

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Process Intensification through Microwave and Ultrasound Application

This is the author's manuscript			
Original Citation:			
Availability:			
This version is available	http://hdl.handle.net/2318/1663897	since	2018-03-26T22:02:52Z
Terms of use:			
Open Access			
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works			
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.			

(Article begins on next page)

Process Intensification through Ultrasound and Microwave Application

Emanuela Calcio Gaudino, Giancarlo Cravotto

Dipartimento di Scienza e Tecnologia del Farmaco, Università degli studi di Torino, Via P. Giuria 9, 10125, Torino, Italia.

Abstract

Chemists have always looked for synergism, that is, a combination of tools, reagents, or processes producing a larger effect than the sum of their individual effects. It is expected that in the future organic synthesis will undergo increased automation and require the construction of continuous-flow systems capable of rapid, efficient and scalable automated processes. In this context, our aim is to show how two of the most important, green activation techniques (microwaves and power ultrasound), may be combined to provide a reliable and cost-effective strategy for an increasing number of synthetic transformations.