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ABSTRACT

Parkinson’s disease (PD) is characterized by the loss of dopamine-generating neurons in the 
substantia nigra (SN) and corpus striatum (CS). Current treatments alleviate PD symptoms 
rather than exerting neuroprotective effect on dopaminergic neurons. New drugs targeting the 
dopaminergic neurons by specific uptake through the human dopamine transporter (hDAT) 
could represent a viable strategy for establishing selective neuroprotection. Molecules able to 
increase the bioactive amount of extracellular dopamine (DA), thereby enhancing and 
compensating a loss of dopaminergic neurotransmission, and to exert neuroprotective 
response because of their accumulation in the cytoplasm, are required. 
By means of homology modeling, molecular docking and molecular dynamics simulations, we 
have generated 3D structure models of hDAT in complex with substrate and inhibitors. Our 
results clearly reveal differences in binding affinity of these compounds to the hDAT in the 
open and closed conformations, critical for future drug design. The established in silico 
approach allowed the identification of promising substrate compounds that were subsequently 
analyzed for their efficiency in inhibiting hDAT-dependent fluorescent substrate uptake, 
through in vitro live cell imaging experiments. Taken together, our work presents the first 
implementation of a combined in silico/in vitro-approach enabling the selection of promising 
dopaminergic neuron specific substrates.

Keywords: DAT, substrates, neuroprotection, virtual screening, molecular modeling, 

Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder of the 

central nervous system. Characteristical symptoms include tremor, rigidity and impaired 

movement.  It is characterized by the loss of dopamine-generating neurons in the substantia 

nigra (SN) and corpus striatum (CS), and by the accumulation of aggregates containing α-

synuclein in the brain. These protein aggregates, named Lewy Bodies, clump together at 

axons and dendrites in neurons in the SN. They sterically hinder the transport of 

neurotransmitter-filled vesicles which can no longer move along the cytoskeleton. Thus, 

neurotransmitter release is compromised, with a consequent gradual loss of neuronal function 

(Underwood and Cross, 2009). An alternative mechanism of neurodegeneration is via the 

chemical damage to the membrane lipids by reactive radical species, which leads to membrane 

leakage (Barnham et al., 2004). Both pathways contribute to the loss of cell function and 

neuronal death and are tightly connected (Pavlin et al., 2016).
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The dopamine transporter (DAT) is an integral membrane protein and member of the 

neurotransmitter sodium symporters (NSS) family. It is expressed in dopaminergic neurons of 

the central nervous system (CNS). Its fundamental role is the rapid DA reuptake from the 

extracellular space and thereby termination of DA signaling. DA uptake can be maintained 

against very large concentration gradients, from 1 to 20 substrate molecules per second 

(Kristensen et al., 2011). After being taken up, enzymatic breakdown of DA to its metabolites 

is carried out by catechol-O-methyl transferase (COMT) and monoamine oxidase (MAO). 

MAO breaks down dopamine to 3, 4-dihydroxyphenylacetic acid (DOPAC) by the action of 

the enzyme aldehyde dehydrogenase (Juárez Olguín et al., 2016). Alternatively, cytosolic DA 

is taken up into  vesicles by transport via the vesicular monoamine transporter 2 (VMAT2)  

(Wimalasena et al., 2008).

The neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is converted into 

MPP+ (1-methyl-4-phenylpyridinium) by the enzyme MAO-B. This leads 

to parkinsonism in primates and non-primates by selective killing of dopaminergic neurons in 

the SN. MPP+-induced neurodegeneration is specific to dopamine neurons, since after DAT-

dependent uptake it accumulates in mitochondria. MPP+ inhibits complex I in the electron 

transport chain, subsequently reducing ATP production and causing oxidative stress 

(Wiemerslage et al., 2013). Since the death of DA neurons is the major hallmark of PD, 

designing new neuroprotective drugs that use this pathway to enter DA neurons may yield 

potential molecular targets for the treatment of PD. Using this transport pathway as a basis we 

may design new drugs. We can modify the structure of DAT substrates to act as antioxidants, 

scavenging ROS (Reactive Oxidative Spaces) (Juárez Olguín et al., 2016). Alternatively, we 

can add groups that are enhancing the expression of anti-apoptotic Bcl-2 (like Rasagilin) 

(Akao et al., 2002, p. 2). Such molecules would increase the bioactive amount of extracellular 

DA by competing for DAT-dependent uptake, thereby enhancing and compensating the loss 

of dopaminergic neurotransmission. Additionally, they may also start neuroprotective 

response due to their accumulation in the cytoplasm. In contrast to this, DAT inhibiting 

molecules may only compensate for the loss of DA signaling by reducing DA re-uptake. 

However, this is beyond the scope of this paper, and will be the focus of our future research.

To identify promising DAT uptake-dependent candidate molecules, it is necessary to establish 

a reliable screening model that addresses discriminant characteristics of DAT inhibitors and 
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substrates. The classic alternating access model implies that the transporter protein shuttles 

through at least three conformational states during the transport cycle: (i) an outward-open 

conformation where the substrate binding pocket is accessible to the extracellular medium, (ii) 

an occluded conformation, where access to the pocket is blocked from either side, and (iii) an 

inward-facing conformation, where the pocket is open to the intracellular medium (Kristensen 

et al., 2011). Therefore, candidate compounds have to be screened to determine and analyze 

their binding characteristics to different DAT conformations. Compounds with similar 

structures may bind to the various conformational states of DAT during the transport cycle 

with different binding affinities. Such occurrences would lead to differentially effective 

neuroprotection based on DAT’s transport capacity for a specific compound. It is thus 

necessary to identify the specific transporter state leading to efficient compound uptake 

(Kristensen et al., 2011).

In the current study we combined different in silico approaches i.e. homology modeling, 

docking, virtual screening and molecular dynamics, to identify new potential DAT substrates. 

