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Modeling individual expertise in group judgments

July 12, 2013

Abstract

Group judgments are often—implicitly or explicitly—influenced by
their members’ individual expertise. However, given that expertise is
seldom recognized fully and that some distortions may occur (bias, cor-
relation, etc.), it is not clear that differential weighting is an epistem-
ically advantageous strategy with respect to straight averaging. Our
paper characterizes a wide set of conditions under which differential
weighting outperforms straight averaging and embeds the results into
the multidisciplinary group decision-making literature.

1 Introduction

Groups frequently make judgments that are based on aggregating the opin-

ions of its individual members. A panel of market analysts at Apple or

Samsung may estimate the expected number of sales of a newly developed

cell phone. A group of conservation biologists may assess the population

size of a particular species in a specific habitat. A research group at the

European Central may evaluate the merits of a particular monetary policy.

Generally, such problems occur in any context where groups have to com-

bine various opinions into a single group judgment (for a review paper, see

Clemen 1989).

Even in cases of fully shared information, the assessment of the evidence

will generally vary among the agents and depend on factors such as profes-

sional training, familiarity with similar situations in the past, and personal

attitude toward the results. Thus, it will not come as a surprise that the

individual judgments may differ. But how shall they be aggregated?

Often, some group members are more competent than others. Recog-

nizing these experts may then become a crucial issue for improving group

performance. Research in social psychology and management science has

investigated the ability of humans to properly assess the expertise of other

group members in such contexts (Clemen 1989; Bonner, Baumann and Dalal
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2002; Larrick, Burson and Soll 2007). Most of this research stresses that rec-

ognizing experts is no easy task: perceived and actual expertise need not

agree, data are noisy, questions may be too hard, and expertise differences

may be too small to be relevant (e.g., Littlepage et al. 1995). This moti-

vates a comparison of two strategies for group judgments: (i) deferring to

the agent who is perceived as most competent, and (ii) taking the straight

average of the estimates (Henry 1995; Soll and Larrick 2009). The over-

all outcomes suggest that the straight average is often surprisingly reliable,

apparently being one of those “fast and frugal heuristics” (Gigerenzer and

Goldstein 1996) that help boundedly rational agents to make cost-effective

decisions.

On the other hand, even if not explicitly recognized as such, experts

tend to exert greater influence on group judgments than non-experts (Bon-

ner, Baumann and Dalal 2002). This motivates a principled epistemic anal-

ysis of the potential benefits of expertise-informed group judgments. We

characterize conditions under which differentially weighted averages, fed by

incomplete and perhaps distorted information on individual expertise, ame-

liorate group performance, compared to a straight average of the individual

judgments. Our paper approaches this question from an analytical perspec-

tive, that is, with the help of a statistical model. We following the social

permutation approach (e.g., Bonner 2000) and model the agents as unique

entities with different abilities. This differs notably from more traditional

social combination research where individual agents are modeled as inter-

changeable (e.g., Davis 1973). Our main result—that individual expertise

makes a robust contribution to group performance—is not without surprise,

given the generality of our conditions that also allow for perturbations such

as individual bias or correlations among the group members. Therefore, our

analytical results provide theoretical support to research on the recognition

of experts in groups (e.g., Baumann and Bonner 2004), and they directly

relate to empirical comparisons of differentially weighted group judgments

to “composite judgments”, such as the group mean or median (Einhorn,

Hogarth and Klempner 1977; Hill 1982; Libby, Trotman and Zimmer 1987;

Bonner 2004).

Our work is also related to two other research streams. First, there

is a thriving epistemological literature on peer disagreement and rational

consensus, where consensus is mostly reached by deference to (perceived)

experts. However, this debate either focuses on social power and mutual re-

spect relations (e.g., Lehrer and Wagner 1981), or on principled philosoph-

ical questions about resolving disagreement (e.g., Elga 2007). By means
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of a performance-focused mathematical model, we hope to bring this lit-

erature close to its primary target: the truth-tracking abilities of various

epistemic strategies. There is also a vast literature on group decisions pref-

erence and judgment aggregation (e.g., List 2012), but two crucial features

of our inquiry—the aggregation of numerical values and the particular role

of experts—do not play a major role in there.

Second, there is a fast increasing body of literature on expert judgment

and forecasting, which has emerged from applied mathematics and statistics

and became a flourishing interdisciplinary field. This strand of research

deals with the theoretical modeling of expert judgment, most notably the

(Bayesian) reconciliation of probability distributions (Lindley 1983), but

it also includes more practical questions such as comparison of calibration

methods, choice of seed variables, analyses of the use of expert judgment in

the past (Cooke 1991), and the study of general forecasting principles, such

as the benefits of opinion diversity (Armstrong 2001; Page 2007). We differ

from that approach in pooling individual (frequentist) estimators instead of

subjective probability distributions, but we study similar phenomena, such

as the impact of in-group correlations.

Admittedly, our baseline model is very simple, but due to this simplicity,

we are able to prove a number of results regarding the behavior of differen-

tially weighted estimates under correlation, bias and benchmark uncertainty.

Here, our paper builds on analytical work in the forecasting and social psy-

chology literature (Bates and Granger 1969; Hogarth 1978), following the

approach of Einhorn, Hogarth and Klempner (1977).

The rest of the paper is structured as follows: we begin with explain-

ing the model and stating conditions where differentially weighted estimates

outperform the straight average (Sect. 2). In the sequel, we show that this

relation is often preserved even if bias or mutual correlations are introduced

(Sect. 3 and 4). Subsequently, we assess the impacts of over- and underconfi-

dence (Sect. 5). Finally, we discuss our findings and wrap up our conclusions

(Sect. 6).

