
Modelling and evaluation of a Control Room application

Elvio Gilberto Amparore1, Susanna Donatelli1, and Elisa Landini2

1 Dipartimento di Informatica, Università di Torino, Torino, Italy
{amparore, donatelli}@di.unito.it

2 RE:Lab S.r.l. , Reggio Emilia, Italy
elisa.landini@re-lab.it

Abstract. This application paper describes the study of a control room system
that has been performed inside the EU Artemis project HoliDes. The control room
object of the study is for an Italian operator in gas energy distribution. Customers
call the control room of the energy operator to signal malfunctioning of gas dis-
tribution and/or of gas apparatus. Upon a call the control room operators assign a
technician delegated to physically reach the intervention site and make it, in first
place, secure, and, in second place, back to normal operating condition. Because
of the safety issues inherently associated with the gas distribution, the Italian Reg-
ulatory Authority for Electricity Gas and Water has set a service level agreement
(SLA) requirement that states that an operator should reach the client site in less
than 60 minutes in 95% of the times.
This paper describes the Petri net models that have been used to assess what
is the load of calls that can be dealt with without violating the SLA, and what
type of conditions make the system in a critical state. Petri nets considered are
colored stochastic Petri Nets with and without deterministic and generally dis-
tributed transitions. In modelling terms the main issue that has been faced is that
of adequately represents the geographical distribution of calls and technicians,
while the main issue for the computation of the the performance indicator has
been the SLA assessment, that requires a passage-time computation, an index
that is not widely available in Petri net tools.

1 Introduction

Energy network surveillance systems are important services for the maintenance of
safety-critical infrastructures. In this paper we consider the case of a utility company
operating in Italy which, among other businesses, controls a part of the gas distribu-
tion network. Problems in this network are treated with great urgency, since a gas leak
could easily result in explosions and other dangerous outcomes. For this reason, the
Italian Regulatory Authority for Electricity Gas and Water (AEEG) requires that com-
pany treating gas networks should have an Emergency Call Center (ECC) available
h24 subject to the additional constraint that at least 95% of the time a client reports
a problem, a company technician should be on site in less than 1 hour. The company
addresses this requirement by deploying an extensive network of company technicians
distributed all over the service area, and keeps track of each intervention in a detailed
log, for inspections and for planning the human resource allocation.

This cases study stems from our work with the utility company and RE:Lab in-
side the EU-funded Artemis project HoliDes. RE:Lab is an italian SME, located in
Reggio Emilia devoted to human and machine interfaces. The project main aim is to
study adaptive behaviour of cooperative systems, and in the desire to make the assign-
ment of technicians more adaptive to the environment. For the HoliDes project RE:Lab
has developed a prototype interface for the management of the intervention list by the
field technicians. Technicians are equipped with a hand-held device with a GPS sensor,
which helps the control room in selecting the nearest (free) technician to intervene. We
have worked with RE:Lab to understand and support their choice of the nearest techni-
cian, and to identify the critical load over which it is not possible to respect the AEEG
constraint without calling additional technicians from other areas.

Modelling in control rooms: literature We have found limited literature that address
the problem of complying strict SLA requirement for emergency call centers. The work
in [20] provides a good overview of the typical problematics that emergency control
planning needs to address, and the amount of support a simulation tool can provide.
The work in [17] addresses the problem of determine the critical load conditions of a
emergency call center by using computer simulations, using a multi-agent system. The
work in [24] considers the performance and availability measures for an emergency call
center with a look at the cost optimization, but no need for strict SLA requirement is
present.

In this paper we present a model for the evaluation of the AEEG SLA based on Gen-
eralized Stochastic Petri Nets (GSPN) [22] and Stochastic Well-formed Nets (SWN) [13]:
GSPN are P/T Petri nets in which transition duration is either immediate or exponen-
tially distributed, while SWN are their colored counter-part. We shall also use Deter-
ministic Stochastic Petri nets (DSPN) [1] and the stochastic logic CSLTA [16]. Often
we shall use the non-Markovian extensions of GSPN and SWN in which distributions
can assume any shape.

The paper is organized as follows: Section 2 states the problem being addressed:
the control room functioning and the objective of this study; Section 3 discusses the
modelling problems encountered and how they have been solved; Section 4 presents a
first model of the control room, that is the basis for the definition , in Section 5, of the
setting of the CSL computation. In Section 6 the SLA is studied using a model checker
for the CSLTA stochastic logic, while Section 7 addresses the problem of identifying the
critical load conditions under which the system cannot guarantee the SLA, done using
stochastic simulations. Section 8 concludes the paper.

Reproducibility. All models used for the analysis are available at www.di.unito.it/
~amparore/ATPN17-models.zip. The data from the gas energy operator that have been
used to set the timing of the models are instead not available as they contain sensible
data.

Acknowledgements. This research was supported by the Artemis EU project HoliDes
(grant no. 332933). The goal of the HoliDes project is the improvement of adaptive
systems where human and machines operate together to guarantee critical goals.

2 The Control Room problem

This paper presents an application case study centered around the problem of human
resource allocation of an utility company. The company manages the gas distribution
network, and has many logical units (areas) for each cluster of municipalities. The com-
pany furtherly subdivides an area into zones. Each area has a dedicated control room
that takes care of the incoming calls made by the customers, which mainly concern
critical problems related to the gas network (malfunctions, leakages, gas odour in the
air, etc...). Commercial assistance is done by a separate call center, to reduce the load.
We mainly focus on the Reggio Emilia district, which groups together 42 municipali-
ties, and has an area of 2291 km2 and a population of 531K inhabitants. That area is
subdivided into four zones: North, East, West and South.

Control room description. There are one or more operators in the control room that deal
with incoming calls. Sometimes, calls are not related to gas problem, and are therefore
diverted to the other call center. When a client calls the control room to report a gas
problem, the control room operator opens a ticket and transmits the assistance request
to a group of company technicians (mainly plumbers) to reach the client site and in-
spect the problem. Each area has an area supervisor (reference technician) that receives
the control room transmission and either intervenes directly, or redirects the request to
another company technician. Each task of dealing with the identified problem is split
in two subtasks: a securing subtask followed by a repairing subtask. The first one
consists in reaching the client site and removing the direct cause of the problem (like
closing a valve to avoid a gas leakage). An idle technician assigned to a securing task
has to reach the location, analyse the problem and make the site secure. Typically, the
securing task is done quickly. The second task is the actual fixing, and may require
longer times. The second one may be missing if there is no repair to be done, or if
the repair can be postponed. Usually, if there are other urgent calls, the repair task is
assigned to a separate technician, and is done later.

