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Risk factors for cryptorchidism 
Gurney JK, McGlynn KA, Stanley J, Merriman T, Signal V, Shaw C, Edwards R, Richiardi L, 
Hutson J, Sarfati D 

Abstract 

The condition known as cryptorchidism – undescended testis – is one of the most common 
congenital abnormalities found among males, and is one of the few known risk factors for testicular 
cancer (TC). Like testicular cancer, the key exposures in the occurrence of cryptorchidism remain 
elusive. Testicular descent is thought to occur during two hormonally-controlled phases – between 
8–15 weeks and 25–35 weeks gestation – and while it is clear that a failure of testes to descend 
permanently is likely due to disruptions to one or both of these phases, the cause(s) and 
mechanism(s) of such disruption are still unclear. In this manuscript, we review the broad range of 
putative risk factors that have been evaluated in relation to the development of cryptorchidism to 
date, discuss their plausibility, and make suggestions regarding further approaches to understand 
aetiology. There are few exposures for which there is consistent evidence of an association with 
cryptorchidism; and in those cases where evidence appears unequivocal – for example, the 
relationship between cryptorchidism and gestational measures such as low birth weight – the 
measured exposure is likely to be a surrogate for the true causal exposure. The relative importance 
of each risk factor may vary considerably between mother/son pairs depending on an array of 
genetic, maternal, placental and foetal factors – all of which could vary between regions. 

Introduction 

Descent of the testes into the temperate environment of the scrotum represents a vital 
developmental step on the path toward successful human reproduction. Cryptorchidism – failure of 
one or both testes to permanently descend, otherwise referred to as undescended testis – is one of 
the most common congenital abnormalities among males:1 approximately 1–9% of all males are 
born with at least one cryptorchid testis.2–8 While about half of these cases will spontaneously 
descend during the first three months of life, approximately 1% of all males will remain cryptorchid 
at the end of their first year.3,8,9 

Cryptorchidism is one of the few known risk factors for testicular cancer:10 men with a history of 
cryptorchidism have a three-11 to four-fold 12 increased risk of testicular cancer compared to those 
with no history of cryptorchidism. It is estimated that 5–9% of all men who develop testicular 
cancer have a history of persistent cryptorchidism.13,14 Cryptorchidism is also a risk factor for sub-
fertility: it is estimated that men with a history of cryptorchidism are twice as likely to be sub-fertile 
compared to those without cryptorchidism.15 Cryptorchidism is also one component of theorised 
Testicular Dysgenesis Syndrome, a syndrome in which four individual conditions (cryptorchidism, 
TC, hypospadias and sub-fertility) possibly share the same prenatal risk factors.16 Hypospadias – a 
congenital anomaly where the urethra terminates on the underside of the penis, rather than at the tip 
of the glans 17 – is relatively more common among those with cryptorchidism; however, in absolute 
terms only a small proportion of boys born with cryptorchidism will also have hypospadias 
(approximately 2%).18 In rare cases, the testis will disappear due to torsion or some other unknown 
cause – a condition called Testicular Regression Syndrome, also known as ‘vanishing testis’.19 

The primary treatment for cryptorchidism is the surgical repositioning of the cryptorchid testis into 
the scrotum, a procedure known as orchidopexy.20,21 In cryptorchid neonates it is recommended that 



this procedure be performed within one year of birth, while cases of ‘acquired’ cryptorchidism in 
early childhood should be treated immediately.22,23 Performing orchidopexy before puberty reduces 
the subsequent risk of testicular cancer relative to later correction:24 for example, cryptorchid boys 
who undergo orchidopexy after the age of 12 (or not at all) are 2–6 times more likely to have 
testicular cancer compared to those who receive the corrective treatment before the age of 12.25 

The relationship between cryptorchidism and testicular cancer remains unclear. In unilateral 
cryptorchidism, the increased risk of testicular cancer is much weaker in the contralateral than in the 
ipsilateral testis (relative risk [RR] of testicular cancer in cryptorchid testis: 6.33, 95% CI 4.30–
9.31; contralateral testis RR 1.74, 95% CI 1.01–2.98) 26 – suggesting that the link between 
cryptorchidism and testicular cancer is mostly related to variable manifestation of a shared risk 
factor, rather than a more generalised developmental abnormality that equally affects both 
testes.25,27 A testicular defect acquired in the intrauterine environment may be linked to both the 
development of cryptorchidism and to the risk of neoplasia within the cryptorchid testes, with a 
consequent increased risk of testicular cancer in later life.12,28 

Temporal and geographic variation in disease occurrence 

In terms of changes in the occurrence of cryptorchidism over time, we observe conflicting evidence 
– with some reports of increasing occurrence in recent decades,7,29,30 and others reporting stable or 
decreasing occurrence.2,31–33 This variation in temporal observations – as well as the wide variation 
in cryptorchidism occurrence as reported in the literature (1–9%) – is at least partially an indication 
of the wide geographical variation that has been observed between countries. For example, boys 
born in Denmark are more than four times as likely to have cryptorchidism as boys born in Finland, 
while boys born in Lithuania have an intermediate prevalence between Denmark and Finland.5,7 The 
reason for this geographic variation remains poorly understood – but at the very least suggests that 
the factors that predispose an individual to cryptorchidism are unevenly distributed between 
population groups. 

Congenital vs. ‘acquired’ cryptorchidism 

For the purposes of this manuscript, we define cryptorchidism as a congenital condition 34,35 – not 
because of the timing of condition presentation and/or discovery (which can vary), but rather the 
likely timing of disease aetiology. We acknowledge that there are several variations in terms of the 
former: a boy may present with/be discovered to have cryptorchidism at or soon after birth 
(‘congenital’ cryptorchidism, in the traditional sense); a boy may have normally-descended testes at 
birth, one or both of which subsequently ascend (‘acensus testis’), or a boy may have one or both 
initially-cryptorchid testes that spontaneously descend and then re-ascend (‘recurrent’ 
cryptorchidism).36 However for the purposes of this manuscript we consider the non-permanent 
descent of testes as being congenital in origin 37 – regardless of when this condition presents. 