2 The Model and Baseline Results

Our problem is to find a good estimate of an unknown quantity µ. For

reasons of convenience, we assume without loss of generality that µ = 0.1

1Rewriting our results for the general case µ 6= 0 is just a matter of affine transfor-
mation, but comes with some notational baggage. Therefore we focus without loss of
generality on µ = 0.
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We model the group members’ individual estimates Xi, i ≤ n, as inde-

pendent random variables that scatter around the true value µ = 0 with

variance σ2i . The Xi are unbiased estimators of µ, that is, they have the

property E[Xi] = µ. This baseline model is inspired by the idea that the

agents try to approach the true value with a higher or lower degree of preci-

sion, but have no systematic bias in either direction. The competence of an

agent is explicated as the degree of precision in estimating the true value.

No further assumptions on the distributions of the Xi are made—only the

first and second moments are fixed.

In this model, the question of whether the recognition of individual ex-

pertise is epistemically advantageous translates into the question of which

convex combination of the Xi, µ̂ :=
∑n

i=1 ciXi, outperforms the straight

average µ̄ := 1
n

∑n
i=1Xi. Standardly, the quality of an estimate is assessed

by its mean square error (MSE) which can be calculated as

MSE(µ̂) := E[(µ̂− µ)2] = E

( n∑
i=1

ciXi

)2


=
n∑
i=1

c2i E
[
X2
i

]
+

n∑
i=1

∑
j 6=i

cicj E[Xi]E[Xj ]

=
n∑
i=1

c2i σ
2
i (1)

which is minimized by the following assignment of the ci (cf. Lehrer and

Wagner 1981, 139):

c∗i =

 n∑
j=1

σ2i
σ2j

−1 . (2)

Thus, naming the c∗i as the “optimal weights” is motivated by two indepen-

dent theoretical reasons:

1. As argued above, for independent and unbiased estimates Xi with

variance σ2i , mean square error of the overall estimate is minimized

by the convex combination X =
∑

i c
∗
iXi. Thus, for a standard loss

function, the c∗i are indeed the optimal weights.

2. Even when the square loss function is replaced by a more realistic

alternative (Hartmann and Sprenger 2010), the c∗i can still define the

optimal convex combination of individual estimates. In that case, we
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require stronger distributional assumptions.2

The problem with these optimal weights is that each agent’s individual

expertise would have to be known in order to calculate them. Given all the

biases that actual deliberation is loaded with, e.g., ascription of expertise

due to professional reputation, age or gender, or bandwagon effects, it is

unlikely that the agents succeed at unraveling the expertise of all other

group members (cf. Nadeau, Cloutier and Gray 1993; Armstrong 2001).

Therefore, we widen the scope of our inquiry:

Question: Under which conditions will differentially weighted

group judgments outperform the straight average?

A first answer is given by the following result where the differential weights

preserve the expertise ranking:

Theorem 1 (First Baseline Result) Let c1, . . . , cn > 0 be the weights

of the individual group members, that is,
∑n

i=1 ci = 1. Without loss of

generality, let c1 ≤ . . . ≤ cn. Further assume that for all i > j:

1 ≤ ci
cj
≤ c∗i
c∗j

(3)

Then the differentially weighted estimator µ̂ :=
∑n

i=1 ciXi outperforms the

straight average. That is, MSE(µ̂) ≤ MSE(µ̄), with equality if and only if

ci = 1/n for all 1 ≤ i ≤ n.

This result demonstrates that relative accuracy, as measured by pairwise

expertise ratios, is a good guiding principle for group judgments as long as

the relative weights are not too extreme.

The following result extends this finding to a case where the benefits of

differential weighting are harder to anticipate: we allow the ci to lie in the

entire [1/n, c∗i ] (or [c∗i , 1/n]) interval, allowing for cases where the ranking of

the group members is not represented correctly. One might conjecture that

this phenomenon adversely affects performance, but this is not the case:

Theorem 2 (Second Baseline Result) Let c1 . . . cn ∈ [0, 1] such that
∑n

i=1 ci =

1. In addition, let ci ∈ [ 1n ; c∗i ] respectively ci ∈ [c∗i ;
1
n ] hold for all 1 ≤ i ≤ n.

Then the differentially weighted estimator µ̂ :=
∑n

i=1 ciXi outperforms the

straight average. That is, MSE(µ̂) ≤ MSE(µ̄), with equality if and only if

ci = 1/n for all 1 ≤ i ≤ n.

2Hartmann and Sprenger (2010) prove the optimality of the c∗i for the case of Normally
distributed independent and unbiased estimates with variance σ2

i and the loss function
family Lα(x) = 1− exp(−x2/2α2). That paper also contains an elaborate justification for
choosing this family of loss functions.
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Note that none of the baseline results implies the other one. The condi-

tions of the second result can be satisfied even when the ranking of the group

members differs from their actual expertise, and a violation of the second

condition (e.g., c∗i = 1/n and ci = 1/n + ε) is compatible with satisfaction

of the first condition. So the two results are really complementary.

We have thus shown that differential weighting outperforms straight av-

eraging under quite general constraints on the individual weights, motivating

the efforts to recognize experts in practice. The next sections extend these

results to the presence of correlation and bias, thereby transferring them to

more realistic circumstances.

3 Biased Agents

The first extension of our model concerns biased estimates Xi, that is, esti-

mates that do not center around the true value µ = 0, but around Bi 6= 0.

We still assume that agents are honestly interested in getting close to the

truth, but that training, experience, risk attitude or personality structure

bias their estimates into a certain direction. For example, in assessing the

impact of industrial development on a natural habitat, an environmentalist

will usually come up with an estimate that significantly differs from the es-

timate submitted by an employee of an involved corporation—even if both

are intellectually honest and share the same information.

For a biased agent i, the competence/precision parameter σ2i has to be re-

interpreted: it should be understood as the coherence (or non-randomness)

of the agent’s estimates instead of the accuracy. This value is indicative of

accuracy only if the bias Bi is relatively small.

Under these circumstances, we can identify an intuitive sufficient condi-

tion for differential weighting to outperform straight averaging.

Theorem 3 Let X1, . . . , Xn be random variables with bias B1, . . . , Bn.

