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Abstract
In this paper we develop a simple, yet accurate, performance model to understand if and how evolutions of traditional cellular

network protocols can be exploited to allow large numbers of devices to gain control of transmission resources in smart factory
radio access networks. The model results shed light on the applicability of evolved access procedures and help understand how
many devices can be served per base station. In addition, considering the simultaneous presence of different traffic classes, we
investigate the effectiveness of prioritised access, exploiting access class barring techniques. Our model shows that, even with the
sub-millisecond time slots foreseen in LTE Advanced Pro and 5G, a base station can accommodate at most few thousand devices
to guarantee access latencies below 100 ms with high transmission success probabilities. This calls for a rethinking of wireless
access strategies to avoid ultra-dense cell deployments within smart factory infrastructures.

I. INTRODUCTION

Factory automation, under the buzzwords Factories of the Future (FoF), or Smart Factories (SF), is a key pillar of the
Industry 4.0 concept, and one of the key vertical sectors for 5G technologies [1], together with automotive, healthcare, energy,
media and entertainment [2]. 5G classifies the most stringent performance requirements of this application domain in the use
case family termed Tactile Internet / Automation since they require time-critical process optimisation to support zero-defect
manufacturing.

Key Performance Indicators (KPIs) defined by the 5G PPP for SF are exceedingly stringent: end to end (E2E) latency
between 100 µs and 10 ms, device densities between 10.000 per square km and 100 per square meter, service reliability
higher than 99%. Such utmost device densities suggested the identification of SF as the paradigmatic environment for massive
Machine-Type Communication (MTC) and a very challenging example of the Internet of Things (IoT).

While the present 5G activities are addressing scenarios that are either massive (i.e., with extreme user densities) or critical
(i.e., with stringent latency requirements), it is quite likely that future evolutions of 5G research will also consider massive and
critical scenarios, which will emerge in several domains, most notably automotive, health, and, in particular, SF. Therefore,
investigating how the 5G technology can cope with an extremely demanding environment such as SF is very important,
especially to determine the type and the density of base stations (BSs) that can meet the required KPI targets, together with
the associated cost.

To accomplish such task, little exists in the literature that can help to understand the impact of those procedures needed to
access resources in a cellular network under extreme operational conditions. The most relevant work in this field is the analytic
study described in [3]. In there, the authors developed a probabilistic model for MTC using the LTE technology, and compared
the model results to simulation predictions, to show a good match between the two approaches. The model in [3] incorporates
many features of the LTE procedures, but does not account for blocking at the BS, does not allow for differentiation of traffic
classes, does not generate the latency distribution, and does not provide a closed form solution for the main performance
indicators.

In this paper we describe a stochastic model of the behavior of environments that, like SF, can be massive, or critical,
or massive and critical, incorporating features that will be part of the 5G operations, and evaluating the performance of
scenarios typical of a SF environment. The model allows us to evaluate operational conditions, and to derive the distribution of
latencies experienced by network access requests. Our network performance analysis proves to be very accurate when results
are compared to the predictions of a detailed simulator or to the very detailed analytical model in [3].

Our results show that, for example, with standard system parameters (details are given in the section on numerical results),
in order to achieve a success probability not less than 0.9, and a latency not higher than 70 ms, one BS should serve no more
than ∼ 1400 devices. With a device density equal to 10.000 per square km, this means that the BS can cover an area of radius
equal to approximately 200 m. Instead, if we consider the most extreme density envisioned for SF, equal to 100 devices per
square meter, the BS can cover only 14 square meters, hence a circle of radius just over 2 m, which would be practically
unfeasible even in future SF scenarios! This shows how important it is to carefully evaluate the performance of cellular access
in massive MTC environments, and how impactful device density is, which should be definitely taken into account in the
design of future wireless access techniques for super-dense device layouts.

This work is partially supported by the European Commission through the H2020 5G-TRANSFORMER project (Project ID 761536) and by the Ramon y
Cajal grant (ref: RYC-2014-16285) from the Spanish Ministry of Economy and Competitiveness.
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TABLE I
NOTATION AND CELL PARAMETERS USED IN THE ANALYTICAL MODEL

description notation range
RACH interval τ 1 ms
Minimum time needed to reply to a RACH request Tmin 0.2 ms
Maximum time allowed to replay to a RACH request Tmax 0.4 ∼ 1 ms
Maximum time needed to establish an RRC connection after a RACH exchange Wmax 1 ms
Maximum number of RACH attempts kmax 10 ∼ 40
RACH collision probability pC 0 ∼ 1

Probability of failure in the RRC connect pR̄i e−kmax ∼ 1
e

Maximum number of requests that a base station can serve in a RACH interval Θ 12 ∼ 24
Network blocking probability pB 0 ∼ 1
Average RACH backoff at stage i Bi 10 ms
ACB deferral probability (for flow `) pA 0.05 ∼ 0.95
Random ACB backoff, after the j-th ACB barring event Aj 4 ∼ 512 s
Primary/secondary flow rate λ/` 9 ∼ 0.11
Timeout (primary flow) TO ≤ 10 s
Number of Random Access Preambles N 54
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Fig. 1. Timing example for a primary flow request served after 3 attempts.

