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Abstract

Background: In recent years long non coding RNAs (lncRNAs) have been the subject of increasing interest. Thanks
to many recent functional studies, the existence of a large class of lncRNAs with potential regulatory functions is now
widely accepted. Although an increasing number of lncRNAs is being characterized and shown to be involved in
many biological processes, the functions of the vast majority lncRNA genes is still unknown. Therefore computational
methods able to take advantage of the increasing amount of publicly available data to predict lncRNA functions could
be very useful.

Results: Since coding genes are much better annotated than lncRNAs, we attempted to project known functional
information regarding proteins onto non coding genes using the guilt by association principle: if a gene shows an
expression profile that correlates with those of a set of coding genes involved in a given function, that gene is
probably involved in the same function. We computed gene coexpression for 30 human tissues and 9 vertebrates and
mined the resulting networks with a methodology inspired by the rank product algorithm used to identify differentially
expressed genes. Using different types of reference data we can predict putative new annotations for thousands of
lncRNAs and proteins, ranging from cellular localization to relevance for disease and cancer.

Conclusions: New function of coding genes and lncRNA can be profitably predicted using tissue specific
coexpression, as well as expression of orthologous genes in different species. The data are available for download and
through a user-friendly web interface at www.funcpred.com.
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Background
In recent years long non coding RNAs (lncRNAs) have
been the subject of increasing interest. Although some
lncRNAs such as Xist [1] and H19 [2] were discovered
decades ago, it was only recently established that mam-
malian genomes encode several thousands lncRNAs [3].
Their low sequence conservation across model organ-
isms and low expression levels have led some to postulate
that many lncRNAs could arise from low fidelity RNA
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polymerase activity, and that this spurious activity is of lit-
tle significance [4]. However, thanks to many recent func-
tional studies, the existence of a large class of lncRNAs
with potential regulatory function is now widely accepted
[5, 6]. Although an increasing number of lncRNAs
is being characterized and shown to be involved in many
physiological and pathological biological processes, the
function of the vast majority of lncRNA genes is still
unknown. There is therefore a need for tools that are
able to systematically infer a function for large numbers
of lncRNAs starting from currently available data such as
gene expression. Computational investigation of lncRNAs
function is challenging due to the fact that many lncRNA
do not contain conserved sequence motifs [3], which
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makes it difficult to infer potential functions of lncRNAs
based on their sequences alone. Coexpression relation-
ships represent an extremely rich source of information,
potentially relevant for functional annotation. Indeed, it
has been shown extensively that functionally interacting
genes tend to show similar expression profiles [7, 8] and
gene expression data were used in several works devoted
to lncRNA function prediction.More specifically Liao and
colleagues, starting from microarray expression profiles,
built a coding-non coding network which was then used
to infer probable functions for lncRNAs based on topo-
logical characteristics [9]. Another work by Guo et al.
developed a lncRNA function predictor that works by
integrating gene expression data and protein interaction
data [10]. Most recently, Jiang and colleagues [11] based
their strategy on expression correlation between lncRNAs
and protein-coding genes across several human tissues
without considering tissue specificity.
Individual genes of multicellular organisms can partic-

ipate in different transcriptional programs, operating at
scales as different as single-cell types, tissues, organs, body
regions or the entire organism.We and others have shown
in the past that systematic analysis of tissue-specific coex-
pression is a powerful strategy to dissect functional rela-
tionships among genes that emerge only in particular
tissues or organs [12]; to our knowledge this strategy has
never been applied to lncRNA fuctional prediction. More-
over, the probability for two genes to be functionally cor-
related is remarkably higher when they are coexpressed in
more than one species (conserved coexpression) [12, 13].
The GTEX consortium has made available a dataset of

about three thousands samples of human gene expres-
sion data in multiple tissues [14] while Necsulea and
coworkers [15] curated a collection of about two hun-
dred samples across 10 species. These data are obtained
with RNA-seq technologies that detect lncRNAs as well as
protein-codingmRNAs. Thus it is now possible to develop
methodologies able to perform functional annotation of
lncRNAs that take into account the tissue-specificity of
gene function and that integrate coexpression of ortholo-
gous genes in several species. In this paper we present a
novel methodology to perform in-silico functional anno-
tation of genes. In particular we aim to predict the func-
tions of lncRNAs on the basis of their coexpression with
known protein-coding genes in many tissues and species.

Methods
RNA-seq dataset
We used two RNA-seq datasets, the first to evaluate phy-
logenetically conserved coexpression, the second to evalu-
ate tissue-specific coexpression. The first dataset consists
of 185 RNA-seq samples across 10 species (human, chim-
panzee, gorilla, orangutan, macaque, mouse, opossum,
platypus, chicken and frog) and 8 organs (cortex or whole

brain, cerebellum, heart, kidney, liver, placenta, ovary and
testes) previously published by Necsulea et al. [16] . In
this dataset about 22000 protein-coding genes and 5400
lncRNAs are profiled. We downloaded lncRNA ortholo-
gous families and normalized gene expression levels for
lncRNAs and protein-coding genes from the supplemen-
tary material of [16]. The second dataset consists of 2923
RNA-seq samples collected by the GTEX consortium [14].
We used the more coarse-grained sample annotation pro-
vided to sort all the samples in 30 tissues. In this dataset
about 19500 protein-coding genes and 7000 lncRNA are
profiled.