(a) Suppose that the ci in the estimator µ̂ =
∑n

i=1 ciXi satisfy one of the

conditions of the baseline results (i.e., either 1 ≤ ci/cj ≤ c∗i /c
∗
j or

ci ∈ [1/n, c∗i ] respectively ci ∈ [c∗i , 1/n]). In addition, let the following

inequality hold: (
n∑
i=1

ciBi

)2

<

(
n∑
i=1

1

n
Bi

)2

(4)

Then differential weighting outperforms straight averaging, that is,

MSE(µ̂) < MSE(µ̄).
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(b) Suppose the following inequality holds:(
n∑
i=1

ciBi

)2

>

(
n∑
i=1

1

n
Bi

)2

+
1

n2

n∑
i=1

σ2i (5)

Then differential weighting does worse than straight averaging if con-

dition (b) holds, that is, MSE(µ̂) > MSE(µ̄).

Intuitively, condition (4) states that the differentially weighted bias is

smaller or equal than the average bias. As one would expect, this property

favorably affects the performance of the differentially weighted estimator.

Condition (5) states, on the other hand, that if the difference between the

mean square biases of the weighted and the straight average exceeds the

mean variance of the agents, then straight averaging performs better than

weighted averaging.

When the group size grows to a very large number, both parts of Theo-

rem 3 collapse into a single condition, as long as the biases and variances are

both bounded. This is quite obvious since the second term of (5) is of the

order O(1/n). Theorem 3 applies in particular in the case where agents are

biased into the same direction and less biased agents make more coherent

estimates (that is, with smaller variance):

Corollary 1 Let X1, . . . , Xn, be random variables with bias B1, . . . , Bn ≥ 0

such that ci ≥ cj implies Bi ≥ Bj (or vice versa for B1, . . . , Bn ≤ 0). Then,

with the same definitions as above:

• MSE(µ̄) ≥ MSE(µ̂).

• If there is a uniform group bias, that is, B := B1 = . . . = Bn, then

MSE(µ̄)−MSE(µ̂) is independent of B.

So even if all agents have followed the same training, or have been raised

in the same ideological framework, expertise recognition does not multiply

that bias, but helps to increase the accuracy of the group’s judgment. In

particular, if there is a uniform bias in the group, the relative advantage of

differential weighting is indepedent of the size of the bias. All in all, these

results demonstrate the importance of expertise recognition even in groups

where the members share a joint bias—a finding that is especially relevant

for practice.
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4 Independence Violations

We turn to violations of independence between the group members. Con-

sider first the following fact that compares two groups with different degrees

of correlation:

Fact 1 If 0 ≤ E [XiXj ] ≤ E [YiYj ] ∀i 6= j ≤ n and E[X2
i ] = E[X2

j ], then

both straight averaging and weighted averaging on Xi yield a lower mean

square error than the same procedures applied to Yi.

Fact 1 shows that less correlated groups perform better, ceteris paribus.

For practical purposes, this suggests that heterogeneity of a group is an

epistemic virtue since strong correlations between the agents are less likely

to occur, making the overall result more accurate (cf. Page 2007).

Regarding the comparison of straight and weighted averaging, we can

show the following result:

Theorem 4 Let X1, . . . , Xn be unbiased estimators, that is, E[Xi] = µ = 0,

and let the ci satisfy the conditions of one of the baseline results, with µ̂

defined as before. Let I ⊆ {1, . . . , n} be a subset of the group members with

the property

∀i, j 6= k ∈ I : ci ≥ cj ⇒ E[XjXk] ≥ E[XiXk] ≥ 0. (6)

(i) Correlation vs. Expertise If I = {1, . . . , n}, then weighted averaging

outperforms straight averaging, that is, MSE(µ̂) ≤ MSE(µ̄).

(ii) Correlated Subgroup Assume that E [XiXj ] = 0 if i ∈ I and j /∈ I,

and that
1

|I|
∑
i∈I

ci ≤
1

n

n∑
i=1

ci. (7)

Then weighted averaging still outperforms straight averaging, that is,

MSE(µ̂) ≤ MSE(µ̄).

To fully understand this theorem, we have to clarify the meaning of con-

dition (6). Basically, it says that in group I, experts are less with correlated

with other (sub)group members than non-experts.3

Once we have understood this condition, the rest is straightforward.

Part (i) states that if I equals the entire group, then differential weighting

3Recall that E[Xi, Xk] ≤ E[Xj , Xk] can be rewritten as σi/σj ≤ ρjk/ρik with ρij
defined as the Pearson correlation coefficient ρij := E[XiXj ]/σiσj . Also, if ci ≥ cj then
automatically σi ≤ σj .
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has an edge over averaging. That is, the benefits of expertise recognition

are not offset by the perturbations that mutual dependencies may introduce.

Arguably, the generality of the result is surprising since condition (6) is quite

weak. Part (ii) states that differential weighting is also superior whenever

there is no correlation with the rest of the group, and as long as the average

competence in the subgroup is lower than the overall average competence

(see equation (7)).

It is a popular opinion (e.g., Surowiecki 2004) that correlation of individ-

ual judgments is one of the greatest dangers for relying on experts in a group.

To some extent, this opinion is vindicated by Fact 1 in our model. How-

ever, expertise-informed group judgments may still be superior to composite

judgments, as demonstrated by Theorem 4. The interplay of correlation and

expertise is subtle and not amenbale to broad-brush generalizations.

5 Over- and Underconfidence

We now consider a specific family of ci’s in order to study how group mem-

bers’ self-assessment in terms of quality affects group performance as a

whole, modeled again as unbiased estimates Xi with variance σ2i .