Service Level Agreement. The period of time from the instant in which the call is an-
swered until a technician reaches the location for which the call has been placed is
named intervention time. The Italian Regulatory Authority for Electricity Gas and Wa-
ter requires that in 95% of the cases the intervention time is less than 1 hour, otherwise
the company will incur in a fine. The company takes accurate logs of each ticket, with
timings from the client call to the closing of the intervention.

Task assignment policy. In the current assignment protocol, technicians are pre-assigned
to zones (and we can speak of his zone), but they may occasionally intervene on prob-
lems in other zones. Therefore, a ticket of a problem in a zone is preferentially assigned
to the zone technician. We call this assignZone policy. If the zone technician is already
busy when a new call arrives, then the call is diverted to the area responsible that may
decide to assign the ticket to a technician of another zone in the same area (but not
outside the boundary of the area) The policy of calling a technician to intervene in a
zone different from his zone is subject to a different consideration: When the travelling
time is reasonable, we call the assignment policy assignNextTo, otherwise we call it as-
signNonConvenient. Since the area is quite large it is not always possible to ensure the
1 hour requirement by allocating any technician to arbitrary calls. The policy has been

modified recently by the company RE:Lab with to support of precise localization of the
tehnicians using GPS-tracking hand-held devices. The devices cover the transmission
protocol using a dedicated GUI.

The problem being verified. The goal of the studied system is to first define a model
whose behaviour fits the empirical data provided by the company logs. Given the model,
it is then of interest to determine how the system behaves in critical situations: what is
the maximum load capacity of the system can support with a given, fixed amount, of
technicians? What conditions determine the possibility to respect the SLA?

We performed this analysis together with RE:Lab that was in charge of building the
new technician GUIs over the smart phones. The data that we had available for model
validation was limited (8 weeks of operations with recorded info like intervention site,
time of arrival on the call, time of arrival on-site) and we did not have access to the
record of the contracts, to know the geographical distribution of the Clients.

3 Modelling issues

In this section we describe the model of the interventions planned by the control room.
We use a continuous stochastic approach, with Generalized Stochastic Petri Nets (GSPN)
[22]. In particular, we are interested in making distinctions between tokens of the net,
i.e. we use Stochastic Well-formed Nets (SWN) [13] as the modeling formalism. All
nets have been created and solved with the GreatSPN tool [3], unless otherwise indi-
cated.

The system is decomposed into multiple logical blocks:

CG: calls’ generation. A subsystem of the calls that reach the control room (calls dis-
tribution in time and in the geographical space)

CR: Control room. A subsystem of the control room operators, that receive the client
calls and open new tickets.

TP: Technician assignment protocol. A subsystem of the protocol that assigns tech-
nicians to open tickets

TA: Technician activity. A subsystem modelling the activity of each technician, i.e.
reaching the target site and securing the gas distribution network.

Since we have had assurance from RE:Lab colleagues that the control room is never
a bottleneck of the system, the model of the CR subsystem is reduced to a minimum
and we assume that all call lead to an assignment of a technician while in reality many
calls are inappropriate and are discarded. Since the goal of the study is to compute the
SLA satisfaction, and since SLA satisfaction is computed only for calls that lead to
an intervention, assuming that all calls lead to a technician intervention is adequate.
Considering the simplicity of the CR subsystem, its behaviour has been included into
the model of the CG subsystem.

Modelling by subsystems is usually a good approach, but there are issues that are
common to the whole model, in particular it is necessary to decide whether or not
to manage the identities of the clients and of the technicians and how to manage the
physical locations of the calls.

Modelling clients. In the SLA objective of the study there is no notion of specific
client. An example of SLA of this type is instead: “calls within a week from the
same client should be dealt with by the same technician”. An identification of the
clients may be needed to be able to compute the time of intervention, which is
central in the notion of the considered SLA, but, although the model should be built
taking into consideration the performance indicators we need to compute, changing
the model to favour the computation of the performance indicators is delegated to
a later stage (section 5), as we believe it is important to distinguish the model from
the model modified so as to favour the computation of the indices. The first model
therefore will consider clients as black tokens. The only relevant information is the
location of the intervention (site) required by a call, as discussed next.

Modelling the geographical aspects. Calls may come from any client in the area, and
the issue is the level of abstraction at which to model the call sites. Since an area is
split into zones a first model is to abstract the geographical coordinates of the call
sites and to identify the call site with their zone. Another possibility is to consider
municipalities. We shall discuss this issue in more details when describing the CG
subsystem.

Modelling technicians. None of the objectives of the study involves the single tech-
nician, there is no requirement to make comparison among technicians, so techni-
cians, as calls, should be identified by their position in the area, with the same level
of details as that of the location sites.

Timing of the model. All times are expressed in minutes. Timings are based on distri-
butions fitted from real data, as specified in Section 4.

4 A first model

Figure 1 depicts two possible models for the CG subsystem. The Figure is a screenshot
of the GreatSPN GUI[3] with which all the models used in this paper have been created
and through which all numerical results have been obtained. In the model canvas there
is a color class Z that represents the site locations (the location in which there is a failure
that requires a technician intervention): the choice of the location sites is very coarse,
and we use the 4 geographical zones,as discussed before, to model the geographical
origin of the calls.

The simple model on the left generates the calls through the exponential transi-
tion transition Simple calls, which is of single server type. Each generated call gets the
color of a location site in a non deterministic manner, as, at each firing, a value for
the variable r of color class Z is chosen and a token of that color is deposited in place
Simple OpenRequests. In the solution process this non-determinisms results in equal
probability.

This model has three peculiarities: it has no explicit model of the control room
operators (which is consistent with the information we had that the bottleneck of the
system are the technicians and not the control room operators), it assumes an infinite
population of calls (as transition Simple calls has no input place) which may make the
performance evaluation impractical, and there is no way to generate a load of calls that
are not uniformly distributed over the four zones that represent our geographical space.