Homology relations
To reconstruct homology relationships we used both
orthologous genes downloaded from ENSEMBL and
Necsulea et al.’s lncRNAs families. We also included one-
to-many homology relationships.

Gene annotation sources
Gene Ontology
We used two controlled vocabularies to annotate genes:
Gene Ontology (GO) [17] downloaded from ENSEMBL
and Disease Ontology (DO) [18]. We also make use of
literature-mined disease-gene associations fromDISEASE
[19]. For both GO and DO we calculated how many genes
were annotated for each term and then we used only
those terms that had between 4 and 1600 genes, discard-
ing the poorly informative and very generic terms like
“cytoplasm” and “metabolism” or terms too specific to be
suitable for our model. Finally, we also used the Generic
GO slim developed by GO Consortium [20].

MSigDB gene sets collections
We considered three collections of gene sets from
MSigDB [21]: 1) Hallmark (MSigDBh), that collect coher-
ently expressed signatures that represent well-defined bio-
logical states or processes 2) MSigDBc2, that collect the
curated gene sets from online pathway databases, pub-
lications in PubMed and knowledge of domain experts,
3) the oncogenic signatures collection MSigDBc6, defined
from microarray gene expression data from cancer gene
perturbations.

Functional prediction score
Given a set of RNAseq samples and the quantification of
gene expression on each sample, let P(a, b) be the Pearson
correlation coefficient of the expression profiles of the
genes a and b. In the following, we define coexpression
networks as the complete undirected networks that have
genes as nodes and whose links (a, b) are weighted using
P(a, b). Let R(a) be the list of P(a, b) computed against all
genes b keeping gene a fixed, sorted on the value of the
Pearson coefficient. The position of b in the R(a) list is the
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rank R(a, b), in the following we always use a normalized
rank, namely r(a, b) = R(a,b)

#R(a) where #R(a) is the length of
the list.
Given a gene a and a set of genes Gk annotated to some

keyword k, we computed the functional prediction score
(FPS) related to a and k as the logarithm of the geometric
mean of the ranks of all genes annotated to k in the ranked
list of a:

FPS(a,Gk) = 1
#Gk

∑

i∈Gk

log (r(a, i)) (1)

where #Gk is the number of gene annotated to k. This
score is inspired by the rank-product algorithm proposed
by Breitling and colleagues [22].
The Pearson correlation of two genes a and b is sym-

metric P(a, b) = P(b, a), on the contrary the rank of the
correlation is not symmetric: r(a, b) �= r(b, a). In the
context of regulatory network inference a mutual rank
transformation of the correlation has been proposed in
order to obtain a measure that maintains the proper-
ties of the rank but is symmetric. We evaluated different
procedures to transform the Pearson rank in a symmet-
ric measure: the geometric mean proposed by Obayashi
et al. [23], the standard average and the maximum of the

two different ranks. None of these transformations led to
significant improvements in prediction performance.

Identification and representation of GO terms typical of
lincRNA
We intended to identify predicted terms that are more
typical of lincRNAs (long intergenic non-coding RNA), a
subset of lncRNAs, than PCGs (or vice versa). For this
analysis we focused on lincRNAs to avoid bias that couls
be introduced if we considered together all lncRNAs since
they also include pseudogenes. For each GO term k we
ranked all genes g according to the FPS(g, k), then we
compared the ranks of lincRNAs and PCGs with the
Wilcoxon rank-sum test. To choose the 100 most typical
predicted term to be further analyzed we computed the
difference of the median rank-transformed FPS between
lincRNAs and PCGs, then we selected the lowest 100 as
lincRNAs-related and the best 100 as the PCG-related.We
used REVIGO [24] to summarize the predicted GO key-
word lists and to plot the Fig. 1. This tool uses a clustering
algorithm that relies on semantic similarity measures to
select a representative subset of the terms. The bubble
color saturation represents the absolute value of the dif-
ference between the median rank-transformed FPS of

Fig. 1 Summarized representation of predicted GO terms that are more typical of lincRNAs than PCGs and vice versa. a GO biological process terms
typical of lncRNAs; b GO cellular component terms typical of lncRNAs; c GO biological process terms typical of PCGs; d GO cellular component
terms typical of PCGs. Bubble color represents how much the term is specific for PCGs or lincRNAs (brighter is more specific); bubble size indicates the
frequency of the GO term in the whole GO database. Highly similar GO terms are linked by edges in the graph, where the line width indicates the
degree of similarity
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lincRNAs and the median rank-transformed FPS of PCGs
for that term. Highly similar GO terms are linked by edges
in the graph, where the line width indicates the degree
of similarity. Finally, bubble size is a measure of how
frequently the term appears in the whole GO database.