Suppose that the group members have some idea of their own compe-

tence. That is, they are able to position themselves in relation to a commonly

known benchmark : they are able to assess how much better or worse they

expect themselves to perform compared to a default agent, modeled as a un-

biased random variable with variance s2. Such a scenario may be plausible

when agents have a track record of their performance, or obtain performance

feedback. The agents then express how much weight they should ideally get

in a group of n− 1 default agents:

ci =

1 +
∑
j 6=i

σ2i
s2

−1 =
s2

s2 + (n− 1)σ2i
(8)

Assume further that every agent uses the same benchmark, that these

weights also determine to what extent a group member compromises his

or her own position, and that decision-making takes place on the basis of

the normalized ci’s. It can then be shown (proof omitted) that the differ-

entially weighted estimator µ̂ defined by equation (8) outperforms straight

averaging—in fact, this is entailed by the Second Baseline Result (Theorem

2).

Here, we want to study how over- and underestimating the competence

of a “default agent” will affect group performance. Is it always epistemically
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detrimental when the agents misguess the group competence?

The answer is, perhaps surprisingly, no. To explain this result, we first

observe that the less confidence we have in the group (= s2 is large), the

more does the weighted average resemble the straight average. Recalling

equation (8), we note that all ci will be very close to 1. This implies that

the expertise-informed average will roughly behave like the straight average.

Conversely, if the group is perceived as competent (=small value of s),

then the ci will typically not be close to 1 such that differential weights will

diverge significantly from the straight average. This intuitive insight leads

to the following theorem:

Theorem 5 Let µ̂s2 and µ̂s̃2 be two weighted, expertise-informed estimates

of µ, defined according to equation (8) with benchmarks s2 and s̃2, respec-

tively. Then MSE(µ̂s2) ≤ MSE(µ̂s̃2) if and only if s2 ≤ s̃2.

It can also be shown (proof omitted) that this procedure approximates the

optimal weights c∗i if the perceived group competence approaches perfection,

that is, s → 0. In other words, as long as the group members judge them-

selves accurately, optimism with regard to the abilities of the other group

members is epistemically favorable. On the other hand, overconfidence in

one’s own abilities relative to the group typically deteriorates performance.

6 Discussion

We have set up an estimation model of group decision-making in order to

study the effects of individual expertise on the quality of a group judg-

ment. We have shown that in general, taking into account relative accuracy

positively affects the epistemic performance of groups. Translated into our

statistical model, this means that differential weighting outperforms straight

averaging, even if the ranking of the experts is not represented accurately.

The result remains stable over several representative extensions of the

model, such as various forms of bias, violations of independence, and over-

and underconfident agents (Theorems 3–5). In particular, we demonstrated

that differential weighting is superior (i) if experts are, on average, less

biased; (ii) for a group of uniformly biased agents; (iii) if experts are less

correlated with the rest of the group than other members. We also showed

that uniform overconfidence in one’s own abilities is detrimental for group

performance whereas (over)confidence in the group may be beneficial. These

properties may be surprising and demonstrate the stability and robustness

of expertise-informed judgments, implying that the benefits of recognizing

experts may offset the practical problems linked with that process.
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Our model can in principle also be used for describing how groups ac-

tually form judgments. In that case, the involved tasks should neither be

too intellective (that is, there is a demonstrable solution) or too judgmental

(Laughlin and Ellis 1986): in highly intellective tasks, group will typically

not perform better than the best individual (=the one who has solved the

task correctly). This differs from our model where any agent has only partial

knowledge of the truth. On the other hand, if the task is too judgmental,

any epistemic component will be removed and the individual weights may

actually be based on the centrality of a judgment, such as in Hinsz’s (1999)

SDS-Q scheme.

Finally, we name some distinctive traits of our model. First, unlike other

models of group judgments that are detached from the group members’

individual abilities (Davis 1973; DeGroot 1974; Lehrer and Wagner 1981;

Hinsz 1999), it is a genuinely epistemic model, evaluating the performance

of different ways of making a group judgment.4 Thus, our model can be used

normatively, for supporting the use of differential weights in group decisions,

but also descriptively, for fitting the results of group decision processes.

Second, we did not make any specific distributional assumptions on how

the agents estimate the target value. Our assumptions merely concern the

first and second moment (bias and variance). We consider this parsimony

a prudent choice because those distributions will greatly vary in practice,

and we do not have epistemic access to them. Classical work in the social

combination literature makes much more specific distributional assumptions

(e.g., the multinomial distributions in Thomas and Fink 1961 and Davis

1973), restricting the scope of that analysis.

Third, we are not aware of other analytical models that take into account

important confounders such as correlation, bias and over-/underconfident

agents. Thus, we conclude that our model makes a substantial contribution

to understanding the epistemic benefits of expertise in group judgments.

A Proofs of the Theorems

We will need the following inequalities repeatedly in the subsequent proofs.

Let c1, . . . , cn > 0. Then
n∑
i=1

1

ci
≥ n2∑n

i=1 ci
(9)

4Lehrer and Wagner also defend their model from a normative point of view, but their
arguments for this claim are not particularly persuasive, see e.g., Martini, Sprenger and
Colyvan (2013).
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with equality if and only if c1 = . . . = cn. Moreover

n

n∑
i=1

c2i ≥

(
n∑
i=1

ci

)2

(10)

again with equality if and only if c1 = . . . = cn. Both inequalities are special

cases of the Power Mean Theorem (cf. Wilf 1985, 258).

For the First Baseline Result, we need the following

Lemma 1 Let k < n and let (c1, . . . , cn) be a sequence such that

(1)
∑n

i=1 ci = s for some s > 0 and all ci are positive;

(2) c1 = . . . = ck and ck+1 = . . . = cn;

(3) ck ≤ ck+1 and 1 ≤ ck+1

ck
≤ c∗k+1

c∗k
.

Further assume that σ1 ≥ . . . ≥ σn. Then

n∑
i=1

( s
n

)2
σi ≥

n∑
i=1

c2iσi

Furthermore, we show that under the above conditions (i.e.
∑n

i=1 ci = s),

the value of the sum
∑n

i=1 c
2
iσi decreases as the quotient

ck+1

ck
increases.

