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Abstract. The use of [1-13C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), 

in in vivo metabolic studies has developed quickly, thanks to the imaging probe’s diagnostic relevance. 

Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is 

relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced 

Polarization Side Arm Hydrogenation (PHIP-SAH) [Reineri F.et al. 2015] is a cost effective and easy-to-handle 

method that produces 13C-MR hyperpolarization in [1-13C]pyruvate and other metabolites. This work aims to 

identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. 

By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several 

experimental parameters whose optimization must be pursued if this method is to be made suitable for 

future translational steps. The search for possible solutions has led to improvements in the polarization of 

sodium [1-13C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels 

could be increased considerably by an automatized procedure which would reduce the time required for the 

work-up passages that are currently carried out manually. The results reported herein mean that the 

attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized 

substrates show significant promise.  

 

Keywords Magnetic Resonance Spectroscopy; MR-Imaging; Hyperpolarization; ParaHydrogen; 

Pyruvate. 

 

 

Introduction 

 

ParaHydrogen Induced Polarization (PHIP)[1–3] is a cheap and easy-to-handle hyperpolarization method that 

can provide ≥ 20% hyperpolarization of 13C MR signals in several substrates [4–6] in a few seconds. Although 

some in vivo studies have already been carried out [6–9], the use of parahydrogen-polarized molecules for 

clinical translation is still widely unexplored.  
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Conversely, the use of d-DNP polarized substrates [10] has proven to be a powerful imaging tool as it has 

produced several HP substrates that are suitable for the investigation of metabolic processes in vivo, in real 

time [11–13]. In particular, d-DNP polarized [1-13C]pyruvate has been used for the study of metabolic 

processes in tumours [14], the heart [15,16] and in ischemic strokes [17]. D-DNP has the drawback of 

requiring a quite sophisticated and expensive polarizer, limiting its use to few research laboratories.  

PHIP is obtained via the hydrogenation, using para-enriched hydrogen (hereafter named 

parahydrogenation), of suitable de-hydrogenated precursors of target hyperpolarized molecules. The 

parahydrogen hyperpolarization of some of the most important metabolic imaging reporters, above all 

pyruvate, therefore only became possible after the recent introduction of the Side Arm Hydrogenation (PHIP-

SAH) strategy [18]. In this method, hyperpolarized [1-13C]pyruvate and other carboxylate containing 

molecules [19], are produced via: 1) the esterification of the carboxylate group with an unsaturated alcohol 

(e.g. propargyl alcohol, vinyl alcohol) [20]; 2) the parahydrogenation  of the ester derivative, 3) the spin order 

transfer from the parahydrogen protons to the 13C carboxylate spin and 4) ester hydrolysis (Scheme 1). The 

polarization transfer step has been studied and a variety of methods for the PHIP hyperpolarization of 

heteronuclei have been reported [21,22]. These methods are based on pulse sequences [23–26], or magnetic 

field cycling (MFC) [27]. It has been reported that pulse sequence based polarization transfer methods, which 

are often used with PHIP polarizers [28–30], are less efficient than MFC because small, long-range J couplings 

are involved [31]. However, it is worth noting that a recent study [32] has shown that the PH-INEPT+ 

sequence provides efficient polarization transfer despites exploiting small J-couplings [26]. 

 

Scheme 1. Diagram of the PHIP-SAH procedure: 1) functionalization of the carboxylate group with the side-arm; 2) 

parahydrogenation of the unsaturated alcohol; 3) transfer of parahydrogen spin order to the 13C spin of the carboxylate 

group; 4) cleavage of the side-arm. The yellow background indicates that steps take place in the organic phase, while 

the blue background indicates that the molecule is dissolved in the water phase.  

 



The polarization level of the end product can be increased via the optimization of the following steps: the 

parahydrogenation reaction, the polarization transfer and hydrolysis of the ester. In the present work, 

propargyl-pyruvate has been used as an unsaturated precursor of hyperpolarized [1-13C]-pyruvate. 

Hyperpolarization level depends on 1) the percentage of hydrogen para-enrichment and the mandatory 

requirement that the hydrogen molecule is added to the unsaturated substrate in a pairwise manner;  2) the 

efficiency of the polarization transfer step from 1H to 13C, performed here by MFC and 3) polarization losses 

that occur during the hydrolysis and phase transfer of the 13C labelled product from the organic solvent. It 

must be reminded that mixing between para- and ortho- states on reaction intermediates must be limited as 

much as possible and, in the ideal case, the singlet state of parahydrogen might be transferred to the product 

purely [3].  