Validation on coding genes
In order to validate the performance of our method, we
first considered only genes already annotated with GO
vocabulary (those are all PCGs) and we performed a ROC
analysis. For each ontology term k a gene g is considered
positive if it is annotated to that term, and negative if it
is not. A ROC curve is computed based on this binary
classifications of all genes and the FPS. We adopted a
leave-one-out procedure: if g ∈ Gk , when computing
FPS(g, k) we do not use as usual Gk but we exclude g from
Gk and consider instead G′

k = Gk − {
g
}
. For all keywords

k the number of positive genes #Gk is much less than the
number of negatives, therefore in the ROC analysis we
considered not all the negative genes but, for each k inde-
pendently, only a randomly chosen subset of size #Gk , this
procedure is the same used by Guo et al. [10]. Due to the
hierarchical structure of the GO vocabulary, the GO key-
words associated to a gene are highly non-independent:
if a gene g is annotated with a certain keyword k then g
is also related to each keyword k′ that is an ancestor for
k. Since the ROC analysis requires independent observed
events, we derive from the standard GO a “non redun-
dant” version in which each gene is associated to only one
term.

Non redundant version of GO (GOnrBP)
First of all we chose only the keywords belonging to the
biological process ontology (BP), then for a given gene
g we discarded all keywords but the smallest keyword
k, i.e. most specific among those associated with g, pro-
vided that #Gk > 5. This procedure removes the depen-
dence between gene-function annotations that is due
to the hierarchical structure of GO: indeed in GOnrBP
Gk ∩ Gh = ∅ ∀k �= h.

Validation on lncRNA
Gene ontology
Starting from all the genes in lncRNAdb [25] we consid-
ered the genes that: a) have an ENSEMBL gene identifier
reported in lncrnadb version 2.0, b) are expressed in the
GTEx database, c) are annotated as lncRNA by Ensembl,
d) are annotated with a known function by lncrnadb.
The resulting set is composed by 37 genes. Each of those
genes was manually annotated with one term from the
generic GO slim developed by GO consortium starting
from the description reported in lncrnadb (Table 1). Then
we computed the FPSs for these 37 genes and all GO terms
using all GTEx samples together. We finally compared the

FPSs related to the selected GO keywords with all other
keywords in GO using the Wilcoxon rank-sum test.

Disease ontology
As before we manually annotated, this time to DO terms,
the lncRNA-disease associations collected in the LncRNA
disease database [26]. In this process we only took into
consideration those lncRNA genes that are both anno-
tated with some term in in LncRNAdisease and are con-
tained in Ensembl (see Additional file 1).

LncRNA implicated in cancer
We analyzed the lncRNA that are reported by Khurana
et al. [27] to carry oncogenic mutation in cancer. Among
those we selected only the ones that have an ENSEMBL
identifier and are expressed in the GTEx dataset
(MYCNUT, BRAFP1, PTENP1 and TUSC7). Using
FPSs computed on GTEx combined expression dataset
we computed, for each given function k reported in
MSigDBh, a Wilcoxon rank-sum statistics comparing{
FPS(g, k) ∀g ∈ {MYCNUT, BRAFP1, PTENP1, TUSC7}}
whit

{
FPS(g, h) ∀ g ∈ {MYCNUT, BRAFP1, PTENP1,

TUSC7} , ∀ h �= k}.
The Pvalue of the test measures the probability that, for

a given set of genes (composed by four genes in this case) a
certain keyword k ranks better than other keywords h for
these genes together.

Logistic model for tissue-specific evaluation
We have an observableO(g, k) for each gene-keyword pair
(g, k), O(g, k) = 1 if g ∈ Gk 0 otherwise. As predictors
we used FPSTS(g, k) computed on each of the 30 tissue-
specific coexpression networks (TS), plus FPSAS(g, k)
computed on the aggregate coexpression network.
Here we intended to demonstrate that FPSs computed

on tissue-specific networks can significantly improve the
functional predictions. Because of this we only focus on
genes expressed in all tissues and thus discard those genes
that are not expressed in one or more tissue.
Statistical evaluations of the models are guaranteed to

be correct only if the observations are independent. Due
to the hierarchical structure of GO this is not the case;
we therefore employed the custom-built GOnrBP version
described previously. However, we have observed no sig-
nificant difference in results when using GOnrBP or the
standard GO version.
As before we randomly down-sampled the negatives for

each k in order to have a balanced dataset. Overfitting is
not a concern since we are using only 32 parameters: the
intercept, the coefficients associated to 30 TS plus that
associated to AS and have more than 150,000 cases. The
area under the ROC curves (AUCs) is calculated using
the predicted probability resulting from the fitted models
as score.
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Table 1 The table displays a set of 37 genes that were manually
annotated with one term from the generic GO slim starting from
the functional description reported in lncRNAdb