Proof of Lemma 1: Fix r such that

• ci = s
n −

r
k for i ≤ k

• ci = s
n + r

n−k for i > k

Then we have to show that:∑
i≤k

( s
n
− r

k

)2
σi +

∑
i>k

(
s

n
+

r

n− k

)2

σi −
n∑
i=1

( s
n

)2
σi ≤ 0

The above equation reduces to:

r2

∑
i≤k

1

k2
σi +

∑
i>k

1

(n− k)2
σi

− 2s

n
r

∑
i≤k

1

k
σi −

∑
i>k

1

n− k
σi

 ≤ 0

(11)
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Now the left hand side of the above equation is a quadratic function in r

with zeros at 0 and

r0 =
2s

n

∑
i≤k

1
kσi −

∑
i>k

1
n−kσi∑

i≤k
1
k2
σi +

∑
i>k

1
(n−k)2σi

(12)

Since the σi are ordered decreasingly we get

r0 ≥
2s

n

∑
i≤k

1
kσi − σk+1∑

i≤k
1
k2
σi + 1

(n−k)σk+1

Now this is a function of the form kx−a
x+b with a, b > 0. Since these functions

are increasing for x > −b, the inequality above can be strengthened to

r0 ≥
2s

n

σk − σk+1
1
kσk + 1

(n−k)σk+1

Recall that
ck+1

ck
≤ c∗k+1

c∗k
= σk

σk+1
=: σ Inserting this transforms the above

equation into:

r0 ≥
2s

n

(σ − 1)σk+1k(n− k)

σk+1((n− k)σ + k)

Our assumptions about the ci translate into

s
n + r

n−k
s
n −

r
k

≤
c∗k+1

c∗k
=

σk
σk+1

This transforms to

r ≤ s

n

(σ − 1)k(n− k)

(n− k)− σk

In particular r < r0, finishing the proof of (11). For the last statement of

Lemma 1, observe that the left hand side of (11) is a quadratic function

with minimum 1
2r0, and that r ≤ 1

2r0. �

Proof of Theorem 1: By assumption the ci are ordered increasingly,

thus the σi are ordered decreasingly. For a vector of weights w ∈ Rn (i.e. all

wi positiv and
∑

iwi = 1), we denote the mean square error of the estimator∑
wiXi by Ψ(w): That is:

Ψ(w) :=
∑

w2
i σi

Thus for c = (c1 . . . cn) as in the theorem we have to show Ψ(c) ≤ Ψ(e),

where e is the equal weight vector ( 1
n , . . . ,

1
n). To this end we will construct

a sequence of weight vectors e = d0, . . . ,dn−1 = c such that:

13



(i) each di satisfies the assumptions of Theorem 1;

(ii) for di = (d1 . . . dn), there is some k ∈ N such that

d1 = . . . = dk and d1 > c1; . . . ; dk > ck;

dj = cj for k < j ≤ k + i (where i is the index of di);

dk+i+1 = . . . = dn and dk+i+1 ≤ ck+i+1; . . . ; dn ≤ cn;

(iii) Ψ(di−1) ≥ Ψ(di).

Thus di−1 = c and Ψ(c) ≤ Ψ(e) as desired. The di are constructed induc-

tively as follows: Assume di−1 = (d′1 . . . d
′
n) has already been constructed. If

i = 1 let k be the unique index such that ck <
1
n and ck+1 ≥ 1

n . If i > 1 let k

be as in the above conditions for di−1. First note that if k = 0, then d′j ≤ cj
for all j and thus di−1 = c since both are weight vectors and we are done.

Thus assume k ≥ 1 for the rest of the proof. With a similar argument, we

can show that k + i+ 1 ≤ n. Now choose the maximal r ∈ R that satisfies

d′k − ck ≥
r

k
ck+i+1 − d′k+i+1 ≥

r

n− k − i− 1
(13)

By the above conditions, r ≥ 0. Then define di = (d1, . . . , dn) by:

• dj = d′j − r
k for j ≤ k;

• dj = cj for k < j ≤ k + i;

• dj = d′j + r
n−k−i−1 for j ≥ k + i+ 1.

To see that di satisfies conditions (i)-(iii), first note that since r was chosen to

be maximal, one of the two inequalities in (13) has to be an equality. Thus

we either have dk = ck or dk+i+1 = ck+i+1 and condition (ii) is satisfied.

Further note that

n∑
i=1

di =
n∑
i=1

d′i −
∑
i≤k

+
r

k
+

∑
i≥k+i+1

r

n− k − i− 1
= 1

Using that the ci are ordered increasingly, it is easy to see that di satisfies

the assumptions of Theorem 1. Furthermore, applying the monotonicity

part of Lemma 1 to the set of indices I := {1, . . . , k}∪{i+ k+ 1, . . . , n}, we

get
∑

I diσ
2
i ≤

∑
I d
′
iσ

2
i . Thus Ψ(di) ≤ Ψ(di−1) since di−1 and di coincide

outside I. This finishes the proof. �
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Proof of Theorem 2: We would like to show that the mean square

error of the straight average µ̄ := (1/n)
∑n

i=1Xi exceeds the mean square

error of the weighted estimate µ̂. The MSE difference can be calculated as

∆(c1, . . . , cn) := MSE (µ̄)−MSE (µ̂) =
1

n2

n∑
i=1

σ2i −
n∑
i=1

c2iσ
2
i

=
1

n2

 n∑
j=1

1

σ2j

−1 n∑
i=1

1

c∗i

(
1− n2c2i

)

where we have made use of E[XiXj ] = 0, ∀i 6= j, and of c∗i =

(∑n
j=1

σ2
i

σ2
j

)−1
(cf. equation (2)). Thus, instead of considering ∆, it suffices to show that

∆′(c1 . . . cn) :=

n∑
i=1

1

c∗i

(
1− n2c2i

)
≥ 0.