These variations in condition presentation and/or discovery may have important ramifications for 
measurement of disease occurrence. Firstly, measurements of disease prevalence at two years of age 
will exclude boys whose initially-cryptorchid testis have spontaneously descended; likewise, 
measurements taken at birth will exclude boys with normally-descended testis that subsequently 
ascend spontaneously. Secondly, cryptorchidism diagnosis can be performed via either clinical 
examination or be based on receipt of orchidopexy – with orchidopexy-confirmed cryptorchidism 
more likely to reflect ‘persistent’ cryptorchidism cases than clinically-diagnosed cryptorchidism.38 
Thus, as well as reflecting geographic variance, the wide variation in disease occurrence (1–9%) 
may also reflect the difficulty in ascribing true disease prevalence when the condition occurs across 
a severity spectrum. 



The anatomy of testicular descent 

Comprehensive reviews of the process of testicular descent can be found elsewhere.18,39 Briefly, the 
primary factors that drive testicular descent during prenatal/perinatal life are thought to occur 
during two hormonally-controlled phases – between 8–15 weeks and 25–35 weeks gestation (Figure 
1). A failure of one or both testes to descend permanently must be caused by some disruption to 
these phases. In this manuscript, we review the broad range of putative risk factors hypothesised to 
be associated with the development of cryptorchidism to date, discuss their plausibility with respect 
to influence on descent of the testis in utero, and make suggestions regarding those risk factors that 
require further investigation. 

Hormones 

Since testicular descent is a hormonally-driven event, it is possible that the exposures discussed 
throughout this review are causes of (or proxies for) some abnormality in intrauterine hormonal 
function.40 Several authors have directly measured intrauterine hormone levels and compared these 
between those mothers of sons who developed cryptorchidism and those that did not. Based on their 
role in testicular descent, these investigations have primarily focussed on estrogens, androgens, 
human chorionic gonadotrophin (hCG) and the protein hormone Insulin-Like 3 (INSL3). 

Estrogen 

The estrogen hypothesis proposed by Sharpe and Skakkebaek in 1993 41 suggests foetal exposure to 
high levels of endogenous estrogen may be associated with maldescent of the testes (among other 
urogenital conditions). However, there is little 42 or no 43,44,45,46–48 evidence that this is the case; in 
fact, two previous studies have observed lower serum estrogen levels among mothers of cryptorchid 
cases compared to mothers of controls.43,44 Some authors have observed higher levels of serum 
alpha-fetoprotein (AFP) – a protein thought to mediate how the developing foetus responds to 
estrogen – among mothers of cryptorchid boys compared to mothers of non-cryptorchid boys;43,49 
however, other authors have found no such association 50 – and given the lack of evidence regarding 
the role of maternal estrogen levels, it seems more likely that this difference in AFP levels may 
reflect some other dysfunction of the placenta.43,49 The role of the synthetic estrogen 
diethylstilbestrol (DES) is discussed later in this review (‘Pregnancy-related medications’). 

Testosterone 

Testosterone is critical to successful testicular descent: for instance, cryptorchidism can be achieved 
in animal models by exposing the animal to pure anti-androgens.51–53 It has therefore been 
hypothesised that low maternal levels of testosterone might be associated with development of 
cryptorchidism in the son. However, studies that have directly measured maternal testosterone 
levels in serum have reported little 45 or no 42,43 evidence of an association with cryptorchidism. 
Similarly, studies that have measured testosterone levels in cord blood found no evidence of an 
association between reduced testosterone levels and the development of cryptorchidism.55,56 

Human Chorionic Gonadotrophin 

Testosterone is produced (and regulated) by the developing testes primarily in response to human 
chorionic gonadotrophin (hCG), a hormone produced by the placenta.50,57 Some authors have 
hypothesised that disruption to hCG production may be associated with maldescent of the 
developing testes, with Chedane et al. 50 recently showing that the placentas of boys born with 



cryptorchidism had somewhat lower total hCG levels compared to controls (case mothers: 21.4 
kilounits/litre, control mothers: 27.7 kilounits/litre). The authors suggest that the lower hCG values 
observed in the placentas of boys with cryptorchidism could reflect lower testosterone production, 
which in turn could lead to deficiencies in testicular descent;50 however, this relationship remains 
unclear. 

Insulin-Like 3 (INSL3) 

Like testosterone, the protein hormone INSL3 is crucial to testicular descent: cryptorchidism can be 
achieved in animal models by knocking out the gene that encodes INSL3.58 In recent years, it has 
been reported that cord blood levels of INSL3 are lower in children born with cryptorchidism 56,55,59 
and might be reduced by exposure to exogenous endocrine-disrupting chemicals.56,60 However more 
direct observation of the pathway between exogenous stimuli (such as chemicals), altered 
intrauterine INSL3 levels and cryptorchidism development is required in order to substantiate 
causality. The role of endocrine-disrupting chemicals as a risk factor for cryptorchidism is discussed 
elsewhere in this review. 

Assisted reproduction 

Children conceived by in-vitro fertilisation (IVF) are 30% more likely to have a congenital 
malformation compared to those conceived naturally; however the absolute risk of malformation 
remains low.61 The mechanism of causality – if one exists – is suspected to be multifactorial, and 
perhaps involves endocrine disruption caused by stimulation of the ovaries in order to produce 
multiple oocytes, as well as factors directly related to the IVF procedure itself.62 

However, there is limited 63,64,65,66,67,68,69 or no 70 evidence of an independent association between 
assisted reproduction procedures (ART) and development of cryptorchidism in the resulting child. 
In two studies a crude association between conception and cryptorchidism was substantially 
reduced after adjustment for birthweight. This suggests that the increased propensity for ART 
children to be born prematurely and with low birthweight 63 – discussed later in this manuscript as 
risk factors for cryptorchidism – may act as confounders or mediators in the association between 
ART and cryptorchidism. 

Another significant confounding factor – which cannot be easily managed in study design or 
analysis – is that those seeking such fertility treatment are, by definition, sub-fertile. Subfertility is 
itself a risk factor for congenital malformation: for example, the children of sub-fertile parents (that 
is, those who took longer than 12 months to naturally conceive) are 20–40% more likely to have 
some congenital malformation compared to those who took less than 12 months to conceive.71 
Massaro et al.72,73 suggest that parental subfertility (regardless of which parent[s] are affected) is 
likely to make a more substantial contribution to risk of congenital malformation than the means of 
conception.72,73 Kallen et al. 74 observed that controlling for characteristics of the parent – including 
length of ‘involuntary childlessness’ – almost entirely explained the increased risk of congenital 
abnormality found among those conceived via IVF.74 In other words, it is possible that the 
association between ART and cryptorchidism is due to parental and neonatal characteristics that are 
common to those seeking and receiving this treatment. 