We have used this approach to perform a compound screening in order to identify candidates 

that, based on their hDAT binding characteristics, may be substrates that are, DAT-

dependently accumulated in the cytoplasm. The simulation led to the identification of 118 

potential substrates. In order to verify our in silico results, we have monitored the effect of the 

six most promising candidates on hDAT-dependent fluorescent substrate (ASP+) uptake in 

vitro. In vitro assays with ASP+ confirmed that these compounds alter DA uptake, which 

means that they are competing with DA for DAT transport. One of compounds was 

fluorescent and was monitored inside of the DA neuron. The obtained results suggest a new 

way of searching DAT substrates.

Matherials and Metods

Homology Modeling

The hDAT sequence was retrieved from the UniProt databank (QO1959 SCGA3_HUMAN) 

and the X-ray structure of DAT from Drosophila melanogaster (dDAT) from the Protein Data 

Bank ( http://www.rcsb.org, PDB code: 4M48) (Penmatsa et al., 2013). The sequences were 

aligned using “Align Sequences” toolkit from BIOVIA DS 4.5 (Biovia, San Diego, USA, 

http://accelrys.com/). The secondary structure alignment was set to TRANSMEM as for 
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transmembrane proteins. The model was built using “Homology Modeling” protocol in 

BIOVIA D.S. The first 57 and last 20 amino acids were omitted because there was no 

corresponding homolog to those parts, which did not affect our results since they are located 

far away from the binding site. These residues are mainly involved in interactions of hDAT 

with other proteins (Fenollar-Ferrer et al., 2014). Two sodium ions, one chlorine ion and one 

molecule of cholesterol were included which are important for the transport. Ten different 

homology models were created and verified with MODELLER plug-in included in BIOVIA 

DS 4.5. The model having the best DOPE and normalized DOPE score (-79899.35 and -

1.3418, respectively) was selected. One loop, between Phe187 and Thr210 was refined to 

release the tension between amino acids using CHARMM22 force field, implemented with 

MODELLER plug-in in BIOVIA D.S. (MacKerell et al., 1998; Webb and Sali, 2016). The 

disulfide bridge between Cys180 and Cys189 was preserved. The obtained model was then 

minimized to avoid any steric hindrance among residue side chains. Finally, the protein was 

minimized and protonated at physiological pH.

Molecular docking

Three ligands, commonly used for modeling hDAT: amphetamine (a substrate and 

psychostimulant (Robertson et al., 2009)), modafinil (an atypical inhibitor (Madras et al., 

2006)) and cocaine (an inhibitor) were docked into apo hDAT model with AutoDock 4.2.6 

(http://autodock.scripps.edu/ ) (Morris et al., 2009). Cocaine and amphetamine were modeled 

with a positive charge, as they are protonated at pH=7.4. The coordinates of alpha carbon of 

Phe326 were used for grid-centering; grid box was set to be 50 grid points (each grid point is 

0.375Å) in all directions to allow the ligand to rotate freely in binding pocket. All the 

compounds were situated in the central binding pocket halfway the membrane, lined by 

Phe155 Tyr156, Phe320, Phe326 and Ser422 residues. 

To identifying the most probable open-out and closed transporter conformation, known 

substrates and inhibitors (Table 1) were docked into a set of ten conformations extracted by 

the MD trajectories. The number of conformations was first reduced by performing a regular 

sampling (one out of 100 structures) and then picking them according to the distance between 

Phe326 and Tyr156. In this analysis, the size of the grid box was set to be between 40 and 60 

grid points depending on the size of the pocket and size of the compound.
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Docking was used once more after virtual screening, to identify new possible substrates. The 

best candidates were docked into previously identified open-out and closed conformations. 

All the compounds and proteins were prepared in BIOVIA D.S. 2016, using the “Prepare 

Protein” and “Prepare Ligand” protocols. 

Molecular Dynamic Simulation

In order to investigate the conformational changes occurring in the transporter, hDAT, with 

and without substrates/inhibitors, (hDAT-amphetamine, hDAT-cocaine and hDAT-modafinil 

complexes and empty hDAT) were submitted to 40 ns MD simulations. The system was 

prepared with Visual Molecular Dynamics (VMD) (http://www.ks.uiuc.edu/Research/vmd/ )   

(Humphrey et al., 1996) and all the simulations were performed with Nano Scale Molecular 

Dynamics (NAMD) version 2.8 (http://www.ks.uiuc.edu/Research/namd/) (Phillips et al., 

2005). The protein was located within a 1,2-palmitoyl-oleoyl-sn-glycero-3-phosphocholine 

(POPC) membrane (Membrane X and Y Length were set  100 Å for both dimensions) using 

the OPM web service (http://opm.phar.umich.edu/) (Lomize et al., 2006). The topology files 

for the ligands were generated using the CGENFF web service (Vanommeslaeghe et al., 2009; 

Yu et al., 2012). We have applied the widely used force fields: CHARMM22 for proteins and 

CHARMM27 for lipids in a pre-combined file to enable hybrid system. Crystallographic 

water molecules were preserved, and the entire system was solvated using the TIP3P water 

model and neutralized by addition of NaCl to an ionic concentration of 0.2 M. Cutoff local 

interaction distance common to both electrostatic and van der Waals calculations was set to 12 

Å. A first minimization (1000 steps) was performed, keeping fixed everything (water, ions, 

protein, lipid head groups), except lipid tails, to induce the proper disorder of a fluid-like 

bilayer. After minimization velocities were reinitiated according to the desired 310 K 

temperature, using Langevin dynamics with damping coefficient of 5/ps. The system was then 

equilibrated for 0.5 ns with a 2 fs time step. A second minimization (1000 steps) was run, 

constraining only the protein backbone with harmonic constraints. Again, the system was 

equilibrated for 1ns, preventing water molecules to enter the membrane hydrophobic region. 