ENSG GOslim ENSG GOslim

ENSG00000130600 GO:0009790 ENSG00000230590 GO:0000228

ENSG00000130600 GO:0040007 ENSG00000230590 GO:0005694

ENSG00000130600 GO:0000988 ENSG00000231265 GO:0048870

ENSG00000130600 GO:0006412 ENSG00000231265 GO:0016301

ENSG00000130600 GO:0008283 ENSG00000236790 GO:0048856

ENSG00000153363 GO:0008219 ENSG00000241684 GO:0048870

ENSG00000153363 GO:0040007 ENSG00000241684 GO:0000988

ENSG00000176840 GO:0008219 ENSG00000241743 GO:0003677

ENSG00000177410 GO:0040007 ENSG00000241743 GO:0000228

ENSG00000177410 GO:0008283 ENSG00000241743 GO:0005694

ENSG00000177410 GO:0030154 ENSG00000244306 GO:0030154

ENSG00000204092 GO:0008283 ENSG00000244306 GO:0048870

ENSG00000204092 GO:0007049 ENSG00000244306 GO:0006397

ENSG00000204092 GO:0003723 ENSG00000244306 GO:0007165

ENSG00000214548 GO:0040007 ENSG00000245532 GO:0030674

ENSG00000214548 GO:0021700 ENSG00000245532 GO:0005634

ENSG00000214548 GO:0030154 ENSG00000245532 GO:0043234

ENSG00000214548 GO:0000988 ENSG00000245532 GO:0005198

ENSG00000214548 GO:0006259 ENSG00000245532 GO:0065003

ENSG00000223403 GO:0000988 ENSG00000245910 GO:0006412

ENSG00000223403 GO:0009790 ENSG00000245910 GO:0005840

ENSG00000223403 GO:0040007 ENSG00000247556 GO:0009790

ENSG00000223403 GO:0048856 ENSG00000247556 GO:0048646

ENSG00000223573 GO:0030154 ENSG00000247844 GO:0008283

ENSG00000223573 GO:0006397 ENSG00000247844 GO:0048870

ENSG00000223573 GO:0003723 ENSG00000248323 GO:0008283

ENSG00000223573 GO:0003729 ENSG00000249669 GO:0030154

ENSG00000223850 GO:0008283 ENSG00000249669 GO:0000988

ENSG00000223850 GO:0006397 ENSG00000249859 GO:0005578

ENSG00000224177 GO:0005856 ENSG00000249859 GO:0008283

ENSG00000224177 GO:0005198 ENSG00000249859 GO:0008219

ENSG00000225127 GO:0040007 ENSG00000249859 GO:0030154

ENSG00000225127 GO:0021700 ENSG00000250366 GO:0009790

ENSG00000225407 GO:0009790 ENSG00000250366 GO:0048856

ENSG00000225407 GO:0000988 ENSG00000251002 GO:0006259

ENSG00000225407 GO:0005634 ENSG00000251002 GO:0005634

ENSG00000225407 GO:0000228 ENSG00000251002 GO:0002376

ENSG00000225407 GO:0051276 ENSG00000251164 GO:0008283

ENSG00000225506 GO:0030154 ENSG00000253352 GO:0008219

ENSG00000225783 GO:0006397 ENSG00000253352 GO:0000988

ENSG00000225783 GO:0030154 ENSG00000253352 GO:0000228

ENSG00000225783 GO:0048856 ENSG00000253438 GO:0006950

ENSG00000225783 GO:0003723 ENSG00000253438 GO:0006412

Table 1 The table displays a set of 37 genes that were manually
annotated with one term from the generic GO slim starting from
the functional description reported in lncRNAdb (Continued)

ENSG00000225783 GO:0030154 ENSG00000253438 GO:0006259

ENSG00000229140 GO:0008283 ENSG00000255733 GO:0002376

ENSG00000229140 GO:0030154 ENSG00000258399 GO:0009790

ENSG00000229140 GO:0008219 ENSG00000258399 GO:0000988

ENSG00000229807 GO:0030234 ENSG00000258399 GO:0000228

ENSG00000229807 GO:0003677 ENSG00000258609 GO:0030154

ENSG00000229807 GO:0000228 ENSG00000258609 GO:0008219

ENSG00000229807 GO:0005694

Comparison with other methods
We perform a ROC analysis comparing our approach with
an enrichment approach based on Fisher exact test [11].
Jiang and colleagues used a dataset consisting of around
60 samples obtained from 22 human tissues and 3 human
cell-lines; since they do not use phylogenetic conserva-
tion in the comparison we used only human samples. The
dataset that we use is statistically richer (about 3000 sam-
ples in 30 tissues) thus, for a safer comparison, we applied
the same procedure described by Jiang et al. to our dataset.
Moreover they apply a fixed cutoff of 0.9 on Pearson coef-
ficient: this cutoff is probably optimized for the dataset
they used and possibly not optimal for the new one,
thus we performed the comparison using different cut-
offs ranging from 0.9 to 0.2. We then applied a leave one
out and down-sampling procedure for negative gene-GO
associations as described in the previous section. Finally
we compared our FPS(g, k) with the enrichment E(g, k)
measured as

E(g, k) = xN
nM

were N is the total number of annotated genes whose
expression is detected in at least one sample, M = #G′

k is
the number of such genes annotated to the given function,
n is the number of genes that show a correlation above
the cutoff (connected genes in the unweighted coexpres-
sion network) and x is the number of connected genes
annotated to the function. In the same scenario we also
evaluated as a score the p-value of Fisher exact test and we
have not seen significant differences in performance. We
also took into account the fact that the number of genes
associated to GO keywords can vary from few units to
thousands. As before we produced 100 random samples
taking only one gene at random (positive or negative) for
each keyword in each sample. With this bootstrap pro-
cedure we also empirically evaluated the variance of the
ROC (see Fig. 2).
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Fig. 2 ROC curve comparing the performance of our approach (rank
prod) and the standard enrichment method (Fisher). Different cutoffs
are applied to the Pearson correlation that measures the gene
coexpression. The little box is a zoom of the region of small FPS.
Blurred thick curves result from the overlap of semi-transparent curves
derived by 100 random sampling for each cutoff and our method.
Dark thin line result from the averaging of such data