II. SYSTEM

We focus our analysis on a single cell, with n Machine-Type Devices (MTDs) that generate new uplink transmissions with
a given aggregate rate. In the following, we distinguish two different types of requests: time-critical and non-time-critical,
which we identify with two flows, namely the primary and secondary flows. The requests belonging to the primary flow (with
intensity λ) can wait at most TO seconds before being served; otherwise, they are dropped. On the other hand, the requests
of the secondary flow (with intensity `) have no timeout, and represent traffic with lower priority, referring to non-real-time
applications. Table I shows the notation we use.

In order to access the network, each MTD has to first complete the random access procedure, which initiates as soon as a
RACH (Random Access CHannel) opportunity is granted by the BS. The MTD has to go through the RACH each time it has
a new message to transmit because downlink traffic is assumed to be sporadic [4].

A request is successful only when resources are actually allocated to the MTD; that is, we take into account also signalling
messages that are exchanged after the random access procedure successful completion. Indeed, the 3GPP-defined procedure to
access resources includes the RACH phase and the RRC (Radio Resource Control) connect phase, resulting in the exchange of
four messages. When either of the two phases fails, the MTD retries after a random backoff interval. Multiple timeouts are used
in the overall procedure, in the event of a collision, of an early access failure (when no RRC connect message is exchanged
before a time Tmax from the beginning of the RACH opportunity used by the MTD) or a late access failure (when the RRC
connect phase starts, but no final resource allocation is notified to the MTD within a window Wmax from the beginning of the
RRC connect phase). More details on the timing of a request will be provided in the next section when describing our model.
Fig. 1 shows an example of access request that succeeds after 2 retries over the Random Access.

In the system we just described, a message transfer can take place after the successful completion of two subsequent steps:
the RACH and the RRC connection procedures. The RACH can be divided into kmax sequential stages, one for each allowed
RACH attempt (after kmax attempts, a request is dropped). Access requests move from one stage to the next in case of collision
(with probability pC) and in case the request gets lost (i.e., it is not correctly received and acknowledged by the BS). The
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Fig. 2. Block diagram representing the system with primary and secondary flows accessing resources via RACH channels and RRC connect procedure. Flow
` is subject to ACB and all accepted requests are served in FIFO order.

latter event occurs with probability pR̄i , which is different at each attempt, due to the standard power ramping mechanism:
nodes progressively increase the power used to transmit RACH requests after each failed attempt [5].

The dynamic of RACH requests in the system is presented in Fig. 2. In each stage, a request can leave because of a success
(the MTD transmits its data). The request can however also leave the system because of a failure, which can consist in either
a network blocking due to a shortage of queueing resources at the network processor after a successful RRC connection
procedure or because of a timeout. Moreover, a request can move from stage i to i + 1 because of a collision, or any event
that precludes the success of the RRC connection procedure: either the request is not decoded by the BS, or the BS does not
have resources to send an acknowledgement and decides to drop the request (we indicate with Θ the maximum number of
requests the base station can acknowledge in each RACH interval τ ). In addition, a request can retry the RACH procedure at
most kmax times. Otherwise, it leaves the system with a failure. Notice that passing from a stage to the next incurs a random
delay due to backoff. Moreover, the secondary flow incurs RACH access deferring with fixed “barring” probability pA, and
multiple back-to-back deferrals are possible, so that secondary flow requests incur additional delay, due to standard Access
Class Barring (ACB) operation [6].

III. ANALYTICAL MODEL

For the sake of compactness and readability, we provide the reader with the definitions of the variables used in the analysis
in Table I. Moreover, the random variables representing intervals of time used in the model are pictorially presented in Fig. 1,
while flows entering and leaving the RACH system are indicated in Fig. 2 jointly with the system throughput ξ. For the sake
of tractability, the input to the considered system is assumed to be a Poisson process with intensity γ1. The accuracy of such
assumption will be later validated in the numerical evaluation section (see Fig. 4).

A. Structure of the request sojourn time

A RACH request enters the system in stage 1 and leaves in any stage i ∈ {1, . . . , kmax} upon a success, a network blocking,
an excessive number of retries, or a timeout. If a request leaves the system from stage i because of either a success or a network
blocking, it has been in the system for a time Yi−1 (more precisely, either Y (λ)

i−1 or Y (`)
i−1, depending on the flow considered)

which consists of (i − 1) times the interval Tmax and i − 1 backoffs, plus a random interval Z needed to model the delay
between RACH request and network grant (see Fig. 1 for i=2)—the latter being independent from Yi—and a random number
of barring backoffs for requests of the secondary flow. Similarly, in the case of an excessive number of retries, the time spent
in the system is Ykmax−1 +Z. In the case of timeout, of course, the time spent is TO. When passing from stage i to i+ 1, the
time spent until the stage transition is simply Yi. As we will see later, the above quantities are sufficient to describe the entire
sojourn in the system and to evaluate the performance of the system in terms of, among other quantities, network blocking
probability, timeout probability, throughput and sojourn time. With the notation described in Table I, the distribution of Y (`)

i is

F
Y

(`)
i

(x)=Pr

i Tmax +

i∑
k=1

Bk +

L∑
j=0

Aj ≤ x

, (1)
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where L is the random number of back-to-back deferrals experienced because of ACB. The distribution for the primary flow,
namely F