To this end, let Ii := [1/n; c∗i ] (respectively [c∗i ; 1/n]) and let Q := I1× . . .×
In. Then,

D := Q∩ {(c1, . . . , cn)|
n∑
i=1

ci = 1}

defines the “domain” of our theorem, and it is a polygon. Moreover, since∑
i
n2

c∗i
c2i is a positive determinate quadratic form in the ci, we get that

∆′−1([0;∞)) is convex. Thus, it suffices to show that ∆′ is positive on

the vertices of D. Note that since {x|
∑
xi = 1} is of dimension n − 1,

the vertices of D are of the form v = (c∗1, . . . , c
∗
k−1, ck, 1/n, . . . , 1/n)—the

ordering is assumed for convenience, and ck is defined such that ||v||1 = 1.

Thus we have to show that ∆′(c∗1, . . . , c
∗
k−1, ck, 1/n, . . . , 1/n) ≥ 0.

In the case k = 1, the desired inequality holds trivially since ck = 1 −
(n−1) · (1/n) = 1/n. Thus we assume k > 1 for the remainder of this proof.

Let l denote the real number satisfying

n∑
i=1

c∗i = l
k − 1

n

Observe that for ci = 1
n the corresponding summands in ∆′ vanish. Thus

we have to show that

k−1∑
i=1

1

c∗i

(
1− n2c∗i

2
)

+
1

c∗k

(
1− n2c2k

)
≥ 0
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Using the definition of l from above and inequality (9) gives
∑k−1

i=1
1
c∗i
≥

(k − 1)2/(
∑k−1

i=1 ci) ≥
n(k−1)

l . Thus, it suffices to show

n(k − 1)

(
1

l
− l
)

+
1

c∗k

(
1− n2c2k

)
≥ 0 (14)

Since the ci add up to one, we can express the dependency between l and

ck by

ck =
(k − 1)(1− l) + 1

n
or by l =

k − nck
k − 1

(15)

Inserting this into (14) gives

∆′(c1, . . . , cn) =

(
1

l
− l
)
n(k − 1)− 1

c∗k

(
(1− l)2(k − 1)2 + 2(1− l)(k − 1)

)
=

k − 1

l

[(
1− l2

)
n− l

c∗k

(
(1− l)2(k − 1) + 2(1− l)

)]
=

k − 1

l

[
(1− l)

(
(1 + l)n− l

c∗k
((1− l)(k − 1) + 2)

)]
Since the first factor is always positive, it suffices to show that the factor in

the square brackets, denoted by P (l), is positive for every l that can occur

in our setting. We do this by a case distinction on the value of c∗k

Case 1: c∗k ≤ 1/n. Noting ck ∈ [c∗k,
1
n ] and the dependency (15) between

l and ck, we have to show that P (l) ≥ 0 for all l ∈ [1;
k−nc∗k
k−1 ]. We observe

that P is a polynomial of third order with zero points of P given by P (1) = 0

and

r± =
k + 1− nc∗k ±

√
(k + 1− nc∗k)2 − 4(k − 1)c∗kn

2(k − 1)

with r+ denoting the larger of these two numbers. With some algebra it also

follows that P ′(1) ≥ 0 if and only if ck∗ ≤ 1/n. From the functional form of

P (l)—a polynomial of the third degree with negative leading coefficient—we

can then infer that l = 1 must be the middle zero point of P . To prove that

P (l) ≥ 0 in the critical interval, it remains to show that for the rightmost

zero point, we have r+ ≥
k−nc∗k
k−1 :

k − nc∗k
k − 1

≤r+

⇔
2k − 2nc∗k
2(k − 1)

≤
k + 1− c∗kn+

√
(k + 1− nc∗k)2 − 4(k − 1)c∗kn

2(k − 1)

⇔k − 1− nc∗k ≤
√

(k + 1− nc∗k)2 − 4(k − 1)c∗kn

⇔c∗kn ≤1
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completing the proof for the case ck∗ ≤ 1/n.

Case 2: ck∗ ≥ 1/n. In this case we are dealing with the interval

l ∈ [
k−nc∗k
k−1 ; 1]. The same calculations as above yield

k − nc∗k
k − 1

≥ r+ if and only if c∗kn ≥ 1.

in particular r+ < 1. Thus l always lies between the middle and the right-

most zero point of P (l), and in particular, P (l) ≥ 0 for all l ∈ [
k−nc∗k
k−1 ; 1]. �

Proof of Theorem 3: Let the Xi center around Bi > 0. Then E[Xi−Bi] =

0, and we observe

E

( 1

n

n∑
i=1

Xi

)2
 = E

( 1

n

n∑
i=1

(Xi −Bi)

)2
+

(
1

n

n∑
i=1

Bi

)2

Analogously, we obtain

E

( n∑
i=1

ciXi

)2
 = E

( n∑
i=1

ci(Xi −Bi)

)2
+

(
n∑
i=1

ciBi

)2

.

Like in Theorem 2, we define ∆(c1, . . . , cn) := MSE(µ̄) − MSE(µ̂) as the

difference in mean square error between both estimates and show that

∆(c1, . . . , cn) ≥ 0 if equation (4) is satisfied.

∆(c1, . . . , cn) := E

( 1

n

n∑
i=1

(Xi −Bi)

)2
− E

( n∑
i=1

ci(Xi −Bi)

)2


+

(
1

n

n∑
i=1

Bi

)2

−

(
n∑
i=1

ciBi

)2

(16)

By Theorem 1 and/or Theorem 2, the first line is greater or equal to zero, and

by equation (4), the second line is also non-negative. Thus ∆(c1, . . . , cn) ≥ 0,

showing the superiority of differential weighting.

For the second part of the theorem, we just observe that

E

( 1

n

n∑
i=1

(Xi −Bi)

)2
− E

( n∑
i=1

ci(Xi −Bi)

)2
 ≥ 1

n2

n∑
i=1

σ2i .
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Proof of Corollary 1: It is easy to see that the conditions of the corollary

satisfy the requirements of part (a) of Theorem 3. This yields the desired

result for the first part of the theorem. For the second, part, let the Xi all

center around B 6= 0. Then Xi −B is unbiased, and we observe

E

( 1

n

n∑
i=1

Xi

)2
 = E

( 1

n

n∑
i=1

(Xi −B)

)2
+B2

E

( n∑
i=1

ciXi

)2
 = E

( n∑
i=1

ci(Xi −B)

)2
+B2.