Results
We computed FPSs using together all samples collected
by the GTEx consortium. /textcolorredOur approach can
predict the function of any kind of expressed gene, in
particular we focused on two important gene biotypes,
namely protein coding genes (PCGs) and long intergenic
non coding RNA genes (lincRNAs), and observed that the
annotations we predicted for lincRNAs genes and PCGs
are different. In fact 88% of GO biological process terms
and 90% of the GO cellular component show different
FPSs for the two gene classes (Wilcoxon rank-sum test
Pvalue < 0.05 after multiple testing correction). Then
we looked at the 100 cellular localization that are pre-
dicted to be more typical of lincRNAs than PCGs and
we found terms such as: DNA bindig complex, DNA
packaging complex, pole plasm, P granule. This is con-
sistent with the fact that many lincRNA are probably
involved in gene regulation and chromatin remodeling.
We also found somewhat unexpected localization terms
as voltage-gated calcium channel complex or axonemal
dynein complex. Looking at the biological processes pre-
dicted to be typical of lincRNA we found as expected
many differentiation and development processes (e.g. pos-
itive regulation of stem cell differentiation, hypothalamus
development) or regulatory processes (e.g. DNAmethyla-
tion involved in gamete generation, piRNA metabolism)
but also some unexpected processes like cell recognition

and sperm motility (see Fig. 1). Predicted annotation
data for PCGs, lincRNA and genes belonging to other
classes of lncRNA are available through our web interface
(http://www.funcpred.com).

Validation on coding genes
Tissue specific coexpression
Beside FPS computed on all GTEx samples together, we
considered FPSs computed on tissue-specific coexpres-
sion networks that consider separately samples coming
from different tissues. To investigate if the integration of
single-tissue FPS and all-sample FPS can improve sub-
stantially the performance of our algorithm, we built
multivariate logistic models that use 30 different tissue-
specific predictors (TSs) plus one predictor coming from
all tissues together (AS). For each gene g and keyword k we
construct a response variable equal to 1 if g is associated
to k, 0 otherwise. We fit four types of models, depending
on the considered predictors:

1. one single TS (univariate),
2. AS only (univariate),
3. two predictors (AS plus one of the TSs, bivariate),
4. AS plus all TSs (full model, multivariate).

As reported in Table 2 each TS alone is a significant
predictor of gene functions and, as expected, AS alone
performs better than any other TS. Considering mod-
els of type 3 we can see that, taken separately, each TS
but one improves significantly the prediction when inte-
grated with AS (Pvalue < 1e − 16). The tissue that does
not give further information with respect to all-sample
is salivary gland, which is also the tissue with the lowest
number of sample in the GTEx dataset (6 samples). Fit-
ting a model with all the predictors together we observe
an AUC of 0.85, compared to 0.77 that we obtain using
only the AS predictor. The full model is therefore better
than anymodel of type 3 but not all the TS have significant
log(odds). Performing sequential analysis of deviance the
model does not significantly improve after the inclusion of
the best 17 TS as predictors (Table 3).

Validation on lncRNA genes
Gene ontology
Due to lack of structured annotation (like GO or DO)
for lncRNA, to validate our approach in this case we are
forced to manually annotate them. Starting from descrip-
tive functions reported in lncrnadb, and associating to
these description GO terms, we found that the selected
GO keywords rank consistently better than all the others
keywords (Pvalue < 9E − 06 Wilcoxon rank-sum test).

Disease ontology
Like in the previous case, when considering lncRNA-DO
term associations from lncRNADisease we found that the

http://www.funcpred.com
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Table 2 Log(ods) and relative Pvalues associated to different tissues in logistic models

