.0410961
48 0.4066667 0.4196295
72 0.3 0.1632993
96 0.5 0.4196295

TABLE III
MEAN AND STANDARD DEVIATION OF CELL COUNTS AND CD44+/CD24-

PERCENTAGE OVER TIME, RESPECTIVELY.

Cell growth was monitored over time and table I shows the
results from three independent replicates of the experiment. In
addition to cell counts, we collected also flow cytometry data
to infer the behavior and the class/type of cells. Specifically
CD44+/CD24- was used as a marker for CSCs. Table II shows
the percentage over time of CD44+/CD24- cells.

Then, means and standard deviations of the data reported
in the three replicates of tables I and II were calculated and

reported in tables III(left) and III(right). Observe that for all
the cases where only one replicate was available we fixed the
standard deviation equal to the maximum value between all
the other standard deviations.

Afterward, the weighted least squares method is used to fit
experimental data of III(left) and III(right) with our models.

Data fitting for Model 1.
For ODE system 6, in which only the feedback on CSC
proliferation rate is considered, we define the following
parameter vector a = (p, ωS , ωP , δS , δP , δP2 , α, γ). Then,
a qualitative study on the non trivial steady state of ODE
system 6 is derived to widely restrict the search parameter
space for the data fitting problem. Leaving behind the term
with γ, because de-differentiation is a biological almost
neglictable process, the ODE system 6 becomes:

(2p− 1) ωS

1+α(NPC1
+NPC2

)NCSC − δSNCSC = 0

2(1− p) ωS

1+α(NPC1
+NPC2

)NCSC − ωPNPC1
− δPNPC1

= 0

2ωPNPC1
− (δP + λ)NPC2

= 0
(9)

Moreover, we know from the biological experiments that all
the parameters are non-negative and that variables NCSC ,
NPC1 and NPC2 are different from zero at this steady state.
From the first equation of ODE system (9) we obtained

(2p− 1)
ωS

1 + α(NPC1 +NPC2)
= δS

(2p− 1)ωS = [1 + α(NPC1
+NPC2

)]δS

As the term at the right of the equal is positive, we deduced
that

2p− 1 > 0

p > 0.5

From the second equation of ODE system (9) we obtained

2(1− p) ωS
1 + α(NPC1

+NPC2
)
NCSC = (ωP + δP )NPC1

2(1−p) ωS
ωP + δP

=
NPC1

NCSC
(1+α(NPC1

+NPC2
)) >

NPC1

NCSC

and NPC1

NCSC
> 1 because CSC form is the smallest population

inside the tumor. Therefore:

2(1− p)ωS >
NPC1

NCSC
(ωP + δP )

Knowing that p > 0.5 (from the first equation) we deduced
that 2(1− p) < 1 and so

ωS > 2(1− p)ωS > M(ωP + δP )

This means that ωS must be larger than the sum of ωP and δP .
In this way we widely restricted the search parameter space
for the data fitting problem speeding up the computation of the
optimal vector a. Finally, the optimal vector derived through
the weighted least squares method is a = (p = 0.5204, ωS =
8.7529, ωP = 0.0105, δS = 0.3256, δP = 0.0030, δP2

=
0.0157, α = 9.2551 · 10−8, γ = 1.0035 · 10−6).



Fig. 2. Model 1: results of fitting data w.r.t. to cell count.

Fig. 3. Model 1: results of fitting data w.r.t. to CSC subpopulation percentage.

Figs. 2 and 3 represent the results of fitting data of tables
III(left) and III(right) respectively. The red points, with the
corresponding error bars, represent experimental data with the
corresponding standard deviations. Black curves correspond
to total population evolution and subpopulations percentage
evolution obtained from Model 1 considering as input the
computed optimal parameters vector a.

To evaluate the goodness of fit of Model 1 we analyzed the
residuals. In Fig. 4 the normal probability plot of the residuals
is an approximate straight line, indicating the normal behavior
of the residuals. Moreover the Kolmogorov-Smirnov test was
applied on the residuals. We obtained a p-value equal to 0.5446
and, consequently, we did not reject the null hypothesis: the

Fig. 4. Model 1: normal probability plot of the residuals.

Fig. 5. Model 1: the evolution over the time interval T=[0,1500] of total
population, CSC, PC1 and PC2 subpopulations,respectively.

residuals follow a normal distribution.

Figs. 5 shows total population and subpopulations evolution
over the time interval [0,1500] for Model 1. We noted that
all the subpopulations oscillate , until reaching a stabilization
around time t = 1000, with a final total population value
around 1 · 106. CSC final population percentage is very
little, while PC1 and PC2 final percentages are quite similar:
PC1 subpopulation fraction is around the 45%, while PC2

subpopulation fraction is around 55%.