Maternal age, parity and health 

Maternal age 



While little difference in mean maternal age has been observed between the mothers of cryptorchid 
compared to non-cryptorchid sons 75,76,77,78,79,80,81,68,6,5,46, some authors have observed an association 
between both ‘older’ (>30 years) 77,82,83 and ‘younger’ (<20 years) 76,77,84,85 maternal age and 
cryptorchidism. In contrast to the latter, both Jones et al. 48 and McGlynn et al. 82 observed that 
young age appeared to be protective against cryptorchidism development. In the absence of 
consistent observations, it is difficult to draw firm conclusions regarding the role of maternal age in 
the aetiology of cryptorchidism. 

Parity 

Any relationship between parity (and/or birth order) and risk of cryptorchidism is unclear: while 
several authors have found no association,76,78,86,6,5,75 others have found an increased risk of 
cryptorchidism among sons born to both primiparous mothers 87,88,89,48,83,84 – while still others have 
found increased risk among sons born to multiparous mothers.77 It is worth noting that those studies 
that observed an increased risk of cryptorchidism among sons born to multi- 77 or primiparous 
mothers 48,83,84,87–89 tended to have larger sample sizes than those that found no 
association,5,6,75,76,78,86 and thus had greater power to detect an association, and that among those 
larger studies there was more consistency towards an increased risk among firstborn men. It has 
been hypothesized that this association is related to hormonal differences in nulliparous women 
compared with multiparous women. 17 Women in their first pregnancy have higher levels of free 
estradiol than in subsequent pregnancies,28 and 

Pregnancy-related health 

A multitude of factors related to the health of the mother have been investigated as potential risk 
factors for cryptorchidism development, perhaps due to their relevance to pregnancy. However, 
there is little consistent evidence that these maternal factors are strong risk factors in the 
development of cryptorchidism – and as such, we have reserved a detailed description of these 
factors for supplementary material (see Supplementary Material 1). 

Alcohol 

When viewed collectively, the literature to date provides little 93 or no 79,94,99,96,6,46,78,95,76,92,89 
evidence that maternal alcohol consumption during pregnancy is associated with cryptorchidism 
development. A recent meta-analysis reported a null association (adjusted pooled odds ratio: 0.97, 
95% CI 0.87–1.07).100 

However, there is limited evidence that ‘heavy’ drinking (relative to reported abstinence) might be 
associated with cryptorchidism development: whether via chronic exposure in terms of a relatively 
large number of drinks per week 98,97 or via binge drinking episodes. 97,99,96 For example, Damgaard 
et al. 97 observed that the sons of mothers who regularly consumed at least 5 drinks per week during 
pregnancy had three times greater odds of developing cryptorchidism compared to those not 
exposed (adjusted OR: 3.10, 95% CI 1.05–9.10). However, the authors found no conclusive 
evidence of an association between binge drinking episodes (i.e. instances where the mother was 
“noticeably inebriated”) and cryptorchidism development (adjusted OR: 1.18, 95% CI 0.77–1.83), 
findings which largely echo those observed by Jensen et al. 96 and Strandberg-Larsen et al..99 It is 
worth noting that observations regarding the impact of ‘heavy’ drinking have been made based on 
small proportion of exposed cases – for instance, of the n=2,477 mothers investigated in Damgaard 
et al.,97 only 34 consumed at least 5 drinks per week during pregnancy – of which 6 had a son who 
developed cryptorchidism (out of the total 128 cases) and 28 did not. Strandberg-Larsen et al.99 had 



the greatest power to detect an association between ‘heavy’ drinking and cryptorchidism 
development, with a cohort of more than n=41,000 and n=1,598 cryptorchidism cases; still, they 
found no such association. 

Based on evidence to date, it would appear that alcohol is not a major risk factor in the development 
of cryptorchidism; however, there are a number of issues with exposure assessment that require 
further consideration. Firstly there is likely to be social desirability bias when using self-report to 
measure alcohol consumption during pregnancy.95 Secondly the aggregation of studies with 
different exposure assessment of alcohol consumption (e.g. binge vs ever drinking) may mask any 
true associations. Thirdly, the lack of consistent definitions of the same exposure (e.g. what 
constitutes binge drinking) also means it is possible that a true association may not be apparent due 
to poor, and thus misclassified, exposure assessment. Given a possible association between 
sustained heavy consumption or binge drinking and cryptorchidism development, standardisation of 
how these exposures are measured is necessary. 

Tobacco 

The disruptive impact of tobacco exposure on the intrauterine environment is unequivocal.101 In 
addition to the various means by which tobacco exposure might affect testicular maldescent 
(including cellular genetic mutation and vasoconstriction),102 it has also been shown that the 
endocrine system – upon which successful descent of the testes depends – is disrupted by cigarette 
smoke.103 

Maternal smoking during pregnancy 

There is some evidence of a weak positive association between maternal smoking during pregnancy 
and subsequent development of cryptorchidism. 94,46,5,89,75,80,92,82,40,76,104,105 Two separate meta-
analyses have confirmed this association,100,106 with the most recent including information from 25 
studies and observing a 17% increased risk of cryptorchidism among boys born to mothers who 
smoked tobacco during pregnancy (pooled OR: 1.17, 95% CI: 1.11–1.23).100 To put this into 
perspective, the association between maternal smoking and the development of cryptorchidism is 
comparable to that observed for smoking and cleft lip defect (OR range 1.2–1.6).101 

Further evidence of an association was provided by Thorup et al.,107 who observed that among 
children born with cryptorchidism, chances of bilateral cryptorchidism (maldescent of both testes) 
is 50% among children born to mothers who smoked at least 10 cigarettes per day during 
pregnancy, but only 18% among those mothers who did not smoke during pregnancy, adjusted for 
birth weight.107 