These limitations are lifted in the “Complete model” of Figure 1. There is a pool of
clients (place Clients) initialized with the parameter N, that arrive as soon as there is
an operator available (place Operators initialized with Op operators) to answer the call
(immediate transition call). As we shall see later when the full model will be composed,
place Clients will be used to close the model and to generate a finite state space. Calls
receive a geographical identity through the four immediate transitions that transform
a generic call (neutral token in place Dispatch) into a call from a geographical zone.
The weights associated to the four immediate transitions are what allows to model calls
from certain geographical areas as being more probable than others: in the model a
call from the South zone is almost three times less probable than a call from the other
zones, as we shall later see. This difference indeed accounts for the actual difference
in population in the four zones. Remember that in GSPN/SWN the modeller does not
assigns probabilities to immediate transitions, but weights, that are then normalized to
compute the probabilities of the choices out of the vanishing states of the reachability
graph.

Fig. 1. The first model of the CG component.

Figure 2 depicts the model of the TP subsystem. The technicians (place IdleTechs)
are identified upon their geographical location (class Z). The assignment protocol in
use before the HoliDes project had one technician assigned to each geographical zone,
which would lead to an initial marking of All for place IdleTechs, meaning that, in the
initial state, there is one technician per zone.

Since the current protocol assigns to each call the closest available technician, reader
may doubt how this info can be included in the model. Should we have made a model
that includes continuous variables so as to represent the distance of a technician from
an intervention site? Or should we model the GPS coordinates of a technician and how

these coordinates evolves while he/she is travelling? Since the law with which the coor-
dinates change while travelling depends on many conditions that change from time to
time (like traffic and weather conditions), we believe that a very detailed modelling ap-
proach will not help, since we would model very detailed aspects for which there is no
available evolution law. We have therefore taken a discretization approach, in which we,
again, consider only the zones, and we define which zones are close to each other and
which ones are not. The distinction between convenient and non-convenient assignment
is based on the travelling times, which will be explained later.

To define closeness we have checked the distance among the middle points of the
four zones, as explained in the comment to Figure 5 and we have observed that the
only pair of zones that cannot be considered close one to the other are North and South,
which lead to three levels of closeness: technician and site in the same zone, in a “next
to” zone and in a “non convenient” zone, implemented, in Figure 2 by the three imme-
diate transitions assignSameZone, assignNextTo, and assignNonConvenient. The three
transitions have decreasing priorities, so if there is a technician in the same zone as that
of the call (tokens of the same color in places IdleTechs and OpenRequests) assign-
SameZone fires; if there are not, transition assignNextTo, which has the next smaller
priority, fires. If even this transition is not enable, transition assignNonConvenient fires.
Note that the output places differ, since if the technician is assigned to the same zone
the travelling time will be significantly smaller than that of the other two cases.

Fig. 2. The first model of the TP component.

Figure 3 depicts the model of the TA subsystem: from the time a call is assigned to
a technician and he/she starts travelling, to the end of the intervention. The travelling
time model consider two cases: travelling among zones, or travelling inside a single
zone. The set of 6, mutually exclusive, exponential transitions on the right in the SWN
of Figure 3 models the time it takes to reach the target zone r from the current zone a
of the technician. The rate of these transitions corresponds to the inverse of the average
times reported in the tables contained in Figure 5. Similarly, the set of four transitions
move ∗ on the left model the traveling times inside a zone.

Figure 4 depicts the composition of the three models by superposition over places of
equal names. The composition is achieved by using the composition facility of Great-

Fig. 3. The first model of the TA component.

SPN (the Σ button in the GUI depicted in Figure 1), which is a pairwise composition
based on places and/or transition superposition, as described in [12]. The model has
been then slightly modified by hand to make it easier to read.

In the composed model it is immediate to observe that there is a pool of N uniden-
tified clients going around in the model. Closing the model to generate a finite state
space is a rather standard technique in performance evaluation, but it is important to
make sure that N is big enough. Since what we want to model is an arrival process with
inter-arrival time equal to the inverse of λ , the value of N has to be large enough to
guarantee that there is a very low probability that transition clientCalls is not enabled
because of lack of tokens in the Clients. Moreover we have fixed Op = 1, therefore
setting to 1 the initial marking of the SingleServer place. This choice is based on what
has been reported by the company (control room operators are never a bottleneck of
the system), moreover the data that we have available to estimate the arrival rate do not
distinguish the information flux of the different operators, but we can only observe the
inter-arrival time of calls at the control room. Note that at this point the Clients place
could have been directly connected to the single server transition clientCalls, but keep-
ing place SingleServ does not increase the tangible state space and makes explicit the
single server policy. This will be particularly useful in more detailed models in which
clients are identified.

Another observation is that there is no specific queue associated to the calls that
wait for an idle operator. This is the easiest choice since GSPN and SWN do not have
queueing places, although extension in that sense have been defined [11]. By not keep-
ing the queue, and due to the presence of priorities over the three immediate transitions

Fig. 4. The first model of the control room.

in the SWN of Figure 2, in the model we tend to assign “same zone” technicians more
frequently than in reality.

Figure 5 shows the data that we have used to set the model’s parameter. The zone
considered is the area of Reggio Emilia. The main town, Reggio Emilia, concentrates
around 1/3 of the population (531K inhabitants) in 1/10 of the area. The colour on the
map reflects the aggregation of municipalities into zones, with the amount of population
in each zone reported in the upper table. These data have been used to set the weights
of the immediate transitions of the subnet in Figure 1: since we have no data on the
amount of clients per municipality (which is considered a sensible information by the
company not to be disclosed to third parties) we have assumed that the clients are spread
in the zone proportionally to the number of inhabitants. The time to move inside an
area has been computed as the time to move among two municipalities chosen among
the most populated municipalities and among the pairs that where not at the extreme
opposite points of the zone. The data have been computed through the Google Maps
API, by using a script, so as to be able to try different choices. Another possibility
would be to make an exhaustive search and do the weighted sum (based on population)
of the distance among any two pairs of municipalities. The average time taken for the
travelling time inside a zone (intra-zone travel) is reported in the lower table. Times are

North Zone

South Zone

West
Zone

East
Zone

In[2162]:= H* TRAVELLING TIMES - FELINAêSUD *L
felina = 81, 6, 6, 7, 10, 12, 13, 18, 21, 22, 25, 26, 28, 29, 29, 33, 34, 35,