Finally, harmonic constraints were released and the entire system further equilibrated. The 

production run was carried out in the NPT ensemble at 310 K and 1 atm without any restraint 

for 40 ns. Langevin dynamics (Nose-Hoover method) was used to control fluctuations in the 
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barostat. (Martyna et al., 1994) From each simulation hundred frames were randomly chosen 

using BIOVIA DS 2016 from the last 10 ns.  In order to get various results ten different 

frames were manually selected, based on distance between Phe320 and Tyr156, and used for 

the subsequent ligand docking. Known substrates and inhibitors were docked using 

AutoDock.  

Data sets preparation

Fifty common known substrates were obtained from the literature (Cook et al., 2002; Cozzi et 

al., 2013; Glennon, 2014; Howell and Negus, 2014; Kohut et al., 2013; López-Arnau et al., 

2012; Mavel et al., 2012; Reith et al., 2015; Rothman, 2003; Schloss et al., 2015; Seddik et 

al., 2013) and from the CHEMBL website (https://www.ebi.ac.uk/chembl/) and used to build 

LDA and pharmacophore-based models (Bento et al., 2014). For each substrate (classified as 

active molecules), the most likely tautomer and protomer at pH = 7.4 was calculated by MoKa 

(Milletti et al., 2010). Then, fifty decoys were generated for each substrate (active molecule) 

using the decoys generator tool available within the DUD-E website 

(http://dude.docking.org/) (Mysinger et al., 2012). Decoys are inactive compounds, computed 

based on similar physical properties but different chemical structures from substrate 

analogues, in order to test the validity of our model.

Twenty-five active molecules and fifty decoys were randomly selected and used to build the 

training set. The test set comprised all available active molecules and decoys. For the 

pharmacophore-based VS, alongside decoys, test set was extended with inhibitors.

The obtained models were than used to screen the Specs database, which is part of the ZINC 

archive (http://zinc.docking.org/ ) (Irwin et al., 2012), looking for new possible hDAT 

substrates. This database provides affordable molecules in terms of purity and availability 

(Spyrakis et al., 2013b, 2014) and contains molecules with significant chemical and geometric 

diversity. A set of about 300,000 compounds was downloaded and filtered based on the 

principles of drug-likeness using Log P < 5, and 150 < MW < 500 as cut-off. 

LDA-based Structure-based Virtual Screening

All VS experiments were performed with FLAP (Fingerprints for Ligands and Proteins) 
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developed and licensed by Molecular Discovery Ltd (http://www.moldiscovery.com/ ). 

Several VS campaigns were successfully performed with FLAP and are reported in the 

literature. (Spyrakis et al., 2013a,b, 2014) FLAP describes small molecules and protein 

binding sites in terms of four-point pharmacophoric fingerprints, extracted from the molecular 

interaction fields (MIFs) calculated by GRID (Goodford, 1985). The information contained in 

the MIFs is extracted and condensed in quadruplets of pharmacophoric points, used to 

compare, align, and superimpose different chemical entities, which can be either small 

molecules or macromolecules, usually described in terms of pockets.  

To take into account protein flexibility in VS, the entire trajectory was clustered according to 

the variability of the MIFs within the pocket. The pocket was defined by FLAPsite 

implemented within FLAP and the MIFs calculated for all the pocket conformations generated 

by the dynamics. Principal Component Analysis was used to cluster the conformations and 

select the most representative medoids of each cluster. Ten clusters were generated and ten 

medoids selected to represent protein flexibility. The linear discriminant analysis approach 

implemented in FLAP was used to select the templates and the FLAP scores better able to 

discriminate between an active and decoy molecule in the training set. Different 

template/FLAP score combinations were used to generate LDA models then validated on the 

test set. Eventually, the best results in prediction were obtained with a 1 template/3 scores 

model, and the selected FLAP scores were H, H*DRY*N1, H*O*DRY (shape, hydrophobic 

interactions and hydrogen bond donor/acceptor). The same model was then used to screen the 

entire Specs library.  When VS is carried out using an LDA model, FLAP will produce 

“Activity Class” predictions for each candidate, besides the usual output forms, and a 

corresponding LDA-R score ranking the compounds from the most active (highest score) to 

the most inactive (lowest score). When the inclusion of multiple structures improves VS 

predictions, the LDA-R score ranking gives the highest enrichment. All the operations were 

performed within FLAP, for a detailed description of the methodology see reference (Spyrakis 

et al., 2015). 

The most promising 1000 compounds were selected and submitted to further pharmacophore-

based virtual screening.
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Pharmacophore-based VS

The pharmacophore model was built using the 50 substrates mentioned above. Pharmacophore 

model was created in FLAP-2.0.0 using FLAPpharm protocol (http://www.moldiscovery.com/ 

). FLAPpharm generates a detailed conformational ensemble for each structure, filters these 

conformations to keep the ones with the most similar pharmacophore and performs a prune 

tree search to find common alignment models. After creating the alignment models, a 

pharmacophoric pseudo-molecule is generated. The model consists of the most common 

atomic locations as pharmacophoric points as well as MIFs and pseudo-MIFs. FLAPpharm 

models use a parameterized scoring function that is a weighted sum of shape, hydrophobic, 

hydrogen-bond donor and hydrogen-bond acceptors MIF similarities. 