However, there are some caveats to the evidence around maternal smoking and risk of 
cryptorchidism. First, there is the issue of study quality: there has been a high degree of both 
inconsistency and imprecision in the measurement of maternal smoking during pregnancy. Most 
studies to date have employed an ‘any-use’ means of measuring tobacco exposure, and/or have 
collected smoking status data at relatively arbitrary times during the antenatal period. 
46,5,48,89,108,80,94,6,75,78,40,82,98 This means that most studies ignore plausible dose-response relationships 
between the number of cigarettes smoked per day and cryptorchidism development, for which there 
is some evidence: Jensen et al. observed increasing risk of cryptorchidism with increasing numbers 
of cigarettes smoked per day (albeit with wide confidence intervals).105 It also means that most 
studies ignore the possibility that the timing of tobacco exposure is important (including timing of 
cessation among those who quit during pregnancy). One conceivable (though probably simplistic) 
explanation for why several studies have observed a null 6,68,108,79 or weak 94,46,5,48,80,78,92,40,82,98 



association between maternal smoking and cryptorchidism might be due to poor data quality and/or 
incomplete analytical accounting for the intensity and timing of smoking. An exception to this is the 
study by Mongraw-Chaffin et al.,95 which collected comprehensive prospective data on tobacco 
exposure during pregnancy and found a null (if not weak negative) result. These data were collected 
between 1959–1967, well before the 1980 Surgeon General’s Report on the Health Consequences 
of Smoking for Women 109 – and as such, the prevalence of maternal smoking was high within both 
case (49%) and control groups (58%).95 However, it should be noted that the multivariable models 
run by Mongraw-Chaffin et al. 95 only included data on n=68 cases and n=212 controls – and thus 
the author’s ability to detect potentially-important associations due to the comprehensive nature of 
data collection may been diluted by the small size of their sample. 

Second, the issue of social desirability bias and possible under-reporting of tobacco use applies 
here. While recall bias not an issue for those studies which collect tobacco exposure data 
prospectively,95 under-reporting is still highly likely regardless of study design and in prospective 
studies will likely result in the measure of association being biased towards the null.101 One 
approach to dealing with error in self-reported smoking status is to use a biologic measurement (e.g. 
via serum cotinine). This would seem a critical future step in validating the association between 
maternal smoking and cryptorchidism development.102 

Paternal smoking 

There appears to be consistent (albeit weak) evidence of an association between paternal smoking 
and cryptorchidism in the son. 75,80,79,105,104 For example, Jensen et al. 105 observed that paternal 
smoking during pregnancy increased the odds of cryptorchidism by 60% (unadjusted OR: 1.6, 95% 
CI 1.2–2.3). 

It is difficult to discern whether the association between paternal smoking and cryptorchidism 
development is a causal or spurious one. Jensen et al. 105 observed that the relationship between 
paternal smoking and cryptorchidism development did not disappear when additionally adjusted for 
maternal smoking; and it is conceivable that paternal smoking is associated with cryptorchidism via 
passive maternal exposure 104,75,105 or genetic ‘damage’ to the sperm involved in conception.79,104 
However, it is possible that the association may simply be the result of a strong correlation between 
maternal smoking (which may be underreported by mothers) and paternal smoking (for whom 
social desirability bias may have less impact on self-report).105 As suggested by Jensen et al.,105 
measurement of serum cotinine (or a similar biomarker) would be a useful means of testing the 
independence of the relationship between paternal and maternal smoking and cryptorchidism 
development. 

Drugs 

Broadly speaking, drugs that have been studied for an association with cryptorchidism can be 
grouped as a) medications for conditions directly related to the pregnancy and/or fertility, b) 
medications for conditions unrelated to the pregnancy (excluding analgesics), c) analgesics, and d) 
recreational drugs (or non-therapeutic use of medicines). 

Pregnancy-related medications 

Multiple studies have investigated the association between medications that may be taken to 
facilitate (or prevent) pregnancy; prevent pregnancy loss or complication(s); or treat nausea and 
vomiting. Studies have reported either little or no consistent evidence of an association between 



cryptorchidism risk and maternal use of anti-nausea/vomiting medications,76,78 fertility medications 
76 or contraceptive medications.76,78,110 In terms of medications used to prevent pregnancy loss or 
complications, some authors have found no association;76,78 however, Palmer et al. 111 observed an 
association between the synthetic estrogen diethylstilbestrol (DES) – widely given to women 
throughout the mid-20th century, ostensibly to prevent pregnancy complications – and development 
of cryptorchidism in sons (adjusted RR: 1.9, 95% CI 1.1–3.4). It is worth noting that most of these 
studies had relatively small samples sizes, and thus their power to detect associations was limited; 
for example, of the n=2,235 mothers investigated in Palmer et al.,111 only 54 had children who 
developed cryptorchidism – of which 38 were exposed to DES and 17 were not.76,78,110,111 

Mavrogenesis et al. 110 also observed an association between dydrogesterone treatment (commonly 
for pre-pregnancy endometriosis) and development of cryptorchidism (adjusted OR: 2.75, 95% CI 
1.04–7.28) – although the authors acknowledge the preliminary nature of this observation, since it 
was based on only 5 (out of 2,052) cases and 22 (out of 24,814) controls. 

Medications for conditions unrelated to the pregnancy (excluding analgesics) 

Several studies have investigated medications that may be taken by a mother during pregnancy to 
treat conditions unrelated to pregnancy – including anti-retrovirals, 112 antibiotics for fungal or 
bacterial infection,113,114 anti-depressives, 115 laxatives, 116 cough medications, 117 anti-anaemics 46, 
hypnotics, 46 and anti-epileptics. 118,119,120 In the majority of these studies, cryptorchidism was one 
of many congenital anomalies under investigation, and each study generally included a small 
number of cryptorchidism cases. These studies have found little or no association between use of 
these medications and subsequent cryptorchidism risk – with the possible exception of Bartfai et 
al.,117 who observed that boys born to mothers who reported using Prenoxdiazine (cough medicine) 
at some point during pregnancy appeared to be at increased risk of cryptorchidism (adjusted OR: 
1.8, 95% CI 0.9–3.5). However, given the small number of cases upon which this association was 
made (n=21), further research is required to substantiate this observation. 

Analgesics 

Perhaps the most investigated group of drugs in the context of congenital cryptorchidism are 
analgesics, such as paracetamol and ibuprofen. Analgesics have been implicated as endocrine 
disruptors, and it has been shown that clinically-relevant concentrations can cause endocrine 
disturbances in the human fetal testis.121 Several authors have observed a strong positive association 
between maternal use of analgesics and cryptorchidism in their sons.94,122–124 For example, Snijder 
et al. 122 observed that women who used mild analgesics during their second trimester had more 
than twice the odds of giving birth to sons who had cryptorchidism (adjusted OR: 2.12, 95% CI 
1.17–3.83), and after calculating population-attributable fractions (PAFs) concluded that up to 24% 
of all cryptorchidism cases in their cohort could be attributed to the maternal use of mild analgesics 
during pregnancy. 