Y
(λ)
i

(x) is omitted because it can be derived from F
Y

(`)
i

(x) by plugging L= 0. The backoff random variables Bk

and Aj are independent among them and from Z, although not necessarily identically distributed. In contrast, variables Y (λ)
i

depend on Y (λ)
k ,∀k < i. Similarly, variables Y (`)

i depend on Y (`)
k ,∀k < i.

The distribution of the time spent by a request until the resolution of the i-th RACH attempt, for the secondary flow, is
expressed as the distribution of the random variable Y (`)

i−1 + Z:

F
Y

(`)
i−1+Z

(x)=Pr

(i−1)Tmax+

i−1∑
k=1

Bk+

L∑
j=0

Aj+Z≤x

; (2)

and for the primary flow it is enough to use (2) with L=0 to derive F
Y

(λ)
i−1+Z

(x). Since Z is independent from Y
(λ)
i and Y (`)

i ,
and denoting by fZ the p.d.f. of Z, the following useful results also hold: F

Y
(λ)
i−1+Z

=F
Y

(λ)
i−1
∗fZ and F

Y
(`)
i−1+Z

=F
Y

(`)
i−1
∗fZ .

B. Stage probabilities

At stage i, a request leaves the system because of either a success, a network blocking, or a timeout (primary flow). In all
other cases, the request moves from stage i to stage i+ 1, with the exception of stage kmax for which an attempt to pass to
stage kmax +1 results in a failure due to an excessive number of retries. Here we derive stage probabilities for the primary flow
only. However, the same equations hold for the secondary flow by replacing λ with ` and using TO→∞.

Stage transitions. Denoting by pC the RACH collision probability, which is the same for all RACH attempts, and by pR̄i
the probability of an error in the RRC connect procedure after the i-th RACH attempt, stage transition probabilities P (λ)

N (i)
are computed as the probability to reach stage i+ 1 going through all previous i stages. The described quantities only depend
on the aggregate load in the RACH and on the resources available at the BS.

For a request in the primary flow, the transition to the next stage occurs when there is either a collision or an RRC connect
failure, therefore with probability 1− (1− pC)(1− pR̄i), but only if the timeout has not expired before the end of the RACH
backoff in that stage, i.e., with probability F

Y
(λ)
i

(TO). This results in the following iterative computation, ∀i ≥ 1:

P
(λ)
N (i)=P

(λ)
N (i− 1)

[
1−(1−pC)

(
1−pR̄i

)]
F
Y

(λ)
i

(TO); (3)

where P (λ)
N (0)=1 by definition. Note that, since kmax is the maximum retry number, P (λ)

N (kmax) is a failure probability.
Success. The probability of a request succeeding in stage i, ∀i ≥ 1, is the probability of reaching stage i and then have no

collision in the RACH, no error in the RRC connect phase, and no network blocking. At the same time, no timeout has to
occur while waiting for the resolution of the i-th RACH attempt. Hence, denoting the conditional network blocking probability
by pB , given that a request succeeds on the RACH, the following recursive relation holds:

P
(λ)
S (i)=P

(λ)
N (i−1)(1−pC)

(
1−pR̄i

)
(1−pB)F

Y
(λ)
i−1 +Z

(TO). (4)

We denote by P (λ)
S the total success probability for the primary flow. Such quantity is computed by summing the success

probabilities (4) over the stages.
In the case of success, the request receives service, and the time spent in the system before service, for a request on the

primary flow, results to be a random variable Y (λ)
i−1 + Z.

Blocking. When a request successfully passes both the RACH and RRC connect phases, it can be either admitted to the
service or blocked because of lack of resources at the network processor of the BS. The probability that a request is blocked
by the network in any stage i, can be computed as

P
(λ)
B (i)=P

(λ)
N (i−1) (1−pC)

(
1−pR̄i

)
pB F

Y
(λ)
i−1+Z

(TO). (5)

We denote as P (λ)
B the total blocking probability of flow λ.