Univariate Bivariate Multivariate

Predictor Samples Log(odds) AUC Pvalue Log(odds) AUC Pvalue Log(odds) Pvalue

Adipose_Tissue 159 –3.9 0.75 <1e-256 –1.7 0.8 2.4e-214 –0.69 1e-11

Adrenal_Gland 52 –3.6 0.72 <1e-256 –1.7 0.79 5.7e-149 –0.49 1.2e-07

Bladder 11 –1.9 0.65 7.8e-206 –0.59 0.77 3.1e-24 –0.05 0.53

Blood 245 –3.4 0.75 <1e-256 –1.2 0.79 2.6e-115 –0.33 0.00018

Blood_Vessel 263 –4.2 0.75 <1e-256 –1.6 0.8 2.5e-198 –0.18 0.11

Brain 357 –3.4 0.72 <1e-256 –1.6 0.79 3.5e-108 –0.32 0.00029

Breast 66 –3.2 0.71 <1e-256 –1.2 0.79 5.5e-131 –0.03 0.76

Cervix_Uteri 9 –2.5 0.65 5.8e-290 –0.85 0.78 4.1e-42 –0.16 0.1

Colon 74 –3.4 0.71 <1e-256 –1.2 0.79 2.3e-124 –0.25 0.018

Esophagus 227 –3.8 0.74 <1e-256 –1.4 0.79 1.1e-155 –0.29 0.0073

Fallopian_Tube 6 –1.8 0.62 3.1e-182 –0.76 0.77 1e-16 –0.01 0.93

Heart 133 –4.1 0.78 <1e-256 –1.7 0.81 8.5e-298 –0.64 1.7e-10

Kidney 8 –2.2 0.74 <1e-256 –0.89 0.79 1.7e-119 –0.47 5.6e-16

Liver 34 –3.3 0.73 <1e-256 –1.4 0.79 8.5e-166 –0.42 1.3e-06

Lung 133 –3.8 0.74 <1e-256 –1.5 0.79 2.4e-188 –0.28 0.0061

Muscle 157 –3.9 0.78 <1e-256 –1.7 0.81 2.4e-294 –0.98 2.6e-27

Nerve 114 –3.7 0.72 <1e-256 –1.4 0.79 4.2e-148 0.12 0.29

Ovary 35 –2.8 0.68 <1e-256 –1.2 0.78 3.6e-83 –0.08 0.4

Pancreas 65 –3.8 0.79 <1e-256 –2 0.82 <1e-256 –1.1 2.5e-43

Pituitary 22 –1.8 0.66 7.3e-261 –0.69 0.78 4.1e-47 –0.08 0.33

Prostate 42 –3.1 0.7 <1e-256 –1.1 0.78 1.9e-92 0.04 0.7

Salivary_Gland 5 –0.46 0.6 2.9e-27 0.09 0.77 0.21 0.37 2.3e-08

Skin 322 –3.7 0.72 <1e-256 –1.6 0.79 1.5e-129 –0.57 7.4e-10

Small_Intestine 17 –2.5 0.66 <1e-256 –0.81 0.78 6.6e-40 –0.03 0.76

Spleen 34 –2.7 0.67 <1e-256 –1 0.78 5.4e-72 0.03 0.7

Stomach 81 –3.7 0.74 <1e-256 –1.6 0.79 1e-152 –0.23 0.028

Testis 60 –3 0.67 <1e-256 –1.2 0.78 6.2e-78 –0.35 0.00012

Thyroid 120 –3.6 0.72 <1e-256 –1.4 0.79 1.1e-140 0.19 0.071

Uterus 36 –2.7 0.68 <1e-256 –0.99 0.78 9.1e-70 0.06 0.54

Vagina 34 –3 0.7 <1e-256 –1.2 0.78 1.4e-93 0.12 0.25

AS 2921 –3.7 0.77 <1e-256 –1.2 5.9e-51

Bivariate models include two predictors: the indicated TS plus AS, the AUC is relative to the entire model. The multivariate model include all the predictors, in this case the
AUC is 0.85

selected keywords ranked consistently better than all oth-
ers keywords; here however the Pvalue is only marginally
significant (Pvalue < 0.02 Wilcoxon rank-sum test). Both
here and in the GO validation on lncRNA genes reported
above, due to the small number of available lncRNA anno-
tations, the results might not be as convincing as the one
we perform with a similar method on the much larger set
of PCG annotations. Notwithstanding these limitations,
we believe it is interesting to assess in a quantitative way
the performance of our algorithm directly on on lncRNA
genes.

LncRNA implicated in cancer
We analyzed four lncRNA implicated in cancer
(MYCNUT, BRAFP1, PTENP1 and TUSC7) as discussed
in a recent review by Khurana et al. [27]. We highlighted
the MSigDBh annotations that rank consistently at the
top for all four genes. None of these functions has a sig-
nificant Pvalue by itself after multiple testing correction.
Nevertheless, looking at the best predictions, we found
many functions that are relevant in cancer such as “G2-M
checkpoint”, “DNA repair’, “WNT beta Catenin signaling”
[28], “E2F Targets” [29] (see Table 4).
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Table 3 Sequential analysis of deviance (anova): it sequentially
compares the smaller model with the next more complex model
by adding one variable (TS) in each step

Predictor Df Deviance Resid. Df Resid. Dev Pr(>Chi)

All tissues 1 5534.7 23920 24919 < 2.2e-16***

Pancreas 1 1694.8 23919 23224 < 2.2e-16***

Muscle 1 617.6 23918 22606 < 2.2e-16 ***

Kidney 1 131.7 23917 22475 < 2.2e-16***

Adipose Tissue 1 208.0 23916 22267 < 2.2e-16***

Heart 1 124.2 23915 22142 < 2.2e-16***

Skin 1 79.4 23914 22063 < 2.2e-16***

Salivary Gland 1 27.6 23913 22035 1.476e-07***

Adrenal Gland 1 54.2 23912 21981 1.844e-13***

Liver 1 38.0 23911 21943 7.127e-10 ***

Testis 1 18.6 23910 21925 1.582e-05***

Blood 1 35.0 23909 21890 3.280e-09***

Brain 1 14.5 23908 21875 0.0001425***

Lung 1 12.6 23907 21862 0.0003821***

Esophagus 1 19.8 23906 21843 8.546e-06***

Colon 1 12.9 23905 21830 0.0003299***

Stomach 1 5.5 23904 21824 0.0185580*

Thyroid 1 3.2 23903 21821 0.0756208 .