Therefore, under the conditions of the theorem,

∆(c1, . . . , cn) = E

( 1

n

n∑
i=1

(Xi −B)

)2
− E

( n∑
i=1

ci(Xi −B)

)2


showing that ∆ only depends on the centered estimates. �

Proof of Fact 1: First we deal with straight averaging:

E

( 1

n

n∑
i=1

Xi

)2
−E

( 1

n

n∑
i=1

Yi

)2
 =

1

n2

n∑
i=1

∑
j 6=i

E [XiXj ]−
1

n2

n∑
i=1

∑
j 6=i

E [YiYj ] ≥ 0

The proof exploits that Xi and Yi have the same variance, thus E
[
X2
i

]
=

E
[
Y 2
i

]
. The proof for differential weights is similar, making use of the fact

that the ci are the same for Xi and Yi because they only depend on the

variance of the random variable. �

Proof of Theorem 4, part (i): First, assume without loss of generality

that ci ≥ ci+1 for all i < n. Thus, our assumption on the E[XiXj ] reduces

to E[XiXk] ≤ E[XjXk] for i ≥ j 6= k. First, we show the theorem under

the assumption that all E[XiXj ] with i 6= j are equal, say E[XiXj ] = γ. By

Theorem 1 and/or 2, it suffices to show that

1

n2

n∑
i=1

∑
j 6=i

E [Xi, Xj ]−
n∑
i=1

∑
j 6=i

cicj E [XiXj ] ≥ 0
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Inserting E[XiXj ] = γ this reduces to

γ ·

n− 1

n
−

n∑
i=1

∑
j 6=i

ci cj

 ≥ 0 (17)

The point (1/n, . . . , 1/n) is a global minimum of the function f(x) =
∑

i x
2
i

under the constraints x1, . . . , xn ≥ 0 and
∑

i xi = 1. Thus we have

1

n
= f

(
1

n
, . . . ,

1

n

)
≤ f (c) =

n∑
i=1

ci
2 (18)

Observing
∑n

i=1

∑n
j=1 ci cj = (

∑n
i=1 ci)

2 = 1 and combining this equality

with (17) and (18), we obtain

n− 1

n
−

n∑
i=1

∑
j 6=i

ci cj =
n− 1

n
−

n∑
i=1

n∑
j=1

ci cj +

n∑
i=1

ci
2 ≥ 0 (19)

thus proving the statement in the case that all E[XiXj ] are the same.

For the general case let us assume that not all ci are the same (otherwise

the theorem is trivially true). Thus we either have c1 > cn−1 or c2 > cn
since the ci are ordered decreasingly. In the following, we assume c2 > cn,

the other case works with a similar argument. First observe that

n∑
i=1

∑
j 6=i

cicj E [XiXj ] = 2
n∑
i=1

∑
j<i

cicj E [XiXj ] .

Thus, we can concentrate on {E[XiXj ]|i > j}. We fix a natural number c

and let Sc be the set of all vectors (E[XiXj ])(i>j) fulfilling the conditions of

our theorem and
∑

i>j E[XiXj ] = c We then consider the functional

ϕ̃(e) :=
1

n2

n∑
i=1

∑
j<i

E [XiXj ]−
n∑
i=1

∑
j<i

cicj E [XiXj ]

=
1

2

 n∑
i=1

∑
j 6=i

E [XiXj ]−
n∑
i=1

∑
j 6=i

cicj E [XiXj ]


on Sc. Observe that every Sc contains exactly one point eeq where all

E[XiXj ] are equal. By the first part of this proof, ϕ̃(eeq) is non-negative.

Thus, it suffices to show that eeq is an absolute minimum of ϕ̃ on Sc. First,

observe that the value of 1
n2

∑n
i=1

∑
j<i E [Xi, Xj ] is constantly c

n2 on Sc,

thus it suffices to show that

ϕ(e) :=
n∑
i=1

∑
j<i

cicj E [XiXj ] (20)
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attains its maximum on Sc in eeq.

To do so, we show the following: For every e ∈ Sc with e 6= eeq there is

some e′ ∈ Sc with ϕ(e′) > ϕ(e). In particular, ϕ does not take its maximum

on Sc in e. Thus assume that e = (E[XiXj ])(i>j) ∈ Sc is given. Since e 6= eeq
there are some indices s > t and k > l such that E[XsXt] 6= E[XkXl].

Furthermore, we can assume that t ≥ l. Without loss of generality (by

potentially replacing one of the two entries with E[XsXl]) we can assume

that either s = k or t = l. In the following we assume s = k, the other

case works similar. The idea of the following construction is: We show that

moving towards a more equal distribution of the entries E[XiXj ] increases

ϕ(e). In particular, we construct e′ = (E′[XiXj ])(i>j) ∈ Sc as follows: In

every row ri := 〈E[XiX1] . . .E[XiXi−1]〉 of e we replace all the entries of this

row by their arithmetic mean. Formally, that is for all i and j (independent

of j):

E′[XiXj ] =
1

i− 1

∑
l<i

E[XiXl]

Trivially this operation satisfies for all i:∑
j<i

E[XiXj ] =
∑
j<i

1

i− 1

∑
j<i

E[XiXj ] =

i−1∑
j=1

E′[XiXj ]

and thus also for the double sum:
n∑
i=1

∑
j<i

E[XiXj ] =
n∑
i=1

∑
j<i

E′[XiXj ].