Molecules were aligned to each other to find the optimal MIF similarity across the set, then 

subsequently pharmacophore was extracted, and the least fitting molecules were excluded. By 

excluding these molecules, one by one, 8 pharmacophore models were created, out of which 5 

had score > 1. To validate these models and to choose the best one that differentiates between 

active and inactive compounds, three different datasets were created. One dataset contained 

50 substrates and 77 inhibitors (Cook et al., 2002; Cozzi et al., 2013; Glennon, 2014; Howell 

and Negus, 2014; Kohut et al., 2013; López-Arnau et al., 2012; Mavel et al., 2012; Reith et 

al., 2015; Rothman, 2003; Schloss et al., 2015; Seddik et al., 2013), second dataset contained 

50 substrates and 2500 decoys and the third dataset contained all three. Since we are 

interested in finding substrates only, we marked substrates as active while both inhibitors and 

decoys were marked as inactive compounds. Model was chosen according to the LBVS 

enrichment. 

The best performing model was used to further screen the 1000 compounds coming from the 

SBVS. Accuracy was set to the second highest. The first 150 candidates (according to 

GlobSum) were docked into the open and closed hDAT conformation.  The six commercially 

available compounds (Spects) having better ΔG values for closed hDAT conformation were 

sourced for our in vitro analysis. 

To identify new possible substrates, top 150 compounds obtained after virtual screening were 

docked into previously identified open-out and closed conformations. In this analysis, the grid 

box was centered to CA atom of Phe320 and the size of the grid box was set to be 50 grid 

points for all the candidates.
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Chemicals

Compounds 1, 2, 3, 4, 5 and 6 were purchased from Specs (Zoetermeer, The Netherlands). 4-

(4-(dimethylamino) styryl)-N-methylpyridinium iodide (ASP+) was purchased from Life 

Technologies. All other chemicals were from Sigma-Aldrich.

HEK-hDAT cell culture and ASP+ uptake

The HEK293 cells stably expressing the recombinant human DAT (HEK-hDAT) (Hummerich 

et al., 2004) were maintained in Dulbecco’s modified Eagle’s medium supplemented with 

10% fetal bovine serum, penicillin (100U/mL), streptomycin (100µg/mL), and geneticin 

(G418, 200µg/mL) at 37°C in 95% humidified air with 5% CO2. The HEK-hDAT cells were 

incubated for 10 min with compounds 1, 2 or 3 (0μM-30µM) at 37 °C. Subsequently, the cells 

were loaded with ASP+ for 30 s. The cells were washed with medium before imaging. The 

ASP+ was added at the concentration of 10 μM, as previously reported (Lau et al., 2015). 

Mouse ES cell-derived dopaminergic neurons were generated as described by Martí and 

colleagues (Martí et al., 2017). Briefly, the growth-factor-based differentiation protocol 

comprised three stages: (1) generation of neuronal stem spheres, (2) selection of dopaminergic 

progenitors, and (3) terminal differentiation of dopaminergic neurons. During stage 1 and 2, 

culture medium was supplemented with growth factors that drive neuronal differentiation 

along the dopaminergic pathway. Terminal differentiation was induced by withdrawal of 

growth factors and yielded mature neurons after 14 days. Overall, differentiation from stem 

cell to mature neurons took 28 days. ES cell-derived dopaminergic neurons were incubated 

with compound 6 for 10 min at 37°C before image acquisition.

Image Acquisition and Data Analysis

Images and data analyses for experiments with ASP+ were performed as described previously 

(Lau et al., 2015). Live-cell imaging of HEK-hDAT cells was performed using a Leica TCS 

SP5 imaging system attached to a DM IRE2 microscope equipped with an incubation chamber 

(Ibidi, Planegg, Germany). Excitation laser was a DPSS laser (561nm). Confocal z-stacks 

were acquired with sections taken every 0.5 µm with a 63× magnification. During image 

acquisition of control ASP+ fluorescence intensities, the photomultiplier sensitivity was set to 

acquire non-saturated pixel value to allow quantitative image acquisition. To ensure 
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quantitative ASP+ imaging for dose response tracing, images of each respective compound 

were acquired with their own internal controls. Images were exported as tiff-files and 

imported to NIH ImageJ (NIH, Bethesda, USA) for quantification of ASP+ fluorescence 

intensities. Regions of interest (ROI) were selected with the freehand selection tool. For all 

ROIs, the integrated fluorescence densities were determined after cutting off background 

fluorescence. Data from at least 10 regions of interest (ROI) were averaged for each 35mm μ-

dish imaged (Ibidi, Planegg, Germany) (Martí et al., 2017). ASP+ fluorescence intensities 

provided in results and shown in Figure 5 are given as the mean ± SEM. Statistical analysis 

was performed by one-way ANOVA followed by post hoc Tukey tests using GraphPad Prism 

software (GraphPad Software, Inc., La Jolla, USA). P < 0.05 was considered significant. Each 

set of experiments was performed three times.

RESULTS 

Establishing a new homology model for hDAT

First, we established a new homology model for hDAT based on its known amino acid 

sequence and the homology of hDAT and dDAT. The sequence identity and similarity 

between dDAT and hDAT was estimated to be 49.6% and 69.2%, respectively (Figure 1). 

Our model represented hDAT in outward open conformation. Outer (between Asp476 and 

Arg85) and inner (between Phe320 and Tyr156) extracellular gates were opened, while 

intracellular gate (between Asp436 and Arg60) was closed agreeing with the published results 

(Cheng et al., 2015; Cheng and Bahar, 2015). The disulfide bridge between Cys180 and 

Cys189 was maintained. In order to get a more precise model for structure-based drug design 

we have extended the homology model of hDAT using molecular dynamics simulation, to 

find 2 conformational structures open-out, inhibitor-bound and closed, substrate bound. 
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Figure 1. Sequence alignment: Sequence alignment of the dDAT (4M48) and hDAT (purple = 
identical amino acids, magenta = similar amino acids, pink = less similar amino acids, white = no 
match of amino acids).

The stability of hDAT was evaluated by root-mean-square-deviation (RMSD) from the initial 

structure and by residue root-mean-square-fluctuation (RMSF) values (Supporting Info. S1).  