However, there is also conflicting evidence regarding an association between maternal use of 
analgesics and cryptorchidism, with several authors finding no 6,78 or weak/limited 46,125,126 
evidence. We cannot easily attribute this conflict to differing exposure and outcome classification 
between studies: for example, Kristensen et al. 123 compared the association between maternal use 
of mild analgesics (including acetaminophen) and development of cryptorchidism in both Denmark 
and Finland, and observed a dose-dependent positive association in Denmark (e.g. adjusted OR for 
use of mild analgesics for more than two weeks during first and second trimester: 2.47, 95% CI 
1.02–5.96) but not in Finland (same OR: 0.56, 95% CI 0.13–2.45). While some heterogeneity in 
exposures might be expected between countries and study power the extent of this divergence is 



difficult to explain – and adds some confusion regarding the possible role of analgesia in the 
development of cryptorchidism. The authors themselves state that rather than having a directly 
causal relationship with cryptorchidism development, it is entirely possible that maternal use of 
analgesics may in fact be a “sentinel” of other (unmeasured) factors.127 It is also worth noting that, 
with the possible exception of Jensen et al.,124 the studies that have investigated analgesia exposure 
have generally involved a relatively small number of cases – thus limiting the power of these 
studies to detect an association. 

The ubiquity of analgesia use makes this exposure particularly important from a public health 
perspective – and given this fact, further well-powered, multivariate-adjusted investigations and 
meta-analyses are required to better assess this exposure. 

Recreational drug use 

Very few studies have investigated the association between maternal use of drugs which might be 
considered ‘recreational’ and the subsequent development of cryptorchidism in the son. Berkowitz 
and Lapinski 94 observed that maternal ‘drug abuse’ had no effect on cryptorchidism risk. While 
marijuana use by males has been reported to be associated with testicular cancer,128–131 there have 
been no studies to date examining maternal use of marijuana and cryptorchidism. 

Endocrine-disrupting chemicals 

A number of chemicals have been identified as potential disruptors of endocrine system function – 
and numerous animal studies have shown that exposure to these chemicals can interrupt normal 
testicular descent.132,133,134,135,136,137 There is an extensive body of literature examining the impact of 
these endocrine-disrupting chemicals on the prevalence of cryptorchidism in humans – and it is 
possible to classify this literature as referring to either occupational or environmental exposure. 

Occupational exposure 

Multiple authors have investigated the association between certain occupations and the 
development of cryptorchidism, with occupation acting as a proxy for exposure(s) that are thought 
to cause cryptorchidism. With a few rare exceptions, the underlying exposures of interest are 
synthetically-manufactured chemicals, particularly pesticides used in the agricultural industry. 
Several studies have observed an increased risk of cryptorchidism arising from maternal 
agri/horticultural occupation during pregnancy.98,138–140 For example, Jorgensen et al. 138 observed 
in a large Danish cohort that sons of mothers who farmed during pregnancy were nearly a third 
more likely to develop cryptorchidism compared to sons of mothers who did not farm (adjusted HR: 
1.31, 95% CI 1.12–1.53). Several authors have also observed an increased risk of cryptorchidism 
among boys born to fathers who are agri/horticultural workers,75,98,141 although the mechanism by 
which paternal exposure affects the developing foetus remains unclear. 

Morales-Surez-Varela et al. 142 observed that occupations with increased risk of paternal exposure 
to heavy metals were associated with an increased risk of cryptorchidism in sons (adjusted HR: 1.9, 
95% CI 1.1–2.7); however, maternal exposure during pregnancy was not associated (adjusted HR: 
1.0, 95% CI 0.3–1.7).142 Similarly, Vaktskjold et al. 143 observed no association between pregnant 
women working in a nickel factory and cryptorchidism (adjusted OR: 0.76, 95% CI 0.40–1.47). 

Hairdressing has been investigated by one study as a proxy for solvent exposure, though there is 
little evidence of an association with cryptorchidism – with Jorgensen et al. 144 observing that boys 



born to women who worked as hairdressers during pregnancy were no more likely to develop 
cryptorchidism than sons whose mothers worked in other occupations (adjusted HR: 0.91, 95% CI 
0.77–1.08). Finally, there is limited evidence that the sons of soldiers exposed to the endocrine-
disrupting chemical dibutyl phthalate during the 1940’s-1960’s were more likely to be born 
cryptorchid; however this evidence is based on a very small cohort.145 

Environmental exposure – indirect measurement 

Other studies have investigated the association between environmental exposure to endocrine 
disrupting chemicals and cryptorchidism. Bornman et al. 146 observed that sons born to women who 
lived in areas sprayed with dichlorodiphenyltrichloroethane (DDT) were more than twice as likely 
to be born cryptorchid (adjusted OR: 2.1, 95% CI 1.14–3.92). 

Several authors have estimated likely pesticide exposure according to the geographic region in 
which the child was born. This classification has been based on intensity of agricultural industry in 
the region,147,148 representative samples taken as part of a geological survey,149 or proximity to 
chemical plants.150,151 With respect to the latter, there is some evidence that proximity to a chemical 
plant is related to cryptorchidism risk. Czeizel et al. 150 observed in a large Hungarian cohort that 
the risk of cryptorchidism increased with proximity to the local acrylonitrile factory (a chemical 
used in plastic manufacturing) – while Kim et al. 151 observed that the risk of cryptorchidism was 
higher in those regions of South Korea that have petrochemical estates, compared to the national 
average.151 While offering little insight into the specific chemical exposures that may be associated 
with cryptorchidism development, these observations suggest – at least ecologically – that exposure 
to potentially-endocrine-disrupting chemicals may increase the risk of cryptorchidism development. 