36, 37, 37, 39, 39, 40, 40, 41, 42, 42, 47, 49, 49, 49.3, 51, 52, 53, 53, 54, 56, 61, 62, 63, 69, 70<;
est = 81, 2, 2, 4, 5, 9, 10, 11, 11, 12, 12, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20,

21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 27,
27, 28, 28, 28, 28, 28, 28, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 35, 36,
36, 36, 37, 37, 37, 37, 37, 38, 38, 39, 40, 40, 41, 41, 42, 43, 44, 44, 44, 44, 47, 47, 49, 52, 52, 53, 55, 55, 62<;

ovest = 82, 2, 3, 3, 3, 5, 5, 6, 7, 7, 7, 7, 7, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 15, 15, 15, 15, 15,
16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 29, 29, 29,
29, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 38,
39, 40, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 46, 47, 47, 48, 49, 49, 51, 51, 52, 56, 58H*100,125,151,164*L<;

nord = 81, 2, 2, 4, 5, 5, 6, 6, 7, 10, 11, 11, 11, 12, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21,
21, 21, 22, 22, 22, 22, 22, 22, 23, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 29, 29, 29, 29,
29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38,
38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 44, 44, 44, 44, 44, 45, 45, 45, 46,
46, 46, 46, 46, 46, 46, 46, 47, 47, 48, 51, 52, 53, 53, 54, 55, 55, 56, 62, 63, 69, 73, 87, 90H*,106,106,121,134,183*L<;

mkFit@d_, c_, h_D := Module@8nSamp, pdf, Buckets, max, pdfmax, hl, barchart, mean, erlangdist, plots<,
nSamp = Length@dD;
Buckets = 10;
hl = HistogramList@d, BucketsD;
Buckets = Length@hl@@2DDD;
barchart = BarChart@hl@@2DD, ChartLabels Ø hl@@1DDD;
mean = c; H*Median@dDêêN;*L
pdf = PDF@ErlangDistribution@Ò1, Buckets ê mean * Ò1DD &;
max = Max@hl@@2DDD;
pdfmax = ErlangMaximum@Ò1, Buckets ê mean * Ò1D &;
erlangdist = Hmax ê First@pdfmax@Ò1DD * hL * Hpdf@Ò1DL@Hx - 0.5L * HÒ1L ê 4D &;
plots = Table@Plot@erlangdist@kD, 8x, 0.5, Buckets + 0.5<,

PlotRange Ø Full, ColorFunction Ø HColorData@k + 2, "ColorList"D &L, PlotStyle Ø ThickD, 8k, 4, 4<D;
Print@"mean=", Mean@dD êê N, " max=", max, " last=", Last@hl@@1DDD, " Buckets=", Buckets, " ", pdfmax@2DD;
Return@8barchart, plots<D;

D;
data = 8nord, ovest, est, felina<;
coeff = 835, 70, 85, 35<;
hcoeff = 81, 0.8, 0.75, 0.9<;
H*coeff=835,70,85,40<;
hcoeff=81,0.8,0.75,0.9<;*L
shows = Table@Show@mkFit@data@@kDD, coeff@@kDD, hcoeff@@kDDDD, 8k, 1, Length@dataD<D;
GraphicsGrid@88shows@@1DD, shows@@2DD<, 8shows@@3DD, shows@@4DD<<D
mean=32.6467 max=39 last=100 Buckets=10 80.210217, 8x Ø 1.74999<<

mean=25.5267 max=29 last=60 Buckets=12 80.12613, 8x Ø 2.91666<<

mean=27.8167 max=25 last=65 Buckets=13 80.112528, 80.000265571 Ø 3.26917<<

mean=36.8907 max=9 last=80 Buckets=8 80.168173, 8x Ø 2.1875<<

Out[2171]=

2 barchart-securing.nb

In[2162]:= H* TRAVELLING TIMES - FELINAêSUD *L
felina = 81, 6, 6, 7, 10, 12, 13, 18, 21, 22, 25, 26, 28, 29, 29, 33, 34, 35,

36, 37, 37, 39, 39, 40, 40, 41, 42, 42, 47, 49, 49, 49.3, 51, 52, 53, 53, 54, 56, 61, 62, 63, 69, 70<;
est = 81, 2, 2, 4, 5, 9, 10, 11, 11, 12, 12, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20,

21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 27,
27, 28, 28, 28, 28, 28, 28, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 35, 36,
36, 36, 37, 37, 37, 37, 37, 38, 38, 39, 40, 40, 41, 41, 42, 43, 44, 44, 44, 44, 47, 47, 49, 52, 52, 53, 55, 55, 62<;

ovest = 82, 2, 3, 3, 3, 5, 5, 6, 7, 7, 7, 7, 7, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 15, 15, 15, 15, 15,
16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 29, 29, 29,
29, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 38,
39, 40, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 46, 47, 47, 48, 49, 49, 51, 51, 52, 56, 58H*100,125,151,164*L<;

nord = 81, 2, 2, 4, 5, 5, 6, 6, 7, 10, 11, 11, 11, 12, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21,
21, 21, 22, 22, 22, 22, 22, 22, 23, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 29, 29, 29, 29,
29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38,
38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 44, 44, 44, 44, 44, 45, 45, 45, 46,
46, 46, 46, 46, 46, 46, 46, 47, 47, 48, 51, 52, 53, 53, 54, 55, 55, 56, 62, 63, 69, 73, 87, 90H*,106,106,121,134,183*L<;

mkFit@d_, c_, h_D := Module@8nSamp, pdf, Buckets, max, pdfmax, hl, barchart, mean, erlangdist, plots<,
nSamp = Length@dD;
Buckets = 10;
hl = HistogramList@d, BucketsD;
Buckets = Length@hl@@2DDD;
barchart = BarChart@hl@@2DD, ChartLabels Ø hl@@1DDD;
mean = c; H*Median@dDêêN;*L
pdf = PDF@ErlangDistribution@Ò1, Buckets ê mean * Ò1DD &;
max = Max@hl@@2DDD;
pdfmax = ErlangMaximum@Ò1, Buckets ê mean * Ò1D &;
erlangdist = Hmax ê First@pdfmax@Ò1DD * hL * Hpdf@Ò1DL@Hx - 0.5L * HÒ1L ê 4D &;
plots = Table@Plot@erlangdist@kD, 8x, 0.5, Buckets + 0.5<,