We herein report a study that aims to enhance the [1-13C]pyruvate polarization level from the 2% value that 

was obtained when the PHIP-SAH method was initially conceived [31]. 

 

Experimental methods 

Parahydrogen enrichment measurements 

The 1H-NMR spectra of hydrogen gas were acquired using 5mm NMR tubes equipped with PTFE gas valves. 

The NMR tubes were filled with 2 bar of hydrogen at room-temperature equilibrium (25% para-enriched), or 

parahydrogen (92% para-enrichment). Para-enrichment was quantified using 1H-NMR spectra acquired at 

14.1T [33]. 

Parahydrogen (92% para-enrichment) was generated by flowing room temperature hydrogen gas 

(electrolysis, FDGS WM-H2) through a chamber with a conversion catalyst at 36 K (Bruker BPHG). Para-

enrichment was found to be 90±2% as observed by 1H-NMR spectroscopy at 14.1T (Bruker spectrometer) 

and described by Bibo et al. [33].  

In order to estimate the extent of parahydrogen depletion during the parahydrogenation process, 

parahydrogen enrichment was measured in the gas phase after reaction completion. In order to do this, the 

catalyst was activated (see the following section), the substrate was added, and the NMR tube was 

pressurized with 92% para hydrogen (2bar). 1H-NMR of the hydrogen gas was acquired both before and after 



the reaction vessel was shaken in a hot water bath (353 K). In both cases, the hydrogenation mixture was 

kept at the bottom of the NMR tube, out of the  MR detection coil. 

 

Parahydrogenation reaction 

The hydrogenation catalyst [1,4-bis(diphenylphosphino)butane](1,5-cyclooctadiene)rhodium(I) 

tetrafluoroborate (1*10-3mmol, Sigma-Aldrich) was activated in the same NMR tube as used for the substrate 

hydrogenation reaction. In order to activate the catalyst, 30l of anhydrous ethanol were added to the solid 

catalyst powder, the tube was pressurized with normal hydrogen (Ultra High purity grade Hydrogen, 

99.999%, Praxair, 7 bar) and allowed to react overnight (about 15 hours) at 298 K. The catalyst was then 

dissolved and the ethanol turned dark orange. Next, the solution was frozen in a liquid nitrogen bath and 100 

l of chloroform containing 25*10-3mmol of propargyl-[1-13C]pyruvate (synthesized as reported in [19]) were 

added. The NMR tube was frozen using liquid nitrogen, pressurized with parahydrogen (92% enrichment), 

and stored in a liquid nitrogen bath until the hyperpolarization experiment was started.  

The NMR spectrometer (Bruker Avance 14.1T spectrometer) was prepared for the acquisition of the 1H-NMR 

hyperpolarized spectra. Magnetic field adjustments (shimming), and frequency tuning (1H and 13C) were 

carried out on a sample that was similar to those obtained from the parahydrogenation reaction. The 

hyperpolarized spectra were then acquired without any adjustment being made, which lead to significant 

detrimental effect being observed in the 1H-NMR hyperpolarized spectra (see e.g. figure 2).   

In the ALTADENA-type experiment [34], the parahydrogenation reaction was carried out in close proximity 

to the NMR spectrometer, but outside of the fringe field of the magnet (magnetic field ~ 100T). The NMR 

tube was heated in a water bath (353 K) for 7-8 seconds and vigorously shaken for 3 seconds before the valve 

was opened and 200 ul of chloroform were added in order to provide a sufficient volume for the acquisition 

of an NMR spectrum. The tube was quickly placed in the NMR spectrometer (20±2 s), and a 1H-NMR spectrum 

was acquired immediately. After thermal polarization was re-established, the 1H-NMR reference spectrum, 

which was used to quantify the 1H polarization level (see S.I.) was acquired (10 min after hydrogenation). The 

time delay between the end of hydrogenation (i.e. chloroform addition) and 1H-NMR spectrum acquisition 

was 20 seconds. In order to estimate the 1H polarization level at time zero, i.e. immediately after 



parahydrogenation completion, a variety of ALTADENA experiments were carried out  in which the time delay 

between chloroform addition and the acquisition of the 1H-NMR spectrum was gradually increased. 

 

13C hyperpolarization  

MFC was used to transfer the spin order of added parahydrogen protons to the target 13C carboxylate spin. 