Environmental exposure – direct measurement 

Rather than indirectly measure exposure to potential endocrine-disrupting chemicals via a proxy 
such as geographical location or occupation, a number of researchers have collected biological 
specimens and directly tested for the presence of these chemicals. The medium for this analysis 
varies: many studies have used maternal blood taken during pregnancy,152–158 although neonatal 
serum, 159,160 amniotic fluid, 60 breast milk,159,161–166 placental tissue/cord blood 159–162,166–172 and 
adipose tissue biopsy from the child 173,174 have also been employed. Those studies investigating 
early-life environmental exposure to endocrine-disrupting chemicals as a risk factor for 
cryptorchidism have generally drawn blood from the children themselves.175,176 

Despite extensive evaluation, the role of direct exposure to endocrine-disrupting chemicals remains 
uncertain. Some authors have observed higher levels of the compounds bisphenol A,176 dibutylin 169 
dioxin,164,173 heptachloroepoxide,174 hexachlorobenzene,174 polychlorinated biphenyls 164,173,177 and 
polybrominateddiphenyl ethers 159,164 among boys (and/or their mothers) who developed 
cryptorchidism compared to those who did not; however a substantial number of studies (at least 
some of which were adequately powered to detect an association) have directly evaluated these and 
other biologically-plausible compounds and found no such association.56,60,152–157,160,163,168,172,178 In 
some cases, studies have found substantial regional heterogeneity, including conflicting results 
between countries within the same study.161,162,164,169 For example, Rantakokko et al. 169 observed 
that maternal exposure to high levels (>0.15ng/g) of dibutylin was associated with increased risk of 
cryptorchidism in Danish sons (adjusted OR vs. <0.10ng/g: 4.01, 95% CI 1.42–11.33), but was 
inversely associated in Finnish sons (adjusted OR: 0.16, 95% CI 0.03–0.75). 

There is some evidence that rather than an individual chemical type being associated with 
cryptorchidism development, it is the mixture 167,171 or total burden165,170,173,177 of chemical exposure 



that is important. For example, Damgaard et al. 165 observed no (or very limited) association 
between individual compounds extracted from breast milk and cryptorchidism in the son – however, 
when the eight most commonly-occurring compounds (dichlordiphenyldichloroethylene [DDE], 
DDT, β-hexachlorocyclohexane], hexachlorobenzene], α-endosulfan, cis-heptachloroepoxide, 
oxychlordane and dieldrin) were combined, the authors observed higher levels of these pesticides 
among boys with cryptorchidism compared to boys without. 

Overall, the evidence regarding the association between cryptorchidism and exposure to potential 
endocrine-disrupting chemicals suggests a weak and inconsistent association – perhaps stronger in 
some contexts than others 161,162,164,169 for reasons that are not presently clear. It also remains 
unclear if the higher levels of compounds observed among cryptorchid boys (or their mothers) in 
some studies is indicative of heightened exposure to these chemicals, or indicates inability to 
metabolise those chemicals.166 We should also note that exposure to some of these chemicals has 
been in decline over recent decades,173 as production of chemicals such as PCB’s have been 
prohibited in many parts of the world.174 

Seasonality 

Some authors have proposed that cryptorchidism occurs in cycles according to calendar period of 
birth – with seasonal peaks that occur between September to November and again sometime 
between January and May (in the Northern Hemisphere).1,81,87,88,179–181 While it has been suggested 
that these seasonal peaks may coincide with hypothesised seasonal peaks in testosterone levels,81 
this has not been substantiated. 

Diet 

Giordano et al. 93 found an association between maternal consumption of smoked food products 
during pregnancy (adjusted OR: 2.46, 95% CI 1.15–5.29), and suggested that this may be evidence 
of a link between potentially-toxic components of food and disruption of endocrine processes. 
Brantsæter et al. recently observed no association between maternal consumption of organic foods 
during pregnancy and subsequent development of cryptorchidism in the son.182 

There is conflicting evidence in terms of the existence of an association between maternal use of 
caffeine and development of cryptorchidism: Berkowitz and Lapinski 94 observed no association 
between either maternal coffee (crude OR: 0.97, 95% CI 0.58–1.63 for >=1 cup per day) or tea 
(OR: 1.04, 95% CI 0.59–1.81 for >=1 cup per day) drinking during pregnancy and cryptorchidism 
development, while Mongraw-Chaffin et al. 95 observed that coffee drinkers appeared more likely to 
have sons with cryptorchidism (adjusted OR: 1.43, 95% CI 1.06–1.93 for 3 cups of coffee/day). 
However, Mongraw-Chaffin et al. 95 suggested that, if Berkowitz and Lapinski 94 had set their 
threshold for coffee use higher than >=1 cup/day, they too may have observed an association 
between caffeine exposure and cryptorchidism development. Further work is required to 
substantiate this association – particularly given the abrupt rise in the consumption of caffeinated 
‘energy’ drinks over the past decade.183 

Birth presentation 

In 1983, Swerdlow and colleagues 84 observed that boys born with cryptorchidism were 
considerably more likely to present in the breech position at the time of delivery than non-
cryptorchid boys. The authors postulated that this might suggest causality between the obstetric 
trauma of a breech pregnancy and cryptorchidism, citing evidence from previous studies that had 



found testicular bruising and lesions among children who had presented in the breech position.184–

186 The authors also suggested this observation was further grounds for protective Caesarean section 
to deliver these children.84 

However, while multiple authors have also observed an association between cryptorchidism and 
breech presentation 89,81,48,68,187,188 and/or mode of delivery, 6,89,81,88,78,87,76 it is possible that this 
association is primarily driven by shared aetiology rather than direct causality.89 In other words, the 
intrauterine factors that cause a child to settle into breech could be the same (or similar) to those 
that lead to maldescent of the testes; a theory supported by the observations of Damgaard et al.,68 
who found that the association between breech presentation and cryptorchidism remained strong 
even when adjusted for multiple covariates, including mode of delivery (adjusted OR: 2.59, 95% CI 
1.12–5.97). The authors suggest that the association between breech presentation and 
cryptorchidism may actually be an indirect marker of placental impairment.68 

Gestational factors 

Cryptorchidism has been consistently shown to be strongly associated with low birth weight, 
gestational age, and size for gestational age. 5,34,48,81,83,89,189,190,88,68,87,75,86,40,187,82,84,80,77,8,92 For 
example, recent observations from a New Zealand birth cohort showed that the prevalence of all 
three of these markers within boys with orchidopexy-confirmed cryptorchidism was approximately 
twice that observed among non-cryptorchid boys.189 In addition, relative foetal growth restriction is 
also associated with cryptorchidism: Jensen et al. 34 observed that a twin born with cryptorchidism 
was, on average, 136g lighter (95% CI 70–202) than a non-cryptorchid male twin. 