Cervix Uteri 1 2.0 23902 21819 0.1569939

Blood Vessel 1 2.1 23901 21817 0.1460208

Vagina 1 1.2 23900 21816 0.2668693

Nerve 1 1.0 23899 21815 0.3103205

Pituitary 1 1.0 23898 21814 0.3151511

Ovary 1 0.6 23897 21813 0.4379597

Bladder 1 0.3 23896 21813 0.5573609

Uterus 1 0.3 23895 21812 0.5560578

Prostate 1 0.2 23894 21812 0.6973397

Spleen 1 0.1 23893 21812 0.7249901

Small Intestine 1 0.1 23892 21812 0.7569913

Breast 1 0.1 23891 21812 0.7576411

Fallopian Tube 1 0.0 23890 21812 0.9245252

Each of those comparisons is done via a likelihood ratio test. The model does not
significantly improve after the inclusion of the best 17 TS as predictors (Signif. codes:
0 ‘***’ 0.001 ‘*’ 0.05 ‘.’ 0.1 ‘ ’1)

Integration of coexpression of orthologous genes
To evaluate to what extent the gene expression in species
other than human can improve functional prediction of
human genes we computed FPSs for GO functions and
all orthologous genes in 9 species using the Necsulea
et al. gene expression dataset. Then (as before) we fit 9
bivariate logistic models that consider AS plus the data
coming from one other species. We also fitted an analo-
gous model that integrates the AS dataset from GTEx and
the human data from Necsulea et al. [16]. As reported in

Table 4 Function predicted for lncRNA implicated in cancer. Ten
best MSigBDh functions are reported, none of the Pvalues
(Wilcoxon rank sum test) is significant per se after multiple
testing correction

MSigBDh functions Raw Pvalue

E2F TARGETS 0.0029

G2M CHECKPOINT 0.0036

DNA REPAIR 0.0055

MITOTIC SPINDLE 0.006

SPERMATOGENESIS 0.0067

WNT BETA CATENIN SIGNALING 0.035

MYC TARGETS V1 0.044

HEME METABOLISM 0.093

UNFOLDED PROTEIN RESPONSE 0.13

UV RESPONSE UP 0.13

Table 5, taken separately, each species (including homo
sapiens) improves significantly the prediction when inte-
grated with AS. It as to be noted that the bigger is the
phylogenetic distance of a certain species from human, the
lesser is the number of genes that can be considered since
they have orthologs it that species.

Comparison with other methods
Different computational approaches have been used for
lncRNA functional predictions. Some of them rely on
micro-array datasets that are biased towards the detec-
tion of protein coding genes and thus can annotate only
the small fraction of lncRNA that are spotted on the array
[9]. Others can infer novel annotation only for lncRNAs
that are already annotated to some function [30]. The
integration of other sources of information like protein-
protein interactions [10] can be useful but we would like
to show that our method is well suited to mine gene
co-expression networks in order to perform functional
prediction; we therefore choose to compare our work to
the most recent similar effort by Jiang and colleagues:
lncRNA2function [11]. The authors used a well estab-
lished methodology: given the expression profile of a gene
of interest, they perform an enrichment analysis of the
genes whose expression profiles show a Pearson corre-
lation coefficient above a fixed cutoff; the enrichment is
evaluated through a Fisher exact test. The Fig. 2 shows
ROC curves for lncRNA2function using different cut-
offs and our approach considering only the AS predictor
(without integrating tissue specific predictors or phyloge-
netic conservation). Since lncRNA2function is a cutoff-
based approach not all the GO keyword can be scored for
each gene, this is reflected in the fact that the ROC curve
in this case does not cover all the range of false positive
rate (FPR) but stops at a certain point that depends on
the chosen cutoff. The global AUC of lncRNA2function



The Author(s) BMC Bioinformatics 2017, 18(Suppl 5):144 Page 37 of 65

Table 5 Log(ods) and relative Pvalues associated to different single species (SSs) in logistic models