In the case of blocking, the time spent in the system is exactly like in the case of success (now excluding the service time),
i.e., for a request on the primary flow, it is Y (λ)

i−1 + Z.
Timeout. Requests of flow λ can experience timeout in stage i if they reach stage i and: 1) either the random access or the

RRC connect fail, and the backoff delay leads to exceeding the timeout; or 2) the RRC connect attempt is not resolved within
the timeout. The time spent in the system is of course TO, but it is also a value obtained from the r.v. Y (λ)

i or Y (λ)
i−1 +Z. The

resulting timeout probability can be expressed via the cumulative functions of those r.v.’s:

PTO(i)=P
(λ)
N (i−1)

{
(1−pC)

(
1−pR̄i

) [
1−F

Y
(λ)
i−1+Z

(TO)
]

+
[
1−(1−pC)

(
1−pR̄i

)] [
1−F

Y
(λ)
i

(TO)
]}

. (6)
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We further denote as PTO the total timeout probability.
Closed form for probability expressions. Although we have presented iterative expressions, one can notice that all of the

above expressions can be easily re-written in closed form. Indeed, it is enough to notice that stage transitions probabilities can
be put in the following closed form, ∀i ≥ 1:

P
(λ)
N (i)=

i∏
k=1

{[
1−(1−pC)

(
1−pR̄k

)]
F
Y

(λ)
k

(TO)
}
. (7)

The above expressions can be used in all other expressions found in this section to derive probabilities in closed form.
Remark on the generality of stage probability expressions. All expressions derived in this section are valid independently

from the distribution of backoff events and ACB configuration, and can be easily generalised for the case with no limit on the
number of RACH attempts (i.e., for kmax→∞). As it is easy to check, the sum of success, blocking, and timeout probabilities,
plus the stage transition probability in stage kmax, i.e., the sum over all events in which a request leaves the system, is identically
1 for all possible values of parameters and distributions used, which has to hold because an MTD request eventually has to
leave the system.

C. Analysis of random access operation

To compute the expressions for pC , pB and pR̄i to plug in the stage probability expressions derived above, we model the
RACH operation as a multi-channel slotted Aloha system with random backoff after a collision and with a finite number kmax

of attempts. We consider the typical 3GPP procedure in which access requests are transmitted with increasing power after each
failure and the BS can receive corrupted RACH messages even in the case of no collision, with probability e−i, with the power
used in stage i, as modeled in [5]. Moreover, the BS can serve a limited number of requests per RACH opportunity interval,
namely Θ access requests each τ seconds, where τ is the spacing between two subsequent Random Access Opportunities
(RAOs) and users can choose between N orthogonal RACH preambles to request access.

RACH collision probability. Given that, regardless the actual stage, all the requests performing random access share the
same resources, the collision rate is the same at all stages, and depends on the total RACH load γ, including both primary
and secondary flows. Hence, the collision probability in the resulting multi-channel slotted Aloha with N channels and slot
duration τ , is simply expressed as pC = 1− e−

γτ
N .

With one primary flow of intensity λ arrivals per second, plus a secondary flow of intensity `, the load of the RACH is
given by the sum of arrivals at each stage of the RACH:

γ = γ(λ) + γ(`) =

kmax∑
i=1

γ
(λ)
i +

kmax∑
i=1

γ
(`)
i . (8)

where γi is the RACH load due to attempts of connections that have already failed the random access i−1 times.
In turn, the load entering stage i due to the primary flow is simply given by the total intensity of the flow times the probability

to reach stage i, which is given by (7), i.e.:

γ
(λ)
i = λ

i−1∏
k=1

{
[1− (1− pC) (1− pRk)]F

Y
(λ)
k

(TO)
}
. (9)

The expression of γ(`)
i is similar, but for the fact that limTO→∞ F

Y
(`)
k

(TO)=1, and therefore we omit it.
Failure of RRC connect. After a success in the random access phase, an access request may not receive an answer either

because of channel errors or because the BS is saturated, which happens when the output σ of the multi-channel slotted Aloha
is greater than a maximum rate Θ.

As concerns channel errors, since the power ramping mechanism is taken into account, at each subsequent stage, requests
are detected with an increasing probability 1− e−i, where i is the current stage index [5].

As concerns exceeding the base station capacity Θ, let’s consider the output of the RACH at each stage, namely σi, which is
simply given by the load at that stage, times the probability of having no collision, i.e.: σi =

(
γ

(λ)
i + γ

(`)
i

)
(1− pC). However,

part of the non-collided RACH requests are received incorrectly by the BS, depending on the stage in which they are, so that
the actual number of requests to accommodate is σ′i = σi

(
1− e−i

)
, which is σ′ =

∑kmax

i=1 σ′i in total.
With the above, the number of correctly received requests in a RAO is, on average, σ′τ . Considering that the RACH behaves

as a slotted Aloha system with N independent channels (one for each orthogonal RACH preamble) with binary output, the
number of correctly decoded access requests at the BS can be modeled as a binomial process with success probability σ′τ/N .
Note that the throughput of a multi-channel slotted Aloha is upper-bounded by the number of channels, which guarantees that
σ′τ/N ≤ 1. The resulting mass probability function can be written as follows:

π′j=

(
N

j

)(
σ′τ

N

)j(
1− σ′τ

N

)N−j
, ∀j ∈{0, . . . , N}. (10)
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At most Θ requests can be answered in a RAO, and we denote by σ′′τ the average value of the corresponding random
process. The average loss NL due to clipping to Θ is

E [NL] = (σ′ − σ′′) τ =

N∑
j=Θ+1

(j −Θ)π′j . (11)