PlotRange Ø Full, ColorFunction Ø HColorData@k + 2, "ColorList"D &L, PlotStyle Ø ThickD, 8k, 4, 4<D;
Print@"mean=", Mean@dD êê N, " max=", max, " last=", Last@hl@@1DDD, " Buckets=", Buckets, " ", pdfmax@2DD;
Return@8barchart, plots<D;

D;
data = 8nord, ovest, est, felina<;
coeff = 835, 70, 85, 35<;
hcoeff = 81, 0.8, 0.75, 0.9<;
H*coeff=835,70,85,40<;
hcoeff=81,0.8,0.75,0.9<;*L
shows = Table@Show@mkFit@data@@kDD, coeff@@kDD, hcoeff@@kDDDD, 8k, 1, Length@dataD<D;
GraphicsGrid@88shows@@1DD, shows@@2DD<, 8shows@@3DD, shows@@4DD<<D
mean=32.6467 max=39 last=100 Buckets=10 80.210217, 8x Ø 1.74999<<

mean=25.5267 max=29 last=60 Buckets=12 80.12613, 8x Ø 2.91666<<

mean=27.8167 max=25 last=65 Buckets=13 80.112528, 80.000265571 Ø 3.26917<<

mean=36.8907 max=9 last=80 Buckets=8 80.168173, 8x Ø 2.1875<<

Out[2171]=

2 barchart-securing.nb

North Zone West Zone

East Zone South Zone

Fitting of traveling time distributions inside each zone
from company data. Erlang-3 distribution is used.Zone	 Population	

North	 157599	
West	 156986	
East	 153517	
South	 63425	
	

Zone	 Population	
North	 157599	
West	 156986	
East	 153517	
South	 63425	
	
	
	 North	 West	 East	 South	
North	 30.02	 42.65	 32.18	 40.27	
West	 42.65	 20.60	 26.88	 38.15	
East	 32.18	 26.88	 19.90	 16.82	
South	 40.27	 38.15	 16.82	 41.5	
	

Average traveling times (inter/intra zones)
used in the model.

Fig. 5. Data for model parametrization.

expressed in minutes. To compute the travelling time among two zones a similar criteria
has been applied but the pairs of municipalities considered have to be in different zones.

Figure 5 reports also the travelling time inside a zone computed from the available
data. The records in the company logs report the indication of the destination of the
travel (the intervention site), but not the location from which the technician started
from. Not surprisingly the experimental data give a longer travelling time than the one
computed using Google Maps, which assumes that the technician is already somewhere
in the area. Of course estimating the average travelling time is not enough, as also
the distribution (or at least the variance) of this value may have a significant impact.
Figure 5 shows the four bar-charts of the travelling times computed on the available

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

Fig. 6. Bar chart of the securing time obtained from company logs.

data, while the smooth curve is an Erlang-3 shape with average time equal to the one
computed using Google Maps API.

Figure 6 shows the histogram of the securing times, obtained from the available
320 samples extracted again from the company logs. The overlayed red curve shows an
Erlang distribution with 2 stages that fits the sampled data. The obtained distribution is
used for the securing distribution in the model. All fittings have been done using the
Mathematica tool.

5 SLA computation

The passage time distribution is a specific type of performance index which is particu-
larly useful when reasoning about properties related with SLA or safety requirements.
For our SLA we do not need to have the full distribution, but simply the probability
that passage time is greater than one hour, that is to say the probability that the system
violates the SLA.

The definition of the SLA includes a passage time (60 minutes from when a call
is received by the operator, until a technician arrives on-site), and the computation of
a passage time requires to identify a start and an ending conditions: the passage time
is accumulated from the time the start condition gets true until the ending condition
gets true. In our system the SLA is based on the time it takes from the end of the
call with control room application until a technician reaches the location, therefore the
start and end conditions are respectively defined as the events: a client enters in place
OpenRequest and the same client reaches place StartSecuring. In addition, we have to
ensure that the time is taken for the same client.

A passage time measure specification for CTMC is usually based on the defini-
tion of entry, goal and forbidden states: the distribution of the time required to reach
a goal state from any entry state without hitting any forbidden state can be computed
with different methods and tools [21, 15]. This typically requires the (automatic) ma-
nipulation of either the CTMC or of the high level model used to generate the CTMC,
often through the synchronization with an automaton that specifies the behaviours to be
taken into account, as for Extended Stochastic Probes (XSP [14], operating on PEPA
models [19]) and Path Automata (PA, operating on Stochastic Activity Networks [23]).

Computing passage time of an entity in a Petri net requires to be able to identify
that entity (typically called “a client”) and its evolution in the net, and to measure the
time required for the identified entity to go from one state to another of the net, or from
one transition firing to another. In GSPN terms this often leads to the need to follow a
specific token through the net. Since the identification of the flux of clients is trivial in
our model, to distinguish one client from the other we can simply define a color class
Cli with N distinguished colors ci and change the color domain of all places that carry a
client so as to account for the change (places Clients, Arriving, Dispatch, OpenRequests,
AssignedLocal, AssignedMove, StartSecuring). The resulting net is shown in Figure 7.

The passage time identification and computation is not trivial if the token to be
followed may go through places containing other tokens, since they are indistinguish-
able and/or if the flux of tokens in the net is not clearly identifiable: this aspect has been
tackled in the literature by introducing a formalism extension called Tagged GSPNs [8],

for which a specific language for passage time specification has been later developed
(Probe Automata [5]) to ease the task of defining the TGSPN conditions for entry, goal,
and forbidden states. In Tagged GSPN the user specifies the initial and final condition of
the “passage” and the system takes care of coloring the net so as to identify the client,
and to associate to the client a subnet that represents the client evolution during the
“passage”, based on P-semiflows computation.

In our model, we do not need forbidden states (states that abort the computation
of the passage time if a certain condition happen), and the notion of client is simple.
Following the intuition behind tagged GSPN we can also simplify the definition of the
color class Cli: If all clients behave the same, then it is enough to follow a generic one,
so the color class Cli can be defined as having only two colors: anonymous client (cA)
and one identified, tagged, client (cT). The net is then initialized with N +1 clients, N
anonymous and one tagged. Figure 7 shows the resulting net.