The RMSD stabilized around 4 Å (for all the simulations) from the reference conformation 

after approximately 5000 time steps (10 ns). From the RMSF measurement we reasonably 

observed that the most flexible residues were located in the extracellular loops. The 

conformations later used for docking simulations were taken after RMSD stabilization. The 

first differences between inhibitors and substrates binding kinetics was noticed after 20 ns 

(10,000 steps).

After stabilization of RMSD in the hDAT-substrate complex, we noticed closing of the 

residues of the binding pocket only in presence of amphetamine (Figure 2a).  Specifically, 

residue Phe320 closes the gate above the substrate and induces the tilting of the TM6 region 

(Figure 3a and 3b). We also observed dehydration of the binding pocket due to hydrophobic 

interactions of Phe155, Tyr156, Phe320 and Phe326. For visualization of the interactions we 

used pictures generated in BIOVIA Discovery Studio 2016 (Figure 2).
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Figure 2. Ligand interactions with hDAT Snapshot of key molecular interactions (green – Hydrogen 
bond, pink – Van der Waals, orange - electrostatic) of amphetamine (a), cocaine (b) and modafinil (c) 
with hDAT in a close conformation. While binding of amphetamine (a) causes flipping of Phe320 in 
the hDAT, cocaine (b) and modafinil (c) binding maintain an outward-open conformation in the 
hDAT. 

Comparison of hDAT-ligand conformations using visual molecular dynamics

A comparison of the substrate bound structure with the inhibitor bound structure and empty 

DAT structure showed that the distance between Phe320 and Tyr156 decreases. These two 

aminoacids are located above the binding site, and are closing the gate after the substrate 

binding (Figure 3). In particular, for amphetamine-hDAT complex the distance, upon 

structure stabilization, is maintained around 5 Å, while in all other cases it is around 13 Å 

(Figure 4a). The fact that amphetamine (substrate) binding causes the decrease in size of the 

pocket may suggest that the substrate binding is necessary to cause a conformational change. 

The lower Solvent Accessible Surface Area (SASA) of amino acids lining the binding pocket 

(Phe76, Val78, Asp79, Ser142, Val152, Gly153, Tyr156, Phe320, Ser321, Phe326, Val328 

and Ser422) was also measured in VMD with a probe radius of 1.4 Å (Figure 4b). The results 

show lower SASA of residues in the binding pocket when a substrate, rather than when an 

inhibitor, is bound.

Overall, the main differences between amphetamine-hDAT complex and others (empty hDAT 

and cocaine-hDAT and modafinil-hDAT complexes) were a flipping of the Phe320 side chain, 

a decreased distance between Phe320 and Tyr156 and a decreasing of solvent accessible 

surface area.
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Figure 3. Superimposition of hDAT open and hDAT closed (a) superimposed hDAT open (red) and 
hDAT closed (blue) showing tilting of TM6 domain; (b) Phe320 and Tyr156 are closing the gate of 
the binding pocket in the hDAT closed conformation (blue), while the gate remains open in the hDAT 
open conformation (red).
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Figure 4. Comparison of distance between two main amino acid residues and SASA 
(a) Comparison of F320 and Y156 distance in hDAT-amphetamine (blue), hDAT-cocaine (pink), 
hDAT-modafinil (orange) complexes and empty hDAT (purple) transporter. Amphetamine decreases 
the F320 to Y156 distance when bound to hDAT. (b) Comparison of SASA values shows that the 
hDAT- amphetamine complex (blue) displaces H2O from the binding pocket whereas the hDAT-
cocaine (pink), hDAT-modafinil (orange) complexes and empty hDAT (purple) maintain H2O in the 
binding pocket. 

Search for the best open and closed conformation of hDAT-interacting compounds by 

molecular docking

From previous findings (Celik et al., 2008; Wang et al., 2015) we can speculate that if a 

compound is a substrate, it has a higher affinity for the closed conformation. On the other 

hand if this compound is an inhibitor (preventing the transporter from moving into the closed 

conformation) it shoud have a high affinity for open conformation and low or no affinity for  

the closed conformation. To indentify the most suitable hDAT open-out and closed 

conformations to perform docking experiments with inhibitors and substrates, we collected 

10.000 frames from the last 10 ns of simulation. One hundred frames were randomly chosen 

by BIOVIA D.S. 2016. Based on the distance between Phe320 and Tyr156, 10 frames were 

manually picked for evaluation. Known substrates and inhibitors were docked in the 10 

possible conformations extracted from each trajectory, to determine those better able to 

discriminate among the two classes of compounds (See Materials and Methods for further 

details). The free energy values, calculated by Autodock, are reportered in Table 1. In 

accordance with the known literature, inhibitors generated more stable complexes within the 

open conformation, while there was very low or no affinity at all (positive ΔG values) for the 

closed conformation. Contrary to this, substrates showed good affinity for both conformations 

but were shown to be better stabilizing the closed form of the transporter.

hDATopen hDAT closedCompounds

ΔG (kcal/mol) ΔG (kcal/mol)

SUBSTRATES

Neurotransmitters

dopamine -4.61 -6.22

noradrenalin -4.71 -5.47

serotonin -5.7 -6.66

Amphetamines and its derivatives
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amphetamine -5.22 -6.11

cathinon -5.12 -6.3

metcathinone -5.19 -6.41

MDA -5.9 -6.76

metamphetamine -5.72 -5.58

Neurotoxins and related compounds

MPP+ -5.72 -6.28

ASP+ -6.43 -4.57

6-OH-dopamine -5.72 -5.58

INHIBITORS

Nonselective transporter inhibitors

cocaine -8.31 -2.39

duloxetine -8.69 -3.41

modafinil -7.87 -5.15

nefazodine -9.46 98.96

trimipramine -8.2 3.3

Selective Dopamine transporter inhibitors

altropan -8.33 10.27

DBL-583 -8.19 448

GBR-12783 -10.53 69.3

RTI-229 -9.52 5

vanorexine -9.77 89

GYKI-52895 -8.27 42.02

Selective Serotonin reuptake inhibitors

escitalopram -7.42 5.74

sertalin -9.19 7.99

sibutramin -7.61 -0.87

Table 1. Known substrates and inhibitors docked in open and closed conformation; ΔG – free energy of 
binding.