Since clipping is enforced independently of the RACH stage, the losses are uniformly spread over the stages: σ′′i =

σ′i

[
1− E[NL]

σ′τ

]
. Hence, combining the probability to incorrectly decode a request or that the BS cannot answer the request,

we derive the RRC connect failure probability:

pR̄i = 1− σ′′i
σi

= 1−
(
1− e−i

)(
1− E [NL]

σ′τ

)
. (12)

Notice that the computation of γ(λ)
i , γ(`)

i , pC and pR̄i requires an iterative approach, which can be solved by finding the
fixed point for γ = f(γ), where f(γ) results from using the expressions of pC and pR̄i in γ

(λ)
i and γ

(`)
i and summing to

compute the aggregate RACH load.
Blocking probability. The maximum number of MTDs allowed to access the network for packet transmission per unit of

time is constrained by the transmission rate C of the devices (which equals the rate at which the BS operates) and the mean
packet length PL. Denoting with E[S] = PL

C the network service time, the flow of requests approaching the network exceeds
the BS capacity as soon as the offered load ρ = σ′′E[S] becomes greater than 1. The latter happens when the number of
accepted requests in a RAO, σ′′τ , is larger than τ

E[S] . The maximum number of MTDs’ requests that can fit in a RAO unit is
then m = bτ/E[S]c. Requests in excess of m are blocked. Since the BS replies to access requests in an interval that can be
considered as uniformly distributed and with no memory, to compute the blocking probability, we use σ′′ as the arrival rate
of a M/D/1/m queue. The resulting blocking probability is [7]:

pB = (1− ρ)Em/(1− ρEm), (13)

where Em = 1− (1− ρ)
∑m
j=0

(−1)jρj(m−j)jeρ(m−j)
j! .

Network throughput. From the above simple approximate analysis, the resulting flow of requests successfully accessing
the network is simply ξ = ξ(λ) + ξ(`) = λP

(λ)
S + `P

(`)
S .

D. Sojourn time distribution
Primary flow. The distribution of the time spent in the system (not including the service time) for an access attempt in

the primary flow is computed by noting that a request exits the system at a generic stage i if one of three disjoint events
happens: 1) success, 2) blocking and 3) timeout. In addition to this, at stage kmax, any failure in the random access causes a
drop as well, even if the timeout has not expired. All the described events are mutually exclusive and cover the entire space
of probability for the event of leaving the system. Hence, the CDF of the time T (λ) spent in the system by a request can be
written by using the total probability formula as follows:

FT (λ)(x)=

kmax∑
i=1

PTO(i)U (x−TO)+
F
Y

(λ)
i−1+Z

(x)

F
Y

(λ)
i−1+Z

(TO)

kmax∑
i=1

(
P

(λ)
S (i)

+ P
(λ)
B (i)

)
+P

(λ)
N (kmax)

F
Y

(λ)
kmax−1

(x−Tmax)

F
Y

(λ)
kmax−1

(TO−Tmax)
, (14)

where U is the unit step function centred in TO. However, if we consider that failures for blocking or excess retries are
equivalent to timeouts, we consider as TO the latency in case of any failure and then simplify the above formula as follows:

FT (λ)(x)=

kmax∑
i=1

P (λ)
S (i)

F
Y

(λ)
i−1

+Z
(x)

F
Y

(λ)
i−1

+Z
(TO)

+
(

1−P (λ)
S (i)

)
U(x−TO)

. (15)

For designing and dimensioning purposes, a more insightful indicator should only take into account the time spent within
the system until a success. Hence, we derive the cumulative probability function of T (λ) given a success as

F
T

(λ)

|S
(x)=

kmax∑
i=1

P
(λ)
S (i)

P
(λ)
S

F
Y

(λ)
i−1+Z

(x)

F
Y

(λ)
i−1+Z

(TO)
. (16)

Secondary flow. In case of an access request belonging to the secondary flow, the expressions of the sojourn time T (`) are
similar to the ones derived for the primary flow, except for the absence of timeout events (i.e., TO→∞).



7

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

ξ 
[a

rr
iv

al
s/

m
s]

λ [arrivals/ms]

Model in [3]
Our model

Fig. 3. Comparison between our simple model and the M2M model by Madueño et al. [3], which follows the behaviour of LTE-A signalling operations in
detail. The latter is not meant to describe the behaviour of the system in saturated conditions, and hence a fair comparison with our model is possible only
in the leftmost part of the figure.

IV. MODEL POSITIONING

The model described so far is rather simple, and its solutiom requires low computational complexity. The heaviest part consists
in computing the CDFs of Y (λ)

i , Y (`)
i and Z, which can be done just once, offline. Moreover, deriving those distributions in

closed form is trivial in case of simple distributions of backoffs. We do not show them here for lack of space. After computing
the CDFs, one only needs to solve iteratively the equations described above. However, few iterations are enough for accurate
results (observations not reported here for lack of space show that less than 5 iterations are needed) and each iteration scales
linearly with the number of stages kmax.