In particular e′ is in Sc. Furthermore, we have assumed that the ci are

ordered decreasingly. Recall that ck > cj implies E[XiXk] ≤ E[XiXj ] by

assumption, therefore the rows ri were ordered increasingly, and thus the

rows of e′ − e:

E′[Xi, X1]− E[XiX1]; . . . ;E′[Xi, Xi−1]− E[XiXi−1]

are ordered decreasingly (since the rows of e′ are constant). In particular,

we have for any i:

0 =
∑
j<i

E′[XiXj ]− E[XiXj ] ≤
∑
j<i

cicj(E′[XiXj ]− E[XiXj ]) (21)

where the ≤ comes from the fact that both cj and E′[XiXj ]− E[XiXj ] are

decreasing in j. Summing that up over all i we get that

0 =

n∑
i=1

∑
j<i

E′[XiXj ]− E[XiXj ] ≤
n∑
i=1

∑
j<i

cicj
(
E′[XiXj ]− E[XiXj ]

)
= ϕ(e′)− ϕ(e)
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Thus we have ϕ(e′) ≥ ϕ(e) as desired. Now observe that (21) for i = s is

the following:

0 =
∑
j<s

E′[XsXj ]− E[XsXj ]

=
∑

j<s,j 6=t,l

(
E′[XsXj ]− E[XsXj ]

)
+ E′[XsXt]− E[XsXt] + E′[XsXl]− E[XsXl]

with both,∑
j<s,j 6=t,l

E′[XsXj ]− E[XsXj ] ≤
∑

j<s,j 6=t,l
cscj

(
E′[XsXj ]− E[XsXj ]

)
and

E′[XsXt]− E[XsXt] + E′[XsXl]− E[XsXl]

≤ csct(E′[XsXt]− E[XsXt]) + cscl(E′[XsXl]− E[XsXl]).

By construction we have E[XsXt] 6= E[XsXl], thus we would have a strict

inequality in the last summand (and thus in the entire sum) if we knew that

ct 6= cl. Unfortunately, this is not always the case. However, we have put

ourselves in a situation where applying the same construction again with

E′[X2X1] and E′[XnX1] replacing E[XsXt] and E[XsXl] yields the desired

(since we have assumed that c2 > cn. To see this, observe that

• E[X2X1] = E′[X2X1] by construction

• E′[XsX1] > E[XsX1] since E[XsXt] 6= E[Xs, Xl] and E[XsX1] is the

minimal element in the row rs

• E[X2X1] ≤ E[XsX1] by assumption

Thus we have

E′[X2X1] = E[X2X1] ≤ E[XsX1] < E′[XsX1] ≤ E′[XnX1]

By assumption we have c2 > cn and repeating the construction from above

with coloumns replacing rows and E′[X2, X1],E′[Xn, X1] as the two refer-

ence points yields the desired.

Proof of Theorem 4, part (ii): We have to show that the statement

holds if all E[XiXj ] with i 6= j ∈ I are the same. The step from this case to
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the general statement works as in the proof above. As in the proof of i), it

suffices to show that

1

n2

∑
i∈I

∑
j 6=i∈I

1 ≥
∑
i∈I

∑
j 6=i∈I

cicj

Let c̄ = 1
|I|
∑

i∈I ci. By equation (10) we have

∑
i∈I

c2i ≥
1

|I|

(∑
i∈I

ci

)2

=
1

|I|
|I|2c̄2 = |I|c̄2

thus ∑
i∈I

∑
j 6=i∈I

cicj ≤ (|I|2 − |I|)c̄2 ≤ |I|2 − |I| = 1

n2

∑
i∈I

∑
j 6=i∈I

1

with the last inequality coming from our assumption that c̄ < 1.

Proof of Theorem 5: Let the benchmark agent have standard deviation

s > 0, that is, variance s2. We will show that ∆(s, σ1, . . . , σn)—the MSE

difference between the differentially weighted and the straight average—is

strictly monotonically decreasing in the first argument. To this effect, we

calculate

∆(s, σ1, . . . , σn) =
1

n2

n∑
i=1

σ2i −
(

1∑
k ck

)2 n∑
i=1

c2iσ
2
i .

Now we show that ∂
∂s∆(s, σ1, . . . , σn) ≤ 0, where c′i denotes (∂/∂)sci:

∂

∂s
∆(s, σ1, . . . , σn) = − ∂

∂s

(
n∑
i=1

c2i
(
∑

k ck)
2
σ2i

)

= −
n∑
i=1

σ2i · 2 ·
(

ci∑
k ck

)
c′i
∑

j cj − ci
∑

j c
′
j

(
∑

k ck)
2

= − 2

(
∑

k ck)
3

n∑
i=1

σ2i ci

∑
j 6=i

c′icj − cic′j


= − 2

(
∑

k ck)
3

n∑
i=1

∑
j<i

(
σ2i ci − σ2j cj

) (
c′icj − cic′j

)
Since we are only interested in the sign of the first derivative and− 2

(
∑
k ck)

3 <

0 , it suffices to show that:(
σ2i ci − σ2j cj

) (
c′icj − c′jci

)
≥ 0 (22)
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We show that the terms in both brackets have the same sign.

For the first bracket we have:

σ2i ci − σ2j cj = s2
σ2i

s2 + (n− 1)σ2i
− s2

σ2j
s2 + (n− 1)σ2j

= s4
σ2i − σ2j

(s2 + (n− 1)σ2i )(s
2 + (n− 1)σ2j )

which is larger than or equal to 0 if and only if σ2i > σ2j . Similarly, we

observe for the second bracket that

c′i =
2(n− 1)sσ2i

(s2 + (n− 1)σ2i )
2
.

which allows us to conclude

c′icj − c′jci

=
2(n− 1)sσ2i

(s2 + (n− 1)σ2i )
2
· s2

s2 + (n− 1)σ2j
−

2(n− 1)sσ2j
(s2 + (n− 1)σ2j )

2
· s2

s2 + (n− 1)σ2i

= 2(n− 1)s5
σ2i − σ2j

(s2 + (n− 1)σ2i )
2(s2 + (n− 1)σ2j )

2

Thus, both factors in (22) have the same sign, implying ∂
∂s∆(s, σ1, . . . , σn) ≤

0 which is want we wanted to prove. �
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