Identification of promising hDAT substrate candidates

To identify new compounds possibly recognized and transported by hDAT as substrates we 

combined three different approaches in a pipeline, consisting of flexible Linear Discriminant 

Analysis (LDA)-based VS, pharmacophore-based VS and docking simulations.

Based on the belief that the inclusion of flexibility in VS generally provides more reliable 

results (Hou et al., 2015; Moroy et al., 2015; Sinko et al., 2011; Spyrakis and Cavasotto, 

2015; Totrov and Abagyan, 2008), we performed a first flexible VS campaign using a recently 
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published methodology, based on the integrated molecular dynamics (MD) and the FLAP 

algorithm (Spyrakis et al., 2015). The transporter flexibility was investigated by means of MD 

simulation performed on the amphetamine-hDAT complex (closed conformation). Then, for 

all the possible binding site conformations, the Molecular Interaction Fields (Kador et al., 

1985) were calculated with FLAP (Baroni et al., 2007) and clustered through principal 

component analysis. The Linear Discriminant Analysis-based protocol implemented in FLAP 

was applied to automatically choose the combination of conformational templates and FLAP 

scores better able to discriminate between active compounds and decoys in a training set (see 

Methods for further details). Previous analyses reported a 3 template over 3 FLAP-score 

combination as the one able to provide the best overall and early enrichment (Spyrakis et al., 

2015). Clearly, the number of templates and FLAP-scores strictly depend on the nature of the 

target and its intrinsic flexibility. In this specific case a model combining one MD-generated 

template and three different FLAP-scores provided the best enrichment when used to screen 

the test set. The enrichment increase obtained with respect to a single receptor conformation 

VS performed with the starting model was particularly relevant. The overall AUC (Area 

Under the Curve) moved from 0.57 to 0.91 and the partial ROC (Receiver Operating 

Characteristic) enrichment at 1% and 5% moved from 0.04 and 0.10 to 0.14 and 0.71, 

respectively. The model was thus used to screen the Specs database (part of the ZINC 

database) looking for new potential hDAT substrates. The best scored thousand compounds, 

according to the LDA-R score, were selected and submitted to the following pharmacophore-

based VS. (see Materials and Methods for further details)

Our pharmacophore model, based on chemical characteristics of substrates (see Materials and 

Methods for further details), was able to distinguish between substrates and inhibitors, as well 

as decoys. GlobSum probe was showing good enrichment, both in differentiating between 

substrates and decoys (AUC (100%) = 0.92; AUC5% = 0.66); substrates and inhibitors (AUC 

(100%) = 0.96; AUC5% = 0.95); and between both substrates against decoys and inhibitors (AUC 

(100%) = 0.92; AUC5% = 0.64) which is why GlobSum was chosen to rank the compounds.

The most promising 150 molecules coming from the pharmacophore-VS were docked in the 

open-out and closed form of the transporter previously selected. 118 out of 150 molecules 

confirmed the supposed substrate nature, according to the docking results. The six compounds 

showing favorable free energy values when docked in closed hDAT are reported in Table 2. 
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To confirm the in silico predictions the six compounds were analyzed in vitro to verify their 

capability of alter the hDAT-dependent uptake of 4-(4-diethylaminostyryl)-N-

methylpyridinium iodide (ASP+), and thus proving their interaction with the hDAT 

transporter. The four most promising candidates that have also shown activity in vitro are 

shown in Figure 5.

hDAT open hDAT closedCompounds

ΔG (kcal/mol) ΔG (kcal/mol)

Compound 1

NS

O

O
-6.08 -7.59

Compound 2

 

O

N

F -5.5 -6.9

Compound 3

NS

O

O
-6.22 -7.15

Compound 4
N N

S

O

O -6.26 -6.97

Compound 5 N -5.76 -7.08

Compound 6

N
N

-5.38 -6.58

Table 2: Best hDAT potential substrates obtained from VS docked in closed and open conformations.
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Figure 5. Interactions of ligands with hDAT Predicted interactions of compounds 1 (a), 2 (b), 3 (c) 
and 6 (d) in binding pocket of hDAT in closed conformation.

Compounds compete with DAT-dependent ASP+ uptake in vitro

The fluorescent organic compound ASP+ is a substrate for the monoamine transporters that 

has been applied in various studies to visualize neurotransmitter uptake in monoaminergic 

neurons in real-time live cell imaging, including DAT-dependent uptake of dopamine 

(Inyushin et al., 2013; Lau et al., 2015; Matthaeus et al., 2015; Oz et al., 2010; Schwartz et 

al., 2003). Here we applied ASP+ live cell imaging to determine whether our compounds 

compete with ASP+ as substrates for DAT in vitro and thereby decrease the amount of 

detectable ASP+ fluorescence.
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Initially we have tested six compounds in ASP+ live cell imaging experiments to quantify to 

which extend they influence ASP+ uptake in human embryonic kidney cells expressing the 

hDAT (HEK-hDAT; Figure 6a). For this experiment we have chosen to apply 30µM of each 

compound, which is 3 times the concentration required to inhibit ASP+ uptake by the DAT 

substrates d-amphetamine and dopamine (Zapata et al., 2007). This experiment showed that 

compounds 1 - 3 had the strongest effect on ASP+ uptake by HEK-hDAT, which was 

significantly diminished to approximately 40% for compound 1, 60% for compound 2 and 

compound 3 (all compounds p<0.001 vs control intensity). Compound 4 and 5 showed a less 

significant reduction compared to controls (p=0.0037 for compound 4, and p=0.0024 for 

compound 5). With regard to compound 6 we were not able to determine an alteration of 

ASP+ uptake in HEK-hDAT. Since we have detected weak fluorescence intensities in the 

absence of ASP+ (data not shown), we have incubated compound 6 in dopaminergic neurons 

derived from mouse embryonic stem cells (Martí et al., 2017). Figure 6b shows exemplary 

live cell images of compound 6-labelled dopaminergic neurons, in which the compound 

predominantly stained globular structures on the soma and along neurites. 