Our model is generic, since it can be used for arbitrary population sizes and time constraints, so that it can be useful to
design massive as well as mission-critical SF scenarios.

Our model does not consider in deep detail the operations of signaling channels and access techniques of real networks,
e.g., LTE/LTE-A. This implies that we need to validate our model against realistic simulations. However, before proceeding
with a complete validation and performance evaluation, here we show that the results of previous very detailed models do not
substantially depart from ours. In particular, we consider a model recently proposed by Madueño et al. [3], which can be used
for the evaluation of M2M unsaturated scenarios, with sparse traffic and small payloads, RACH retries and dropped requests.
The main differences between the model in [3] and ours consist in the fact that [3] models LTE-A signalling channels very
accurately, that requests are never dropped because of lack of transmission resources, but only because of user impatience, and
that users never return to the network before the RRC timeout.

Fig. 3 compares the predictions obtained with our model and with the model in [3]. In order to perform a fair comparison,
we used the same configuration parameters for the two models. Specifically, we used the parameters suggested in [3] for M2M
traffic, with a narrowband LTE-A cell (1.4 MHz, resulting in 12 OFDMA resource blocks per ms, τ =10 ms, N=54) and a
slow modulation and coding scheme (3.456 Mb/s) for all data and signalling channels. We use 1 kbyte as fixed payload size
and 40 ms as maximum waiting time for a request queued for service. Accordingly, in our model, we use m = 4 and Θ = 72,
which correspond to queue and serve RACH request in at most 40 ms. Fig. 3 shows the system throughput vs. the exogenous
arrival rate generated by users. The two models behave quite similarly at low loads, i.e., in the range for which the model
in [3] was designed. However, when approaching saturation, the two models substantially deviate from each other. Indeed, the
model in [3] achieves unrealistically high throughputs, beyond the feasible bound imposed by channel speed (the flat region in
the curve of our model) because that model does not consider that messages can be dropped because of lack of transmission
resources over the PUSCH channel. Those resources are instead limited, as taken into account by our model. This comparison
proves that our simple model can be as accurate as a more complex and detailed one, while at the same time resulting in a
much more flexible and suitable tool for the evaluation of SF radio access.

V. NUMERICAL RESULTS

Arrival process Poisson approximation. In this paper, we consider industrial (i.e., SF) scenarios where the network traffic
consists of data from large numbers of MTDs. In the case of real-time control, data is normally generated from MTDs at
quasi-deterministic intervals. On the contrary, data generation for monitoring and maintenance applications can be assumed
more random.

As a consequence, modelling the request arrival processes as Poisson might appear an unacceptable simplification. However,
it is well known that (in general) the Poisson process is the limit collective behaviour for increasing number of sources
that independently generate arrivals. To support our modelling choice, we performed a set of simple simulation experiments,
comparing the interarrival time CDF generated by a Poisson process against the one produced by different numbers of sources.
Fig. 4 shows some of the results we have obtained. In particular, in this figure, we compare Poisson arrivals against the process
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resulting from superpositions of processes with interarrival times distributed according to a uniform distribution in the range
[0.9, 1.1] (Fig. 4-b). In the experiments, we vary the number of sources that generate arrivals, as well as the average number
of total requests for each case. We can clearly see that the CDFs are very similar already for 10 independent sources, and
become identical for 1000 sources. Since in SF scenarios the number of MTD is extremely high, we consider Poisson arrivals
a reasonable approximation, even for relatively small numbers of MTDs.

SF experiment parameters. Since the focus of this work is on traffic generated by autonomous and automatic MTDs
reporting to a central entity collecting data in the SF, single transmissions are of negligible dimensions and we assume
PL=1000 bits as a realistic value. Based on application-specific constraints (due to real-time sensing and control), the traffic
has a cyclic nature; therefore the duration of the cycle depends on the maximum allowable latency. In the following, we use a
timeout TO=100 ms and a message generation interval equal to 4

3TO, so that any MTD generates a new message every 133.3
ms, on average. Moreover, we assume that MTDs can transmit at C= 10 Mb/s. With the above, the number of requests that
can be served in a RAO is m=10. Latencies strongly depend on the frequency of RACH opportunities. Here we use τ=1 ms,
which corresponds to a RACH opportunity every 10 data slots in upcoming LTE Advanced Pro and 5G systems [8]. RACH
and RRC connect timers are set to be of the order of magnitude of τ . Specifically, we use Tmin =0.2 ms, Tmax =0.8 ms and
Wmax =1 ms (respectively 2, 8 and 10 time slots). The number of RACH channels is N=54, which is a typical value in 3GPP
specifications. Unless otherwise specified, we use Θ=18 requests/ms which is realistic for 4G/5G base stations in which there
can be up to 3 acknowledgements per time slot during Tmax − Tmin, and set the maximum number of retries to kmax = 10.
Note that, although in the simulator we consider many operational details of resource request and grant procedures, we do
not enter into the details of the signalling channel protocol, which are specific of each cellular implementation. As concerns
backoff timers, we use E[Bi] = 10 ms and E[Aij ] = 4 s for RACH and ABC retries, respectively, and pA = 0.5, although
the importance of E[Aij ] and pA is not shown in the paper for lack of space (they only affect the latency of flow ` without
impairing any throughput).