Fig. 7. The model of the system for passage time computation

This allows, in the next subsections, to present two different approaches for the SLA
computation. We recall that the SLA is satisfied if

[SLA:] 95% of the calls that require an intervention observe the intervention time (from
client call to the arrival of a technician) in within 1 hour.

which implies that the computation required is not a passage time distribution, but it
is enough to compute the probability that the passage time is less than 60 minutes,
although, as usual, the distribution is more informative. In the following we shall present
two different approaches: in Section 6 the SLA is computed as a path property in the
stochastic logic CSLTA, while in Section 7 the net is modified and the SLA satisfaction
is based on standard performance evaluation features (throughput of transitions) on the
modified model.

6 Use of CSLTA for SLA computation

Stochastic logics for CTMCs define formulas of the type Prob./α(ϕ) that are satisfied
by a CTMC if the probability of the set of executions of the CTMC that satisfy the
constraints ϕ is ./ α . The most well-known of the stochastic logics is CSL [7], that, in
the desire to limit the cost of the model-checking, trades simplicity of ϕ for efficiency,
resulting in a logic that is not adequate for passage time computation [4].

The CSLTA [16] logics has been introduced to give more flexibility to the modeler,
as formula takes the form of Prob./α(A), where A is a one-clock timed-automaton.
CSLTA model-checker is part of the GreatSPN suite. The model-checking is based on
numerical solution and requires the solution of a Markov Regenerative Proces (MRP).
An efficient solution algorithm for this type of MRPs has been developed [6].

The relationship between passage time and stochastic logics has been investigated
in [4], in the context of HASL (Hybrid Automata Stochastic Logic) [10]. HASL al-
lows very complicated properties to be expressed as Prob./α(H), where H is an Hybrid
Automata. The complexity of the path specification makes the underlying stochastic
process impossible to solve in numerical form, and simulation is the only viable option.
Cosmos [9] is a simulation-based model-checker for HASL that operates on systems
specified as Petri nets. Following the approach in [4] we use a stochastic logic to com-
pute the passage times. We have used CSLTA: the reason why CSLTA has been preferred
over HASL is that CSLTA is part of the GreatSPN suite and allows an exact numerical
solution, while HASL properties can only be checked through simulation.

Figure 6 shows the Timed Automaton used to compute the SLA: it consists of 5
locations, including the initial location l3, a success final location l4 and a failure final
location l2. Locations are labelled with atomic propositions, and edges are labelled with
action sets. In GreatSPN the DTA is defined in parametric form; when the DTA is used
to model check a CTMC generated by a GSPN, the DTA actions are instantiated on
transitions names and the atomic proposition are instantiated on boolean formulas over
the Petri net markings.

Following the ideas in [4] the DTA of Figure 6 accepts, at the beginning (while in
location l3) all the GSPN behaviours (Act stays for “any transition firing”, there is no
constraint on the value of the clock x, and the atomic proposition associated to l3 is

Fig. 8. The timed automata for the CSLTA computation of passage time

true). When the DTA clock reaches initTrn the DTA keeps accepting anything until
a tagged call takes place (action taggedCalls). At this point the clock is reset and the
DTA moves to location l4 and starts observing until the condition SecuringTagged does
not hold. When the condition SecuringTagged becomes true before time time, the DTA
moves to location l4 and accepts the path. If instead the time boundary time is exceeded,
the DTA is forced to move to the failure location l2.

To check the SLA, we apply CSLTA model-checking by binding the DTA parame-
ters to the net elements. Note that the model we have defined is an SWN, while CSLTA

is defined for CTMCs, and the implementation in GreatSPN assumes that the CTMC
is generated from a GSPN. Therefore the net of Figure 7 has been unfolded3 and the
parameters of the DTA have been instantiated over the marking of the GSPN resulting
from the unfolding It was shown in [4] that if the transient behaviour is long enough
(and this depends on the value of initTrn) so that the CTMC is in steady state when the
simulator reaches time initTrn, then the model checking of the DTA of Figure corre-
sponds to verify the SLA in steady state.

Figure 9 depicts the distribution of the passage time in four different situations:
charts (1) and (2) consider four technician and a load of incoming call generated from
a population of N = 4 clients and a duration of 60 (left chart) and 30 (right chart).
Charts (3) and (4) depicts the same situations, but with a single technician. As from the
data available from the company, the situation of (1) is considered the normal condition
(4 technicians available, about 1 client call per area per hour). The lower charts show
instead a situation of congestion, when the number of incoming calls cannot be handled
by a single technician without breaking the SLA.

On each chart there are three passage time distributions for three models: the “exp”
curves refer to the case where all SWN transitions are either immediate or exponential,
the “Erlang-2” (Erlang-3) labelled curve are obtained by expanding the exponentially
distributed transitions of travelling time and security activity in 2 (3) exponential stages
twice (three times) as fast as the exponential transition they substitute. This approach,
which is rather standard [2] allows to generate the CTMC while using distributions (like
Erlang-2 and Erlang-3) that have a significantly lower variance than not exponential.

3 The unfolding facility is available through the GUI (open box icon on the toolbar), a facility
that has been implemented for the participation at the Petri net Model-Checking Contest, while
the definition of the parameters in terms of GSPN elements is not automatically supported.

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80 90 100

S
L

A
 p

ro
b

ab
il

it
y

Passage time (in minutes)

(1) λ=1/60, 4 technicians, 4 clients

exp

erlang2

erlang3 0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80 90 100

S
L

A
 p

ro
b

ab
il

it
y

Passage time (in minutes)

(2) λ=1/30, 4 technicians, 4 clients

exp

erlang2

erlang3

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

S
L

A
 p

ro
b

ab
il

it
y

Passage time (in minutes)

(3) λ=1/60, 1 technicians, 4 clients

exp

erlang2

erlang3 0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

S
L

A
 p

ro
b

ab
il

it
y

Passage time (in minutes)

(4) λ=1/30, 1 technicians, 4 clients

exp

erlang2

erlang3

Zone	 Population	
North	 157599	
West	 156986	
East	 153517	
South	 63425	
	
	
	 North	 West	 East	 South	
North	 30.02	 42.65	 32.18	 40.27	
West	 42.65	 20.60	 26.88	 38.15	
East	 32.18	 26.88	 19.90	 16.82	
South	 40.27	 38.15	 16.82	 41.5	
	
	
SLA	probability	at	time:	60	minutes	

	 case	(1)	 case	(2)	 case	(3)	 case	(4)	
using	exp	 0.8921 0.8910 0.5882 0.3754
using	erlang2	 0.9270 0.9258 0.5947 0.3600
using	erlang3	 0.9469 0.9458 0.6023 0.3562
	

Query CSLTA:
P PassageTime(initTrn=1000, time=x |
 taggedCalls=taggedCalls |
 SecuringTagged=#StartSecuring>0)

SLA Probability at 60 minutes:

Fig. 9. SLA computation with CSLTA.