In combination, these observations suggest that these could be risk factors for cryptorchidism; 
however, rather than being risk factors per se, birth weight and fetal growth restriction may either 
have a shared aetiology with cryptorchidism, or be on the causal pathway between causative factors 
and cryptorchidism. In this case, the true aetiological factors would be exposures in the intrauterine 
environment that affect foetal development – likely reflecting a combination of the genetic and/or 
environmental exposures discussed elsewhere in this review. Low birth weight, for example, may 
be the result of a multitude of maternal factors – such as smoking during pregnancy, nutrition, pre-
pregnancy weight and age;191,192 thus, it is difficult to determine the true nature of the association 
between these markers of gestation and testicular maldescent. 

Twinning 

Weidner et al. 86 observed a protective effect among twin boys (compared to singletons) even after 
adjusting for birthweight (adjusted OR: 0.76, 95% CI 0.63–0.92) – while Jensen et al.193 noted that 
the rate of concordance (i.e. cryptorchidism occurrence in a pair of brothers) is substantially higher 
among twin boy pairs compared to full brother pairs (from separate pregnancies) – but not different 
between mono- and dizygotic twins (concordance rate: full brother pairs 8.8%; dizygotic twin pairs 
24.1%; monozygotic twin pairs 27.3%). This suggests that this concordance may more strongly 
related to the shared intrauterine environment, rather than a strong genetic component. Consistent 
with this, Schnack et al.,194 estimated that the risk of cryptorchidism concordance in male-male twin 
pairs was 2.6 times higher than what would be expected from genetic contributions alone. 

Genetics 

Genes that encode the molecules that facilitate testicular descent could be related to the risk of 
cyptorchdism;195 for example, experimental studies have shown that ‘knocking-out’ the gene that 



encodes INSL3 will result in bilateral cryptorchidism.195 It follows, then, that if abnormalities in 
these genes are handed from mother or father to son – and/or if epigenetic aberrations cause such 
abnormalities post-conception – then testicular descent will be directly affected by a genetic (or 
epigenetic) pathway. 

In humans, there is evidence that brothers and sons of men both with cryptorchidism are at 
increased risk of cryptorchidism: some authors have shown an increased familial risk that declines 
with decreasing degree of relativity.6,196,187,86,188 Jensen et al.193 and Schnack et al.194 both observed 
substantially higher concordance in cryptorchidism rates among maternal half-brothers compared to 
paternal half-brothers (concordance rate: maternal half-brothers 6%, paternal half-brothers 3.4%) – 
with the authors suggesting that given this observation (and the aforementioned observation 
regarding twinning), future aetiological work should focus on maternal genes (particularly the X 
chromosome) and the intrauterine environment.193 

Variants in more than 15 genes have thus far been implicated in the development of cryptorchidism 
in humans via candidate gene studies (see Supplementary Material 2); however, only one genome-
wide association study (GWAS) has been performed in ‘non-syndromic’ cryptorchidism (i.e. 
cryptorchidism in the absence of other congenital anomalies).197 In a GWAS of 844 boys with 
cryptorchidism and 2,718 controls, no individual SNPs reached a level of genome-wide 
significance. Pathway analysis, however, suggested that loci important in cyptoskeleton-dependent 
function may be of importance. The authors noted that their findings might reflect the fact that 
susceptibility to this disease is highly heterogeneous and possibly driven by environmental causes 
and/or rare genetic variants.197 

With respect to the latter, rare mutations in INSL3 and its receptor RXFP2 have been reported at low 
frequencies (1–4%) in boys born with cryptorchidism,198,199 while rare mutations have also been 
found in NR5A1, which is involved in several reproductive processes.200 However, given the rarity 
of these mutations, they can only explain a very small proportion of cryptorchidism cases. 

It is possible that inherited genetic variants may make an individual more or less susceptible to 
endocrine disruption via pathways such as exposure to chemicals, by disrupting the metabolism of 
these elements. For example an (albeit un-replicated) association reported by Qin et al.,201 was with 
a variant of the Aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) gene (OR for minor 
homozygous genotype rs5000770 [AA vs. GG]: 3.5, 95% CI 1.7–7.3). This gene is part of a family 
of transcription factors that, among other roles, regulates several physiological pathways including 
responses to environmental contaminants. In this case, the likely causal mechanism by which 
genetic traits of the individual are influencing the likelihood of cryptorchidism is via interaction 
with environmental exposures – with this interaction leading to a ‘supra-multiplicative’ increase in 
cryptorchidism risk, beyond that which might be expected based on the individual associations. 
Such phenomena are referred to as non-additive (multiplicative) gene-environment interactions. 
There is, however, no evidence yet that such interactions exist in cryptorchidism. 

It is important to note that a number of discoveries in the cryptorchidism context – for example, 
regarding the role of INSL3 in testicular descent – were made using animal models, and that the way 
in which testicular descent occurs in non-human models varies in several important respects to the 
same process in humans. For example, in humans the processus vaginalis (Fig. 1) disappears 
following testicular descent; while in rodents, it remains intact – enabling the testis to ascend back 
into the peritoneum later in life.18 Because of key differences in testicular descent between species, 
findings in animal models are not necessarily transferable to humans – unless, as in the case of 
INSL3, evidence exists from both experimental (non-human) models 195 and human studies.198,199 



Ethnicity 

There is some evidence of varying risk of cryptorchidism by ethnic grouping. In the United States, 
McGlynn et al. 82 observed that cryptorchidism was somewhat less likely in Black males compared 
to White males; while in New Zealand, Māori males are 20% more likely to be born with 
cryptorchidism than the non-Māori/Pacific/Asian population (adjusted RR: 1.20, 95% CI 1.11–
1.30), while Pacific (0.89, 95% CI 0.80–0.99) and Asian (0.68, 95% CI 0.59–0.79) males have 
lower risk.189 It has also been noted in New Zealand that ethnic trends in cryptorchidism incidence 
mirror those observed for testicular cancer.202,203 

It is possible that these ethnic trends are driven by predisposing genetic variants that are present in 
some ethnic groups but not others – however, it is important to note that ethnicity is a social 
construct, to which individuals self-identify (or are identified by their parents, in the case of 
newborns). However it is possible that individuals within a specific ethnic group are more likely to 
share some common ancestry, which may be associated with a high likelihood of specific 
predisposing genetic variants. 