Data fitting for Model 2.
For ODE System 7, the parameter vector a was defined by:
a = (p, ωS , ωP , δS , δP , δP2

, β, γ). A qualitative study on the
non trivial steady state of ODE system 7 is performed to
widely restrict the search parameter space for the data fitting
problem again.

We experimentally know that all the parameters are non-
negative and that variables NCSC , NPC1 and NPC2 are
different from zero at this steady state.

From the first equation of System 7 neglecting the term with
γ we obtained:(

2
p

1 + β(NPC1 +NPC2)
− 1

)
ωS = δS

As the term at the right of the equal is positive, we deduced
that (

2
p

1 + β(NPC1
+NPC2

)
− 1

)
> 0

p

1 + β(NPC1
+NPC2

)
> 0.5



Fig. 6. Model 2: results of fitting data w.r.t. to cell count.

From the second equation of System (7) neglecting the term
with γ we obtained

2

(
1− p

1 + β(NPC1
+NPC2

)

)
ωSNCSC = (ωP + δP )NPC1

2

(
1− p

1 + β(NPC1 +NPC2)

)
ωS

ωP + δP
>
NPC1

NCSC
= M

and M > 1 because we know that CSC form is the smallest
population inside the tumor. Therefore:

2

(
1− p

1 + β(NPC1
+NPC2

)

)
ωS > M(ωP + δP )

Knowing that
p

1 + β(NPC1
+NPC2

)
> 0.5 from the first

equation, we deduced that

2

(
1− p

1 + β(NPC1 +NPC2)

)
< 1

and so

ωS > 2

(
1− p

1 + β(NPC1
+NPC2

)

)
ωS > M(ωP + δP )

This means that ωS must be larger than the sum of ωP and
δP . Thus, we widely restricted the search parameter space for
the data fitting problem speeding up the computation of the
optimal vector a. Finally, the optimal vector derived through
the weighted least squares method is a = (p = 0.5101, ωS =
7.8952, ωP = 0.0094, δS = 0.1312, δP = 0.0009, δP2 =
0.0107, β = 4.5339 · 10−9, γ = 1.0700 · 10−5).

Figs. 6 and 7 represent the results of fitting data of tables
III(left) and III(right) respectively.

To evaluate the goodness of fit of Model 2 we analyzed
the residuals. In Fig. 8 the normal probability plot of the
residuals is an approximate straight line again. Moreover
the Kolmogorov-Smirnov test was applied on the residuals
obtaining a p-value equal to 0.60775. Therefore, we did not
reject the null hypothesis and we stated that the residuals
follow a normal distribution.

Fig. 7. Model 2: results of fitting data w.r.t. to CSC subpopulation percentage.

Fig. 8. Model 2: normal probability plot of the residuals.

Finally, Fig. 9 shows total population and subpopulations
evolution over the time interval [0,1500] for Model 2. We
noted, as for Model 1, that all the subpopulations oscillate,
until reaching a stabilization around time t = 1000. The total
population value is around 1 · 106, CSC final percentage is
very small, while PC1 and PC2 final percentages are around
the 40% and the 60%, respectively.

Fig. 9. Model 2: the evolution over the time interval T=[0,1500] of total
population, CSC, PC1 and PC2 subpopulations,respectively.



Data fitting for Model 3.
For ODE System 8, the parameter vector a was defined
by: a = (p, ωS , ωP , δS , δP , δP2 , α, β, γ). As in the previous
models we performed a qualitative study on the non trivial
steady state of ODE system 8 whose aim was to reduce
the search parameter space for the data fitting problem. We
assume that all the parameters are non-negative and variables
NCSC , NPC1 and NPC2 are different from zero at this steady
state.

From the first equation of System 8 neglecting the term with
γ we obtained(
2

p

1 + β(NPC1
+NPC2

)
− 1

)
ωS

1 + α(NPC1
+NPC2

)
= δS

As the term at the right of the equal is positive, we deduced
that (

2
p

1 + β(NPC1 +NPC2)
− 1

)
> 0

p

1 + β(NPC1
+NPC2

)
> 0.5

From the second equation of System (9) neglecting the term
with γ we obtained

2

(
1− p

1 + β(NPC1 +NPC2)

)
ωS

1 + α(NPC1 +NPC2)
NCSC =

(ωP + δP )NPC1

Therefore:

2

(
1− p

1 + β(NPC1
+NPC2

)

)
ωS

ωP + δP
>

2

(
1− p

1 + β(NPC1 +NPC2)

)
ωS

(1 + α(NPC1 +NPC2))(ωP + δP )

>
NPC1

NCSC
=M

and M > 1 because we know that CSC form the smallest
population inside the tumor. Therefore:

2

(
1− p

1 + β(NPC1
+NPC2

)

)
ωS > M(ωP + δP )

Knowing that
p

1 + β(NPC1
+NPC2

)
> 0.5 we deduced that

2

(
1− p

1 + β(NPC1
+NPC2

)

)
< 1

and so

ωS > 2

(
1− p

1 + β(NPC1
+NPC2

)

)
ωS > M(ωP + δP )

This means that ωS must be larger than to the sum of ωP and
δP .