Note that, by not explicitly considering a FIFO queue, when N increases the proba-
bility of having one or more clients waiting in place Dispatch increases as well, which
increases the probability that an idle technician gets immediately assigned to a new
client and that the technician will find a client request for the same zone where he/she
is currently located. This phenomenon tends to make a heavily loaded system to work
a bit better than it should be.

The charts show also the impact of using Erlang-3 distributions (which actually
fit quite well the experimental data) instead of using exponential transitions. Lower
variance of the Erlang distribution makes the system closer to the SLA requirement.

The model-checking of CSLTA allows to exactly compute the probability of ex-
ceeding the 60 minutes, but it suffers the standard limitation of state space explosion,
worsened by the fact that the stochastic process to be solved is an MRP. The largest state
space covered in this test were of about 1.7× 106 states. Despite big improvements in
memory and space on MRP solution [18], it is difficult to solve MRP’s with more than
a few million states, which in our case limits the exact solution at instances of the SWN
of Figure 7 with 4 clients, 4 technicians and the Erlang-3 expansion (that, obviously,
significantly increases the state space).

6.1 Summary of CSLTA results and lesson learned

Lesson learned - case study. From the results of the analytical solution of CSLTA we
can observe that 4 technicians are a minimal number to sustain the load of calls.

Lesson learned – modelling and tools. Thanks to unfolding and stage expansion we
have been able to model-check CSLTA for an SPN that includes also non exponential
transitions.

7 Use of timeouts and DSPN for SLA computation

Since the exact model checking of CSLTA is limited to small systems, then the only
viable solution for larger systems is simulation. In this context simulation can take two
forms: use a model-checker based on simulation (what is now called “statistical model-
checking”) or modify the model so as to compute the SLA with a generic SWN simu-
lator. We have previous experience in using Cosmos[9], the tool for statistical model-
checking of the HASL logic, but the performance indicator for this case study does not
require the power of a complex simulator like Cosmos, that has to take into account the
full power of hybrid automata, moreover the use of another tool would have required to
translate the net from the GreatSPN format to the Cosmos one.

We took the second approach: the net has been modified so that the SLA satisfaction
can be computed based on transition throughputs. Since the SLA requires to compute
the percentage of calls for which the time period from the time of the call until the
time the technician reaches the site is less or equal to 60 minutes, it is enough to set
a timeout of 60 minutes whenever a call enters the OpenRequests (which is the same
time at which the transitions anyCalls and taggedCalls fire) and to check whether the
associated technician reaches the site before or after the timeout has expired.

Fig. 10. The model of the system for passage time computation with DSPNs.

Figure 10 shows the modification to the model of Figure 7. Note that a timeout is set
only when transition taggedCalls fires, since, as already done for the CSLTA solution,

we know (from, for ex. [8] that observing a single selected client is enough for correctly
computing the SLA. When the technician r associated to the tagged client c reaches the
intervention site (a token of color 〈c,Tagged〉 reaches place ReachedClient) the net
immediately fires either transition endInTime (if the deterministic transition Timeout
has not fired yet) or transition endTimeout (if the deterministic transition Timeout has
already fired, meaning that the deadline of 60 minutes was violated). The probability of
the SLA is then computed as the ratio between the throughput of transition endInTime
and the sum of the throughput of transitions endInTime and endTimeout.

Note that, since there is a single tagged client, in any one state there is at most a
single deterministic transition enabled, therefore the model of Figure 10, or, better, its
unfolding, is a DSPN model [1]. Using the DSPN solver of GreatSPN we could check
that the two techniques for SLA computation (CSLTA formula or model modification to
include a timeout) are equivalent or not.

In[55]:=

, 8row, Length@dataD<D;
GraphicsGrid@rowsD

Out[60]=

8 3DPlots.nb

N clients

% SLA
satisfied (>95%)

% Policy assignment
non convenientnext-tosame zone

E[OpenRequests]

In[55]:=

, 8row, Length@dataD<D;
GraphicsGrid@rowsD

Out[60]=

8 3DPlots.nb

In[55]:=

, 8row, Length@dataD<D;
GraphicsGrid@rowsD

Out[60]=

8 3DPlots.nb

in
ter

-a
rri

va
l

tim
e (

m
in

ut
es

)

3
techs.

4
techs.

5
techs.

Fig. 11. Results space obtained by running multiple simulations.

Figure 11 shows the result space of the model (for the Erlang-3 case) . Since the
solution technique is simulation we could introduce Erlang-3 as distribution for SWN
transitions. The net was not unfolded, as the GreatSPN simulator for SWN was used,
which already includes a number of common activity.

Each point in the charts corresponds to a simulation run of the SWN simulator. 600
separate simulations were run in batch to generate the result space. We have used a batch
method with 95% confidence and 10% accuracy. Simulations end when all the default
performance indicators (mean number of tokens in places and throughput of transitions)
satisfy the confidence and accuracy requirements. Each row of Figure 11 shows the
results for 3,4 and 5 technicians in the system. Each 3D plot depicts the results for a
varying number of clients in the system (1 to 20), and for different inter-arrival times of
the client’ calls (from 5 to 60 minutes). The first column is the probability of respecting

the SLA requirement: the red zone stays below the 95% requirement, while the blue
zone stays above. The second, third and fourth columns show the probability of each
technicians to have to move between far zones (non-convenient), near zones (next-to)
or to remain in the same zone when a new ticket is assigned. Finally, the last column
shows the number of open requests in the system, which measures the system stability
(high inter-arrival and not-enough technicians will end up in a divergent system).