This was done in a magnetic field shield (mu-metal triple shield), bearing a solenoid coil that was supplied 

with an electric current controlled by a custom-written function (the whole device was provided by Aspect 

Imaging). In the experimental procedure, the NMR tube was placed in the mu-metal shield immediately after 

shaking. The sample was then lifted out of the mu-metal box, chloroform was added and the 13C-NMR 

spectrum acquired in the shortest possible time (~30 seconds between the end of MFC and the acquisition 

of the 13C-NMR spectrum). 

The thermally polarized 13C-NMR spectrum was acquired 15 min after hydrogenation (8 transients, repetition 

time 200 s). 13C polarization was calculated as reported in S.I., each experiment was repeated three times.   

Nascent 13C polarization, i.e. polarization occurring immediately after MFC, was estimated by back calculation 

having carried out the 13C hyperpolarization experiment on a number of samples, with increasing delays 

between the end of MFC and 13C-NMR spectrum acquisition. During these intervals, the samples were kept 

at earth’s field, while the time spent in the NMR spectrometer remained constant.  

Hydrolysis  

In the first set of experiments, hydrolysis was carried out, as reported below, using an aqueous sodium 

hydroxide solution (0.1M). Sodium ascorbate (0.05 M) was added to the base solution in later experiments.  

The aqueous base was heated to 353 K and pressurized with inert gas (Ar, 3bar) in order to facilitate the quick 

and efficient mixing of the aqueous and organic phases. After the hydrogenation reaction and the application 

of MFC, the NMR tube was opened and the aqueous base was injected into the organic phase. An acidic 

buffer (HEPES, 100 ul,144mM, pH5.4) was added a few seconds (4-5s) later. Finally, the aqueous fraction was 

removed using a cannula connected to a syringe and it was transferred into a 5 mm tube for 13C-NMR 

acquisition.  



The time delay between the injection of the aqueous base and the acquisition of the 13C-NMR spectrum was 

40-45 seconds (see figure 1). In order to back-calculate the 13C polarization to time zero, i.e. immediately 

after ester hydrolysis, the relaxation time of the 13C carboxylate signal was estimated at earth’s field. Several 

hydrolysis experiments were carried out on a number of samples, using increasing time delays (t), between 

the addition of the acidic buffer and the acquisition of the 13C-NMR spectrum (see figure 1). The polarization 

decay constant and the nascent 13C polarization (P(t0)) were obtained from the interpolation of 13C 

hyperpolarized signals with an exponential decay curve (see figures S3 and S4). 

 

 
Figure 1. PHIP-SAH experimental workflow. The upper part of the figure illustrates the 13C hyperpolarization 

process, from the end of MFC (13C P(t0)) to 13C-NMR spectrum (13C Pobs) acquisition. It was observed that 13C 

polarization decays according to a variety of relaxation time constants (T1 of the allyl ester at the earth’s field, 

T1 of pyruvate, after hydrolysis, at the earth’s field and T1 of pyruvate in the high field magnet). The 

experiment was repeated at various t delay times to determine the T1 of [1-13C]-pyruvate at the earth’s 

field. 

 

 

Results 

1H hyperpolarization assessment 

Parahydrogen is non-magnetic and only the ortho-hydrogen signal can be observed by NMR. Upon comparing 

the 1H-NMR spectra of hydrogen at room-temperature equilibrium and para-enriched (figure S1), it was 



found that the hydrogenation reaction is accompanied by a dramatic decrease in the para-H2 enrichment 

from 90± 2 % to 50 ± 5%.  

The 1H hyperpolarization level observed in the ALTADENA experiment (figure 2), is a direct readout of the 

efficiency of singlet state transfer to the product and was found to be 11.7 ± 0.7%  on allyl-pyruvate, 20 s 

after the end of hydrogenation. Nascent polarization on 1H-NMR signals (P(t0)), which corresponds to the 

maximum polarization on parahydrogen protons, was estimated to be 23.9 ± 3.3 % (Figure S2). 

 

Figure 2. High field 1H-NMR spectra of parahydrogenated allyl-pyruvate obtained in a ALTADENA experiment: 

a) 20 s after the addition of parahydrogen at ~100 uT (ALTADENA conditions); b) in thermal equilibrium, 10 

min after hydrogenation (the spectrum was multiplied by 10). 1H polarization was 11.7 ± 0.7%, see  S.I. for 

experimental details. Magnetic field homogeneity was adjusted, before hyperpolarized spectrum acquisition 

(a), using a different sample and then improved before the acquisition of the thermally polarized sample (b). 