System behaviour and model validation. Fig. 5 presents the most significant quantities to characterise the system behaviour
in presence of the primary flow only. With the parameters described above, the upper part of the figure illustrates the dome-
shaped relations between the system input λ and i) the amount or requests per unit time that pass the RACH without collision
(σ, which is at most N

e , i.e., the max throughput of an N -channel Aloha), ii) the amount or requests per unit time that reach
the base station with no decoding error (σ′), iii) that complete the RRC connect phase (σ′′, which is limited by Θ), and iv) that
eventually receive service (ξ, which is capped by m). Because of the structure of the system, the typical Aloha output flow σ is
progressively scaled and flattened to become the system throughput ξ. We can identify 3 regions for ξ. An initial linear region
in which the throughput grows almost linearly with the input; a flat region in which the throughput is practically constant or
slightly recessing; and a breakdown region in which small increments of the input cause large throughput degradation.

Fig. 5-b gives some insight into the system reactions to progressively higher traffic loads. It is clear that in the linear region,
the system works just fine: pC is quite low, and both PTO=

∑kmax

i=1 PTO(i) and PB =
∑kmax

i=1 PB(i) are negligible, while the
total success probability PS =

∑kmax

i=1 PS(i) ' 1. However, as soon as the network throughput gets close to its maximum m,
PB begins to grow, and the system enters the flat region. This point corresponds to the first knee of ξ. Then, PB grows higher,
up to its maximum, corresponding to the largest RACH throughput. From this point on, the system behaviour is driven by pC
and PTO. Indeed, the probability to leave the system shifts from low RACH stages towards higher ones (not shown because
of space limitations) since requests, on average, retry several times before leaving the system. Similarly, it can be observed
that the stage in which a success occurs shifts to high stage numbers, as shown in Fig. 6, where throughput components are
illustrated. This same figure also shows the good accuracy achieved by our model in terms of throughput predictions. Indeed,
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analytical predictions match well the results of the detailed packet-level simulator we developed in Python. We can observe
some limited, yet non-negligible, errors only in the rightmost region of ξ, which contains, however, no desirable operational
points due to low success probability and, as we will show later, very high latency. We conducted many more model validation
tests, which cannot be shown here due to lack of space. All tests show extremely good model accuracy, especially for loads
below the breakdown region of ξ.

From these initial results, it is already clear that, to obtain a sufficiently good QoS level, it is desirable to keep the system
in operational regimes below the point where the RACH saturates, before the beginning of the flat region of ξ.

Impact of transmission rate and packet size. An obvious relation exists among the system throughput (the rate of requests
successfully accessing the network, i.e., ξ), the network data rate C, the packet size PL, and the number of requests that can be
processed by the network in a time interval τ (i.e., m). For fixed τ , m only depends on the ratio PL

C . Therefore, to understand
the impact of C or PL on throughput, it is enough to evaluate the impact of m. To this aim, Fig. 7-a shows the effect of
different values of m on the system throughput, while the rest of the parameters is kept as before. It is worth to point out
that, independently of m, the throughput is limited by Θ (i.e., the max rate at which the BS can accept requests), so that high
values of m perform practically the same. This can be translated into the following very relevant statement for system design
and planning: BS capacity increases can lead to (very) small performance improvements.

Impact of timeout. Timeout is a very critical aspect of system design, due to the real-time nature of most of the traffic in
SF. Fig. 7-b sheds light on the impact of the timeout value on system performance. In particular, we can observe that higher
timeout values make MTDs saturate the network sooner. When the network is saturated, increases in λ lead to higher values
of pC , which cause a drastic decrease of ξ. Interestingly, low timeout values impact network throughput also for low input
rates, while medium to high values of the timeout only impact the beginning of the breakdown region.

Latency performance. Fig. 8 shows how latency is affected by increasing incoming traffic λ. The two pictures summarise
this information through box-and-whiskers diagrams, built with the first, 25-th, 50-th, 75-th and 99-th percentiles of the latency
of a request, considering the time from its arrival to the moment it leaves the system (with either a success or a failure). In
particular, Fig. 8-a shows that for values of λ in the range [0 − 10] the network guarantees a latency lower than 20 ms up
to the 75-th percentile, and within the timeout (100 ms) up to the 99-th percentile. Note that the range [0 − 10] of λ, is the
one for which we saw that the throughput increases linearly. The same kind of results is reported in Fig. 8-b, where latency
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percentiles are conditioned to a success. For higher values of λ, latency significantly grows in the breakdown region, which
is, therefore, an undesirable region also from the point of view of latency guarantees.