As for Model 1 and Model 2 we substantially reduced the
search parameter space for the data fitting problem speeding
up the computation of the optimal vector a. Thus, the optimal
vector derived through the weighted least squares method

Fig. 10. Model 3: results of fitting data w.r.t. to cell count.

Fig. 11. Model 3: results of fitting data w.r.t. to CSC subpopulation
percentage.

is a = (p = 0.5080, ωS = 7.9711, ωP = 0.0123, δS =
0.0970, δP = 0.0007, δP2

= 0.0227, α = 1.0002 · 10−9, β =
4.3096 · 10−9, γ = 1.3921 · 10−5).

Figs. 10 and 11 represent the results of fitting data of tables
III(left) and III(right), respectively.

Afterwards, to evaluate the goodness of fit of Model 3, we
analyzed the residuals. As for for Model 1 and Model 2,
Figs. 12, representing the normal probability plot of the
residuals. states that residuals distribution is likely to be
normal. Moreover Kolmogorov-Smirnov test was applied on
the residual. We obtained a p-value equal to 0.51481 so that

Fig. 12. Model 2: normal probability plot of the residuals.



Fig. 13. Model 3: the evolution over the time interval T=[0,1500] of total
population, CSC, PC1 and PC2 subpopulations,respectively.

R2 SSR RMSE AIC

Model 1 0.9970 24.48 1.2774 17.43

Model 2 0.9971 25.39 1.2655 16.99

Model 3 0.9971 23.72 1.3017 18.71

TABLE IV
R2 , SSR, RMSE AND AIC VALUES ARE REPORTED FOR THE THREE

MODELS.

the null hypothesis cannot be rejected.

Finally, in Figure 13, we represented subpopulations evo-
lution over the time interval [0, 1500]. We noted that, ini-
tially, subpopulations oscillate, until reaching a stabilization.
However, this stabilization occurs at earlier times respect to
System1 and System2. Final total population value is around
1.1 · 106, CSC final percentage is very small, while PC1 and
PC2 final values are around 5 · 105 and 6 · 105, respectively.

V. COMPARING THE THREE NEW MODELS

In the previous section we showed that all the three systems
can be used to explain experimental data of tables III(left)
and III(right). Here, we investigate the R2, SSR, RMSE and
AIC values for the optimal set of parameters in three models.

Table IV shows R2, SSR, RMSE and AIC values for the
optimal set of parameters in the three models.

Among the three models, we observe that the best fit is the
third one. Indeed, it has the minimum SSR value. Moreover, it
has two feedbacks and, for this reason, it is the most versatile
in the description of the microenvironment effects, needing
only one more parameter compared to the other systems.
RMSE and AIC values are a little higher for Model 3 than
for the other models, because these coefficients also consider
the number of parameters involved. However, the difference is
neglected, so Model 3 is still preferable for its greater ability

to describe complex microenvironment effects. Moreover, we
noted in Fig. 10 that Model 3 better describes total population
stabilization in our experimental data, compared to Model 1
and Model 2 (see Figures 2 and 6).

VI. CONCLUSION AND FUTURE WORKS

Cancer is a complex system that can only be understood
through the integration of theory and experiments. The goal of
Mathematical Oncology is to describe processes in oncology
using the tools of mathematics.

In this paper, we proposed three new models which extend
the a mathematical model describing breast cancer cell growth
in [1] considering micro-environment effects on tumor growth.

All these three proposed models resulted able to describe
the experimental data quite well. Among them the Model 3
seems to give the best fit of the data. More precisely: (i) it
has the minimum SSR value, (ii) since it has two feedbacks,
it is more flexible to model the complex microenvironment
effects on CSC dynamics, having only 1 parameter more than
the other 2 versions.

As future work, we are considering to develop a model
that takes into account CSC variability among different cancer
cell populations. In this way, we would not be obliged to
do the preliminary manual work to align experimental data.
This model modification consists in introducing a new term
that modulates cell proliferation in accordance with CSC per-
centage. More precisely, cancer cells remain mainly quiescient
when CSCs are above a certain threshold.
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