This leads to the significantly inferior lineshape seen in the HP spectrum compared to the thermally polarized 

one.  

 

13C hyperpolarization assessment 

1H hyperpolarization was transferred to the 13C carboxylate signal by means of the MFC. The magnetic field 

in the shield was initially set to 1.5T. At this field, the frequency difference between 1H and 13C nuclei is 48.1 

Hz and weak coupling between protons and the 13C carboxylate nucleus still occurs (see S.I. for J coupling 

values). Immediately after the placement of the parahydrogenated sample in the shield, the field was 



dropped to 30nT in 1ms, (diabatic passage), where the frequency difference HC is 0.95 Hz and isotropic 

mixing occurs between allyl group protons and the 13C carboxylate, i.e. HC is the same order of magnitude 

as their scalar coupling constant [31]. Finally, the magnetic field was exponentially increased to 10 T in 4 

seconds (adiabatic remagnetization).  

The 13C polarization observed on the ester (Pobs) was 8.3 ± 0.7%, which corresponds to a 6850 ± 650-fold 

signal enhancement with respect to thermal equilibrium, at 14 T. The delay between the end of MFC and the 

13C-NMR spectrum acquisition (t) was 30 seconds, most of which was spent at earth’s magnetic field. The 

T1  of the pyruvate ester 13C carboxylate signal at earth's field was estimated as being 88.8 ± 12.5 seconds 

using Δt variation, as detailed in the experimental methods. The nascent polarization (P(t0)), i.e. polarization 

occurring immediately after the end of MFC, was estimated to be 10.4 ± 1.0%. 

Once hyperpolarization was transferred to the 13C carboxylate signal, the ester was hydrolysed at earth's 

magnetic field to provide an aqueous solution of hyperpolarized sodium pyruvate. Following the injection of 

the pressurized, heated NaOH solution (0.1M), an emulsion of organic phase in aqueous base was 

instantaneously formed and ester hydrolysis occurred at the interface. The two phases then quickly 

separated (3-4 seconds). Phase separation was further improved by the addition of an acidic buffer (HEPES 

144 mM, pH 5.4). Under these conditions, the maximum 13C signal enhancement observed on the carboxylate 

signal in the aqueous phase was 2800 ± 50 at 14.1T (3.4 ± 0.05 % 13C polarization). T1 was measured at the 

earth’s field (T1 = 41.6 ± 2.7 s, see experimental methods) and the signal enhancement estimated before 

hydrolysis was 5000 ± 100 (see Figure S3). We surmise that the difference in the polarization of the ester and 

the aqueous pyruvate solution, can be is attributed to the paramagnetic impurities derived from catalyst 

degradation. This hypothesis lead us to add a radical scavenger (ascorbate 50mM), which has  already been 

used in d-DNP experiments [35], to the aqueous base. When hydrolysis was carried out using this solution, 

the observed polarization level increased to 5.16 ± 0.18 % (observed S.E. 4250 ± 150) and the relaxation time 

constant at earth’s field increased also (54.4 ± 4.4s). The nascent 13C polarization (13C Pol(t0), see figure 1 and 

3) was 9.45 ± 0.5 % (signal enhancement 7780 ± 400 times). This result indicates that ascorbate significantly 

limits polarization loss during hydrolysis. 

 



 

Figure 3. 13C polarization observed (Pobs) and nascent (P(t0)): PyE indicates allyl pyruvate (Pobs and P(t0)); Py 
indicates sodium [1-13C]pyruvate after hydrolysis with NaOH (without ascorbate) (PobsPy and P(t0) Py); and 
Py+A indicates sodium [1-13C]pyruvate (Py) after hydrolysis with NaOH and ascorbate (PobsPy+A and P(t0) 
Py+A). The observed hyperpolarization levels (PobsPyE, Pobs Py and Pobs Py+A) are an average of at least three 
experiments.   
 
 
Discussion  
 
The 1H-NMR spectra of the parahydrogen gas, acquired at the end of the parahydrogenation reaction, show 

that significant para-enrichment loss occurs during in the time course of the reaction. It is known that a 

catalyst is necessary for parahydrogen to be converted and that the reversible coordination of the hydrogen 

molecule to a metal complex makes this a quick process [28]. However, the catalytic cycle at the used 

Rhodium complex does not imply hydrogen molecule exchange at the metal centre. The unsaturated 

substrate is coordinated to the metal complex before, the hydrogen molecule enters the coordination sphere 

and is irreversibly transferred to the product. Minimal (if any) para-ortho conversion can therefore be 

expected, using this kind of hydrogenation catalyst [28]. 