Sustainable cell population. The key question that an SF network designer has to face is how many cells are necessary
to serve a given population of MTD, while providing a predefined QoS level. Our model answers this question by computing
the mapping between KPIs and number of MTDs. Let us focus on a single cell operated with the default realistic parameters
considered in this section. Fig. 9 shows the maximum number of MTDs that can access the network (in the vertical axis)
when the 99-th percentile of latency, conditioned to a success, is guaranteed (the value that labels the curves in the figure),
as function of the guaranteed total success probability PS (in the horizontal axis). That is, the curves provide the greatest
value of n that guarantees a latency with a 99-th percentile lower than a threshold (the curve label) and a success probability
higher than another threshold (the abscissa). As a possible example, we see that one cell is able to handle (roughly) 2100
MTDs, guaranteeing latencies smaller than 90 ms for 99% of the requests, with PS ≥ 0.6 (this can be a condition which is
representative of a massive scenario, which is however not critical, due to the low success probability value). However, when
it comes to serving MTDs with high success probability (say above 90%), and low latency (say below 50 ms at the 99-th
percentile of distribution), only a few hundred devices can be connected to a BS. This can be acceptable in a scenario that
is critical, but not massive. On the contrary, in a massive and critical context, with high MTD density layouts in the order of
tens or even hundreds of users per square meter, this would require deploying ultra-dense BS sets, each BS covering just a
few square meters. This is clearly undoable in SF layouts and calls for further technology enhancements, which are out of the
scope of this paper.

Impact of the secondary flow. Fig. 10 and Fig. 11 provide results for a scenario where there are flows of requests with
different nature and requirements (i.e., time-critical and non-time-critical request flows). In particular, the x-axis of Fig. 10
represents the aggregate arrival rate of the two flows (λ+ `). The two flows have an equal rate, so that they obtain the same
throughput, as long as the timeout probability PTO is negligible. We can observe from a global perspective that the throughput
has the same characteristics of the case with requests of only one type. However, by looking separately at the two flows we
can observe that a decrease in ξ(λ) (due, for instance, to the effects of PTO) favours the delay-tolerant traffic by increasing
ξ(`).

For what concerns latency, Fig. 11 compares the latency distributions experienced by successful requests in the primary,
time-critical flow, for various ratios λ/`. The result is that the latency performance of the primary flow is barely dependent on
the presence of flow `, although it depends on the aggregate arrival rate. We can thereby conclude that regulating the secondary
flow with ACB makes the primary flow experience priority when it comes to latency guarantees.

We have evaluated the impact of other parameters, although we cannot show those results due to lack of space. The
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experiments reported here suffice to illustrate the main system features, spot desirable operational points and identify intrinsic
limitations in radio access procedures used in 4G/5G networks.

VI. RELATED WORK

All forecasts predict that the next generation of cellular networks will support, in addition to traditional services, a wide
variety of Machine-to-Machine (M2M) services, in the context of the IoT and massive MTC.

The authors of [9] outline the impact of massive M2M communications, and their coexistence with traditional services, on
future networks. The paper and its references analyse the issues arising when a high load of M2M traffic must be served, and
identify network access mechanisms as possible bottlenecks that may degrade the system performance.

Other investigations study the access mechanisms in LTE and in 5G networks in the case of M2M communications. Examples
of such works are, for instance, [3], [10], [11]. All these papers include the performance modeling and analysis of the network
access procedures for LTE and 5G, but, although they include many protocol features, (in general) they only focus on access
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mechanisms, without accounting for blocking at the BS, and for the reciprocal effects of blocking between access mechanisms
and BS. The complex interactions of these two different bottlenecks have been highlighted in the case of massive access by
using a measurement-based approach [12] and analysis [13].

There exist also some recent studies on enhancing the random access procedure, e.g., by using ACB with power control,
thus exploiting the so-called capture effect to partially solve the RACH collision problem [14], or by resolving collisions in the
RACH transmissions instead of avoiding them [15]. Such approaches alleviate yet do not solve the problem of massive MTC
scenarios like SF, in which the RRC connect phase can fail with non-negligible probability and cause unacceptable latencies
due to multiple access retries.

Authors in [16] introduced a performance model for evaluating M2M communications in heterogeneous settings. This model
has been used to study the coexistence between M2M and human-to-human communications in the same networks and for
evaluating energy saving strategies.

VII. CONCLUSIONS

We have presented and validated a simple, yet accurate, model for the performance analysis and design of cellular networks
in smart factory environments characterised by machine-type communications, including the massive and/or mission-critical
cases. The model captures many aspects of the dynamics in a cell, such as the different phases of the access procedure, the
possible contention preamble collisions and the limited number of uplink grants in the random access response message, the
limited number of retrials, the coexistence of different types of traffic (real-time and non-real-time), the use of a timeout for
real-time traffic, and the prioritization of different types of traffic flows (e.g., with the ACB technique).

The main merit of the model lies in the valuable insight that it brings on cellular system operations and in the possibility to
use it to drive the correct dimensioning of the cellular system in smart factory scenarios. The model also unveils some intrinsic
limitations of the class of random access procedures adopted in cellular networks, and can be instrumental for the design of
more effective algorithms.
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