Recommendations for future work 

Further systematic reviews and meta-analyses 

For those risk factors in which there is a body of epidemiological evidence, additional high-quality 
systematic reviews, which include quality assessment of the studies, and meta-analyses are required 
in order to provide best-estimates regarding the current state of evidence with respect to a given 
exposure. The heterogeneity of exposure measurement (and outcome measurement, for that matter) 
will present a challenge for these studies. 

Strengthening causal inference 

Future work should aim at using approaches that can strengthen casual inference by separating 
spurious associations from causal effects. For example, future work aiming to provide further 
evidence for a causal role for smoking and alcohol in the development of cryptorchidism should 
consider using Mendelian randomisation. Using this approach, researchers could use genetic 
variants known to influence the risk of smoking and alcohol consumption, and assess their 
association with cryptorchidism. This approach is not subject to experimental biases (including 
social desirability bias), and as such represents a viable alternative means of testing the 
observational associations for causality. While the rarity of cryptorchidism may affect the 
usefulness of this method in this context, it is certainly worthy of further consideration. 

Development of a cryptorchidism consortium 

As noted throughout this review, many individual studies investigating specific risk factors for 
cryptorchidism are underpowered to identify potential associations. There is therefore a great need 
for further high-quality studies that are well-powered and designed with sufficient detail to allow 
exploration of dose-response relationships and adjustment for multiple confounders, ideally with 
inclusion of genetic sampling to contribute to a large GWAS in cryptorchidism with thousands of 
cases. A key area of future emphasis in this regard will be the combination of study datasets across 
international contexts, such that these comprehensive multivariate analyses can be performed. This 
consortium dataset would help in the identification causal factors, but also allow us to estimate 



prevalence of cryptorchidism in a standardised fashion across different countries, which would be 
highly informative. 

Conclusions 

Painting a picture of the factors that lead to maldescent of the testes is a difficult task, as evidenced 
by the uncertainties noted in this review. We have presented a list of putative risk factors in Box 1, 
which lists risk factors according to the likelihood that they are associated with cryptorchidism 
development. However, there are few instances in which there is consistent evidence with respect to 
a given exposure; and in those cases where evidence appears unequivocal – for example, the 
relationship between cryptorchidism and gestational measures such as low birth weight – the 
measured exposure actually represents exposure(s) that we don’t yet fully understand in the 
cryptorchidism context. Perhaps these caveats provide a clue as to why a concrete understanding of 
the aetiology of this disease remains elusive: in a situation where myriad (and often ubiquitous) 
exposures have been associated with cryptorchidism, it is likely that the causal roots of this 
condition are multifactorial and highly variable between individuals. Rather than a handful of 
candidate exposures being responsible for the vast majority of cases, perhaps the relative 
importance of each risk factor varies considerably between mother/son pairs depending on an array 
of genetic, maternal, placental and foetal factors – all of which could vary between regional 
contexts. In short, the complexity of (and mystery surrounding) the aetiology of this disease is 
perhaps an appropriate reflection of the complexity of the biological mechanisms that drive 
testicular descent in the first place. 

Box 1 

Putative risk factors associated with cryptorchidism 

Likely to be associated 

 Maternal smoking during pregnancy 94,46,5,89,75,80,92,82,40,76,104,105,100,106 
 Birth measures (birth weight, gestational age, size for gestational age) 5,8,34,40,48,68,75,77,80–84,86–

89,92,187,189,190 
 Family history of cryptorchidism 6,86,187,188,196 
 Rare genetic variants (e.g. mutations at INSL3 198,199) 

Unlikely to be associated 

 Assisted reproduction 63,70–74 
 Diet during pregnancy 182 
 Birth presentation 68 

Inconsistent or limited evidence of an association 

 Intrauterine exposure to high levels of endogenous hormones (e.g. estrogen 42–50) 
 Maternal health (see Supplementary Material 1) 
 Parity 76,78,86,6,5,75,87,88,89,48,83,84,77 
 Maternal age 75,76,77,78,79,80,81,68,6,5,46,77,82,83,76,77,84,85,48,82 
 Maternal alcohol consumption during pregnancy 93,79,94,99,96,6,46,78,95,76,92,89,100 
 Paternal smoking during pregnancy 75,79,80,104,105 
 Maternal use of medications not related to pregnancy 46,113–120 



 Maternal use of pregnancy-related medications 76,78,110,111 
 Maternal use of analgesics 6,46,78,94,122–126 
 Maternal recreational drug use 94 
 Maternal occupational exposure to endocrine-disrupting chemicals 98,138–140,143 
 Paternal occupational exposure to endocrine-disrupting chemicals 75,98,141,142 
 Geographic proximity to areas of intensive use of endocrine-disrupting chemicals 147–151 
 Maternal or childhood direct exposure to endocrine-disrupting chemicals 56,60,152–

157,159,160,163,164,168,169,172–174,176–178 
 Seasonality 1,81,87,88,179–181 
 Maternal caffeine consumption 94,95 
 Ethnicity 82,189 

  

Review Criteria 

We conducted searches of the Scopus database using the following search terms: ((cryptorchidism) 
OR (cryptorchism) OR (undescended test*)) AND ((exposure*) OR (exposed) OR (risk) OR (risk 
factor*)) AND ((epidemiology) OR (case-control) OR (cohort) OR (association) OR (associated) 
OR (population)). In addition, we scanned the reference lists of relevant articles to identify 
additional papers. The final search was conducted on 8th June 2016. 

Key Points 

 Cryptorchidism is one of the most common congenital abnormalities found among males, 
and is one of the few known risk factors for testicular cancer (TC). 

 Like testicular cancer, the key exposures in the occurrence of cryptorchidism (undescended 
testes) remain elusive. 

 Despite a considerable body of aetiological research, there are few exposures for which 
there is consistent evidence of an association with cryptorchidism. 

 In those cases where evidence appears unequivocal, the measured exposure is likely to be a 
surrogate for the true causal exposure. 

 The relative importance of each risk factor may vary considerably between mother/son pairs 
depending on an array of genetic, maternal, placental and foetal factors – all of which could 
vary between regions. 
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