To further characterize compound 1 – 3, HEK-hDAT cells were incubated with each 

compound (0μM-30µM) for 10 min prior addition of 10 µM ASP+ to the imaging chamber. 

As shown in Figure 6c, the presence of compound 1 significantly dose-dependently 

diminished ASP+ uptake. A decreased ASP+ fluorescence to 50% ± 2.67 of control values 

(SEM given) was measured at for 3 μM compound 1, and was maintained for higher 

concentrations (10 μM: 41% ± 2.42; 30 μM: 38% ± 2.25). In presence of compound 2, already 

1 μM was enough to significantly diminish ASP+ fluorescence substrate (Figure 6d and 

Supporting Info. S2). At 1µM, ASP+ fluorescence decreased to 60% ± 2.44 (SEM given) 

compared to control intensities. This fluorescence intensity remained alike when using higher 

concentrations of compound 2 (3 µM: 56% ± 2.48; 10 μM: 55% ± 2.09; 30 μM: 64% ± 2.39). 

Finally, incubation of HEK-hDAT with compound 3 also revealed a significant decrease of 

ASP+ uptake with increasing concentrations of the compound (Figure 6e). A significant 

reduction of ASP+ fluorescence started at 3 µM (76 ± 3.34; SEM given) and slightly 

increased at higher concentration with 30 µM showing the strongest ASP+ uptake alteration 

compared to control conditions (10 µM: 77 ± 4.09; 30 µM 57% ± 4.35).
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Figure 6. Live cell imaging of hDAT-dependent ASP+ uptake into HEK-hDAT cells.
 (a) HEK-hDAT were incubated for 10 min with 30 µM of each compound prior addition of ASP+. 
Compounds 1 – 3 showed a significantly stronger effect on ASP+ uptake (***, p<0.001) compared to 
compound 4 and 5. An effect of compound 6 could not be determined (n.d.) since the compound 
proved to be fluorescent when microscope settings for acquiring ASP+ images were applied. (b) 
Exemplary images of compound 6 fluorescence in ES cell-derived dopaminergic neurons. Compound 
6 fluorescence was found in globular, roundish as well as elongated structures in the soma and 
neurites. Scale bar: 50 µM. * shows the enlarged soma of a neuron, scale bar: 15 µm. ** shows 
enlarged neurites, scale bar: 15 µm. (C-E) HEK-hDAT were incubated for 10 min with different 
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concentrations of the respective compound (0 – 30 µM) prior addition of ASP+. Compounds 1 (c), 2 
(d), and 3 (e) competed with hDAT-dependent ASP+ uptake and significantly reduced ASP+ 
fluorescence intensities. Representative confocal ASP+ fluorescence images of HEK-hDAT are shown 
in absence (0 µM; control fluorescence intensity) and in presence of the respective compound (30 µM; 
highest concentration applied). Bars represent means ± SEMs of N≥50 ROIs taken from N=3 
independent experiments. **p≤0.01, ***p≤0.001.

Discussion

Before the release of the X-ray structure of drosophila's DAT (dDAT) (Penmatsa et al., 2013), 

NSS transporters have been modeled on the structure of bacterial leucine transporter (LeuT) 

(Yamashita et al., 2005), having with it an overall sequence similarity of about 20-25% 

(Beuming et al., 2006; Forrest et al., 2006; Indarte et al., 2008; Ravna et al., 2006). LeuT and 

dDAT have several major differences, such as a kink in TM12 halfway across the membrane 

bilayer, a latch-like C-terminal domain that caps the cytoplasmic gate and a cholesterol 

molecule in the groove formed by TMs 1a, 5 and 7. The dDAT also co-transports a chloride 

anion with substrate, a peculiarity not shared by LeuT (Kantcheva et al., 2013). After the 

dDAT structure release, a new homology model of hDAT has been recently published (Cheng 

et al., 2015; Cheng and Bahar, 2015) proving higher reliability with respect to the previous 

ones. Following this strategy, we have created a new homology model of the human dopamine 

transporter, to have a more precise model for structure based drug design purposes. 

We speculated that since the inhibitors block the transporter in an outward open conformation 

(Schmitt et al., 2013),  they could be docked more favorably in it, rather than in the closed 

conformation. On the other hand, the substrate should be able to bind the outward-open, the 

closed and the inward-open conformation. Accordingly, finding open and closed 

conformations of hDAT is helpful in the design of next generation anti-parkinsonian drugs. 