Lessons learned – case study. The plot shows that for the average client call rate (about
1 call every hour), the system is well beyond the red zone of the SLA plot, i.e. it is
expected to maintain the SLA requirement. The critical inter-arrival time (which may
happen in a crisis situation) obviously depends on the number of available technicians.
With 3, 4 and 5 technicians, it is about 26, 18 and 13 minutes of calls inter-arrival
times, respectively. This information may be used to design a pro-active policy, where
for instance if the last N client calls have arrived with a 20 minute time delay, and the
company has currently 4 technicians, it should start alerting another technician (not
currently in service) to be ready for any incoming task.

Lessons learned – modelling and tools. The simulation proved quite effective, but the
analysis would have greatly profited by the possibility of specifying different accuracies
for different performance indicators and by the possibility of computing the accuracy
of simple formulas (like the ratio among throughputs that we use to compute the SLA).

Another aspect that was important is the simulator ability to compute the throughput
also of immediate transitions: this is a feature that is not always available but that is very
convenient to have.

We have also observed that the availability of a DSPN numerical solver allowed
to check whether the model in Figure 10 and that in Figure 7 lead to the same SLA
computation (a comparison difficult to do if only simulation results are available). The
DSPN solver was also used to check that the setting of the parameter initTrn of the
timed automaton that defines the SLA, that identifies the time to reach steady state, is
correctly set.

8 Conclusions and perspectives

In this work we have developed a model of a utility company control room, based
on real data provided by the company. The goal was studying the critical conditions
that make the system in use unable to fulfil a required SLA. Using histograms of the
available data, we observed that most quantities involved can be fitted accurately using
Erlang distributions, thus making the model easy to specify using standard stochastic
Petri nets.

The problem of addressing the high variability of the geographical positions is only
considered in a discretized form. By using a different technique (using the actual map
of the area) it would be possible to simulate the movement in a more accurate way.
However, since we are mostly interested in the average behaviour, a discretized average
distribution of the travelling time should provide relatively accurate measures.

Another aspect that we have not considered is the modelling of assignment policies
different from the one currently in use by the company. For instance, it is not clear if,

under critical conditions, it is better to not move technicians out of their zone (since
they would spend more time travelling). This is left to further investigations.

References

1. Ajmone Marsan, M., Chiola, G.: On Petri nets with deterministic and exponentially dis-
tributed firing times. In: Advances in Petri Nets. Lecture Notes in Computer Science, vol.
266/1987, pp. 132–145. Springer Berlin / Heidelberg (1987)

2. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems
2, 93–122 (May 1984), http://doi.acm.org/10.1145/190.191

3. Amparore, E.G.: A New GreatSPN GUI for GSPN Editing and CSLTA Model Checking.
In: Norman, G., Sanders, W. (eds.) Quantitative Evaluation of Systems, Lecture Notes in
Computer Science, vol. 8657, pp. 170–173. Springer International Publishing (2014)

4. Amparore, E.G., Barbot, B., Beccuti, M., Donatelli, S., Franceschinis, G.: Simulation-based
verification of hybrid automata stochastic logic formulas for stochastic symmetric nets. In:
Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Sim-
ulation. pp. 253–264. ACM (2013)

5. Amparore, E.G., Beccuti, M., Donatelli, S., Franceschinis, G.: Probe automata for passage
time specification. In: Proceedings of the 2011 Eighth International Conference on Quantita-
tive Evaluation of SysTems. pp. 101–110. QEST 2011, IEEE Computer Society, Washington,
DC, USA (2011)

6. Amparore, E.G., Donatelli, S.: Optimal Aggregation of Components for the Solution of
Markov Regenerative Processes, pp. 19–34. Springer International Publishing, Cham (2016)

7. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov
chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

8. Balbo, G., Beccuti, M., De Pierro, M., Franceschinis, G.: First Passage Time Computation
in Tagged GSPNs with Queue Places. The Computer Journal 54, 653–673 (2010), first pub-
lished online July 22, 2010.

9. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a statistical model
checker for the hybrid automata stochastic logic. In: Proceedings of the 8th International
Conference on Quantitative Evaluation of Systems (QEST’11). pp. 143–144. IEEE Com-
puter Society Press, Aachen, Germany (Sep 2011)

10. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: HASL: An expressive lan-
guage for statistical verification of stochastic models. In: Proceedings of the 5th International
Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS’11). pp.
306–315. Cachan, France (May 2011)

11. Bause, F., Buchholz, P.: Queueing petri nets with product form solution. Performance Eval-
uation 32(4), 265–299 (1998)

12. Bernardi, S., Donatelli, S., Horváth, A.: Implementing compositionality for stochastic petri
nets. International Journal on Software Tools for Technology Transfer (STTT) 3(4), 417–430
(2001)

13. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets
and symmetric modeling applications. IEEE Transactions on Computers 42(11), 1343–1360
(1993)

14. Clark, A., Gilmore, S.: State-aware performance analysis with extended stochastic probes.
In: Proceedings of the 5th European Performance Engineering Workshop. pp. 125–140.
EPEW ’08, Springer-Verlag, Berlin, Heidelberg (2008)

15. Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: HYDRA: HYpergraph-based Distributed
Response-time Analyser. In: International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2003). pp. 215–219 (June 2003)

16. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with
CSLTA. IEEE Transactions on Software Engineering 35(2), 224–240 (2009)

17. Dugdale, J., Pavard, J., Soubie, B.: A pragmatic development of a computer simulation of
an emergency call center. Designing cooperative systems: the use of theories and models pp.
241–256 (2000)

18. German, R.: Iterative analysis of Markov regenerative models. Performance Evaluation 44,
51–72 (April 2001)

19. Hillston, J.: Compositional markovian modelling using a process algebra. In: Computations
with Markov chains, pp. 177–196. Springer (1995)

20. Jain, S., McLean, C.: Simulation for emergency response: a framework for modeling and
simulation for emergency response. In: Proceedings of the 35th conference on Winter simu-
lation: driving innovation. pp. 1068–1076. Winter Simulation Conference (2003)

21. Kulkarni, V.G.: Modeling and analysis of stochastic systems. Chapman & Hall Ltd., London,
UK (1995)

22. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with gener-
alized stochastic Petri nets. John Wiley & Sons, Inc. (1994)

23. Obal, W.D., II, Sanders, W.H.: State-space support for path-based reward variables (1998)
24. de QV Lima, M.A., Maciel, P.R., Silva, B., Guimarães, A.P.: Performability evaluation of

emergency call center. Performance Evaluation 80, 27–42 (2014)