The substantial para-ortho conversion observed in the hydrogen gas 1H-NMR spectra may be attributed to 

the presence of free Rhodium (both Rh2+ and Rh0), that derives from partial catalyst degradation. In order to 

validate this hypothesis, 31P-NMR spectra of the catalyst containing solution were acquired before and after 

the activation. It was observed that, after diene hydrogenation, the 31P signal that corresponds to the 

coordinated ligand (see S.I.) was found to be only about 20% of the total 31P-NMR signal and strong free 

phosphine and phosphine oxide absorption was detected. This means that a significant portion of the catalyst  

decomposes, under these experimental conditions, and that other Rh(II) and Rh(0) complexes are formed in 



the reaction mixture. Moreover, the accurate washing of the reaction vessel, using a hot concentrated acidic 

solution to completely remove metal traces, was also found to be useful in removing any other sources of 

paramagnetic metal ions that may reduce polarization level.  

Mixing between the singlet state (parahydrogen state), and the triplet states occurs in the hydrogenation 

intermediates, when parahydrogen is coordinated with the catalyst. This contributes to the depletion of 

parahydrogen state population and to consequent polarization loss.   

Although the catalytic cycle operated by the [Rh(diphos)]+ complexes works in such a way that reaction 

intermediates lifetimes are minimized compared with other homogeneous hydrogenation complexes [29], 

the mixing of the para-ortho states still occurs in hydrogenation intermediates [36]. We suggest that this may 

be the reason why only around 24% hyperpolarization was actually found on parahydrogen protons in 

ALTADENA experiments (nascent 1H hyperpolarization: P(t0) 1H). 1H hyperpolarization might, in principle 

correspond to the para-enrichment of hydrogen if the hydrogenation catalyst was able to facilitate the 

addition of the pure singlet state to the substrate.  

An important achievement is the beneficial role  played by ascorbate. The 13C polarization of [1-13C]pyruvate, 

back calculated to time zero (P(t0)), was 9.5% while the 13C polarization of the allyl ester (P(t0)) was 10.5%. It 

can therefore be stated that 13C hyperpolarization is almost completely maintained during the hydrolysis and 

phase extraction steps. 

It must also be highlighted that manual hydrolysis work-up takes approximately 40 s, during which time  

substantial hyperpolarization (about 50%) is lost, caused by relaxation processes. 

Conclusions 

The results reported show that 13C hyperpolarization on the allyl ester of [1-13C]pyruvate, following to 

parahydrogenation and MFC, was increased from about 2%, initially reported for the PHIP-SAH ester 

derivatives [31], to 5%.  



Several steps have been improved. It has been assessed that MFC allows to transfer about 40% of 1H 

hyperpolarization (P(t0) on 1H: 23.9 ± 3.3 %), observed in the ALTADENA experiments, to the 13C carboxylate 

signal of allyl ester (P(t0) on 13C of allyl pyruvate: 10.4 ± 1).  

The addition of ascorbate, a scavenger of paramagnetic impurities, considerably improved the maintenance 

of hyperpolarization during the hydrolysis step, and decreased the relaxation rate of the hyperpolarized 

signal. In practice, the nascent polarization on [1-13C]pyruvate (P(t0)) was 9.4 ± 0.5% while the polarization 

level obtained on the ester (P(t0)) was 10.4± 1%. This small loss may be ascribed to relaxation phenomena 

that occur at the interface between the organic and the aqueous phase during emulsion formation.  

It must be noticed that around half of the nascent polarization (P(t0)) is lost during the time delay (40-45 

seconds) between the end of the hyperpolarization procedure (the end of the MFC) and the acquisition of 

the NMR spectrum. This suggests that a dedicated and automatic set-up might be able to reduce the time 

needed for the work-up passages, which are currently carried out manually, and lead to an increase in the 

observed polarization level. Furthermore, it has been shown that parahydrogen enrichment is considerably 

diminished, during the hydrogenation reaction, which is probably due to the formation of metal impurities 

in the hydrogenation mixture. Further studies into hydrogenation catalysis are therefore a necessity. 

These observation provide important clues as to how this may be achieved and the polarization level on PHIP-

SAH products increased. 
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