We have investigated the conformational changes occurring in hDAT upon the binding of a 

substrate or inhibitors, mainly related to the closing of the pocket mediated by Phe320. These 

finding agree with X-ray structures published recently (Wang et al., 2015). A previous study 

suggested that modafinil, which acts as an atypical inhibitor, keeps the hDAT in a closed 

conformation (Schmitt et al., 2013). However, our results suggest that both cocaine and 

modafinil keep the transporter in an outward-open conformation, whereas amphetamine 

causes closing of transporter. Furthermore, we suggest that cocaine and modafinil form more 

non-bonded interactions with hDAT which results in stronger binding affinity. The inhibitor 
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keeps the transporter in the same conformation as the empty transporter. In hDAT-

amphetamıne complex we have observed the closure of the outer extracellular gate between 

Asp476 and Arg85 amino acids, and inner extracellular gate (Phe320 and Tyr156). After 40 

ns simulation, we did not observe any major changes in the system that led to conformational 

change from occluded to inward-open conformation. The increase in distance between amino 

acids of the intracellular gate (Asp436 and Arg60) was not significant, so we speculated that 

there must be something else causing it, like binding of another substrate (Koldsø et al., 2013) 

or sodium being dragged by electrochemical gradient (Cheng and Bahar, 2015; Tavoulari et 

al., 2016), but this is beyond of the scope of these research. (Supporting Info. S3)

Furthermore, conformations that we have identified could be used for computational 

modeling. Using docking into these two conformations can indicate whether the compound is 

an inhibitor or a substrate. Based on docking of the known compounds into these two 

conformations we have determined differences between them. Namely, substrates show 

binding energies at around -7 kcal/mol (or more positive) for both hDAT conformations. The 

inhibitors show around -8 kcal/mol (or more negative) for open conformation and much less, 

or no binding for closed conformation (Table 1). Lastly, we found a method to screen 

specifically for substrates, and we conclude that the best way is to take both protein 

conformations and ligands chemical properties into account. 

In silico screening led us to choose six promising molecules out of 300,000 compounds, 

which indeed showed an effect on hDAT ASP+ transport in vitro. ASP+ has been shown to be 

translocated through plasma membrane not only by selective high-affinity transporters like 

DAT or SERT but also by low-affinity, high capacity monoamine transporters like OCT 

(organic cation transporter) and PMAT (plasma membrane monoamine transporter) and in 

addition by yet unknown uptake mechanisms.23 Hence, the ASP+ transport rate mediated by 

high affinity transporters observed in different cellular systems accounts up to maximally 50 – 

60 % of total accumulation into the cells. Therefore, it is not possible to calculate accurate 

IC50 values for the three most competing compounds. Rather we show that these compounds 

tested in our in vitro section inhibit ASP+ uptake to about 50% at concentrations within the 

same order of magnitude as do the compounds in the computational calculations, i.e. the low 

micro-molar range. Our in vitro-experiments also identified one compound as a fluorescent 

DAT substrate, which is taken up into mouse ES cell-derived neurons and localizes to 
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globular and slightly elongated structures, yet to be identified. In summary, this proves that 

the combination of in silico and in vitro studies is very effective and less time consuming and 

this approach can be used in the future to search for novel potent neuroprotective drugs that 

target dopaminergic neurons. In our future research, we will repeat the same procedure on 

recently published X-ray structure of hSERT (Coleman et al., 2016), in order to check the 

selectivity of our compounds. After entering and accumulating in dopaminergic neurons, these 

compounds could target various proteins involved in neuroprotective or immunological 

mechanisms. They could target Monoamine Oxidase (MAO-B inhibitors), Glyceraldehyde-3-

phosphate dehydrogenase (GADPH) or cytochrome c, among others. Alternatively, these 

compounds could bind heavy metal ions, calcium ions or ROS (Akao et al., 2002; Juárez 

Olguín et al., 2016; Pavlin et al., 2016). Some authors have also suggested that the usage of 

DAT substrates could also be helpful for the treatment of cocaine addiction and might 

ameliorate the symptoms of stimulant withdrawal, thereby, facilitating abstinence (Blough et 

al., 2014; Rothman, 2003). Continuing our work, we will screen these compounds for possible 

activities on enzymes in the cell (such as MAO, GADPH, caspases, cytochrome c, etc.) 

responsible for neurodegeneration/protection and look for other compounds able to target at 

the same time the hDAT transporter and other relevant proteins. 

Conclusion

In conclusion, we have shown that in silico screening with our hDAT homology model results 

in identification of hDAT-binding compounds that can be classified either as substrates or 

inhibitors based on their binding characteristics to the open-out or closed hDAT 

conformation. The interaction of hDAT and specific compounds, identified as hDAT 

substrates in silico, can be verified in vitro by analyzing their effect on hDAT-dependent 

ASP+ uptake in presence of the respective compound. Furthermore, our in silico model 

provides the potential to screen for compounds targeting other important mechanisms in 

dopaminergic neurodegeneration. Compounds being identified with our model may be applied 

as templates to design new neuroprotective substrates that are specifically targeting 

dopaminergic neurons.  
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Supporting Information S1: RMSD and residue RMSF values after 40 ns MD simulation.

RMSD (right) and residue RMSF values (left) of hDAT empty transporter in purple (a), hDAT-amphetamine – 
blue (b), hDAT-cocaine - pink (c) and hDAT-modafinil – orange (d) complexes. The RMSD stabilized around 4 
Å (for all the simulations) from the reference conformation after approximately 5000 time steps (10 ns). From 
the RMSF measurement we reasonably observed that the most flexible residues were located in the extracellular 
loops.
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Supporting Information S2: Alteration/inhibition of ASP+ uptake into HEK-hDAT cells. 

HEK-hDAT were treated for 10 min with different concentrations (1 µM, 3 µM, 10 µM and 30 µM) of 
compounds 1, 2 or 3. Representative fluorescent images of HEK-hDAT with 30 s incubation of 10µM ASP+ 
before and after incubation with the compounds. 
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Supporting Information S3: Behaviour of amino acids of DATs gates over time in apo hDAT (purple) and 
hDAT-amphetamine complex (blue). (a) outward-open conformation: both extracellular gates are open and 
intracellular gate is closed (b) closed conformation: all the gates are closed. Distances between Asp476 and 
Arg85 that are forming outer extracellular gate(c), Phe320 and Tyr156 that are closing inner extracellular gate 
(d), distances between Asp436 and Arg60 that are opening the intracellular gate (e).