Univariate Bivariate Multivariate

Predictor Samples Log(odds) AUC Pvalue Log(odds) AUC Pvalue Log(odds) Pvalue

ggallus 17 –2.6 0.67 2.2e–217 –1.9 0.72 5.9e–106 –1.3 1.1e–51

ggorilla 12 –2.9 0.65 3.7e–162 –0.99 0.78 4e–19 –0.0092 0.95

hsapiens 59 –4.3 0.7 1.4e–300 –1.9 0.74 7.3e–54 –1.7 2.6e–31

mdomestica 20 –3.1 0.68 1.5e–225 –1.8 0.73 1.2e–77 –1 3.3e–23

mmulatta 14 –2.7 0.65 1e–175 –1.1 0.8 2.1e–25 0.38 0.002

mmusculus 49 –4 0.69 6.4e–275 –2.1 0.78 1.9e–74 –1.4 1.2e–24

oanatinus 19 –2.9 0.68 2.5e–229 –1.9 0.78 3.9e–92 –1.4 1.3e–46

pabelii 10 –2.8 0.64 3.7e–142 –1.2 0.81 1.7e–27 –0.53 2.2e–05

ptroglodytes 28 –3.1 0.67 1.5e–204 –1.2 0.77 1.6e–27 –0.36 0.01

xtropicalis 13 –2.7 0.65 5.5e–176 –1.8 0.78 4.4e–79 –1.5 5.3e–56

Bivariate models include two predictors: the indicated species plus AS. Note that AS and SSs derive from different expression datasets, GTEx and Necsulea respectively. The
bivariate model that include hsapiens (from Necsulea) and AS shows that the contribute of hsapiens to the prediction is significant even if derive from the same specie of AS.
The multivariate model consider all SSs but not AS, the AUC in this case is 0.77, the same AUC that we obtain with AS alone

increases if the cutoff decrease. If we consider only the
region of false positive rate below 0.1 (usually the most
interesting one) the partial AUC shows a maximum for
a cutoff around 0.5 or 0.6. Our method outperforms the
standard enrichment approach in the entire FPS range.

Discussion
Our validation procedure on coding genes confirms the
predictive power of the guilt-by-association principle.
We assumed that it could be extended to lncRNAs and
that the abundant functional annotation data available
on protein-coding genes could be projected on lncR-
NAs, using gene networks built upon gene expression.
This assumption will be proven extensively only when
the functions of a reasonable fraction of lncRNAs will
be known and well organized in systems such as GO or
MSigDB. Nevertheless, by manual curation of lncRNA
functions described in lncrnadb, lncRNADisease database
and reviews we have shown that our approach is indeed
promising.
Our method does not perform equally well for every

source of information, for example it appears to work bet-
ter with GO and worse with DO. More work is needed
in order to investigate this fact but a contributing factor
might certainly be the more abstract and complex nature
of information contained in DO annotations with respect
to GO terms.
Even considering only genes conserved in all species

and fitting a multivariate model that evaluates all species
together, we found that all species but gorilla contribute
significantly. However, since we have four primates in
the database, it is not surprising that the information
carried by one of them is recapitulated by the others
together, leading to not significant log(odds) for that
species.

As expected, we found that as the number of sam-
ples considered increases the prediction performance
improves; this is even more true if we consider not only all
samples together but we also integrate information about
tissue specificity. From this point of view it is important
to increase the number of samples but also their diver-
sity in terms of tissue of origin while considering them
separately.
LncRNAs tend to be less conserved than PGCs, however

nowadays more and more transcriptomic data are becom-
ing available, even for species closely related to humans
like primates, in which many lncRNA have orthologs. The
approachwe propose allows to exploit this data to perform
lncRNA functional prediction.

Conclusions
We developed a methodology that uses gene expression
data obtained from different tissues or species to predict
the function of both protein coding genes (PCGs) and
lncRNAs. The algorithm is based on the guilt by associ-
ation principle: if a gene shows an expression profile that
correlates with those of a set of genes involved in a given
function, that gene is probably involved in the same func-
tion. Our approach needs a source of previous knowledge
in the form of gene sets, each one associated to a key-
word (e.g. GO annotations). Since coding genes are much
better annotated than lncRNAs, we aim to project known
functional information regarding PCGs onto lncRNAs.
We propose a threshold-free algorithm (Fig. 3) able to
evaluate the strength of a putative association between
any gene and any keyword. It use a “gene set versus ranked
list” approach that was first introduced in expression anal-
ysis through the Gene Set Enrichment Analysis (GSEA)
algorithm [21]. Usually in this kind of analysis the ranked
list of genes derive from a differential comparison of the
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Fig. 3 Schematic workflow of our annotation algorithm. The correlation rank (CR) among tissue- or species-specific expression profiles is used to
generate complete weighted single-tissue or single-species gene networks (STN or SSN). Previously known functional annotations linked to human
genes are then used along with our gene networks to compute a functional prediction score (FPS) between each gene and every annotation term;
in the case of SSN it is necessary to consider homology relations between human genes and those of the considered species. The information is
then combined using logistic models. The models gives a list of predictions as output; each one consists of a score associated to a gene id and an
ontology term

expression in two conditions, instead we use gene coex-
pressionmeasured in many tissues or species and produce
many ranked lists, one for each expressed gene. Given a
gene of interest the algorithm computes a functional pre-
diction score (FPS) for each annotation keyword. The FPS
measures the probability that a gene is associated with a
keyword. Thanks to our cutoff-free algorithm, given a pro-
tein coding or lncRNA gene, we are able to evaluate all
functions reported by several annotation sources in dif-
ferent tissues and species. Moreover, we can also query
the system with a specific annotation keyword in order to
obtain a ranked list of lncRNAs or PCGs that are most
relevant for that term.
These analyses can be performed using our user-

friendly web interface at http://www.funcpred.com/.

Additional file

Additional file 1: Disease Ontology manual annotations. Gene-disease
annotations obtained from lncRNADisease database were manually
annotated to DO terms. Only lncRNA genes also contained in Ensembl are
considered. (CSV 18 kb)
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