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Dynamics, stability and iron-binding activity of frataxin clinical mutants 

Correia AR, Pastore C, Adinolfi S, Pastore A, Gomes CM. 

Abstract 

Friedreich’s ataxia results from a deficiency in the mitochondrial protein frataxin, which carries 

single point mutations in some patients. In the present study, we analysed the consequences of 

different disease-related mutations in vitro on the stability and dynamics of human frataxin. Two of 

the mutations, G130V and D122Y, were investigated for the first time. Analysis by CD 

spectroscopy demonstrated a substantial decrease in the thermodynamic stability of the variants 

during chemical and thermal unfolding (wild-type > W155R > I154F > D122Y > G130V), which 

was reversible in all cases. Protein dynamics was studied in detail and revealed that the mutants 

have distinct propensities towards aggregation. It was observed that the mutants have increased 

correlation times and different relative ratios between soluble and insoluble/aggregated protein. 

NMR showed that the clinical mutants retained a compact and relatively rigid globular core despite 

their decreased stabilities. Limited proteolysis assays coupled with LC-MS allowed the 

identification of particularly flexible regions in the mutants; interestingly, these regions included 

those involved in iron-binding. In agreement, the iron metallochaperone activity of the Friedreich’s 

ataxia mutants was affected: some mutants precipitate upon iron binding (I154F and W155R) and 

others have a lower binding stoichiometry (G130V and D122Y). Our results suggest that, in 

heterozygous patients, the development of Friedreich’s ataxia may result from a combination of 

reduced efficiency of protein folding and accelerated degradation in vivo, leading to lower than 

normal concentrations of frataxin. This hypothesis also suggests that, although quite different from 

other neurodegenerative diseases involving toxic aggregation, Friedreich’s ataxia could also be 

linked to a process of protein misfolding due to specific destabilization of frataxin. 

_______ 

Abbreviations 

FRDA 

Friedreich’s ataxia 

GST 

glutathione S-transferase 

HSQC 

heteronuclear single quantum coherence 

T1 

longitudinal relaxation rate 

T2 

transverse relaxation rate 

τc 

correlation time 



Human frataxin is a mitochondrial protein whose deficiency is associated with the 

neurodegenerative disorder Friedreich ataxia (FRDA; OMIM 229300), a pathology characterized by 

neuronal death, cardiomyopathy and diabetes [1]. At the molecular level, the disease involves iron 

homeostasis deregulation and an impairment of the biosynthesis of iron-sulfur proteins [1–4]. The 

majority of FRDA patients (> 95%) are homozygous for a GAA repeat expansion within the first 

intron of the frataxin gene [5,6]. The expansion affects frataxin transcription, which results in a 

reduction of protein levels by 5–35%, depending on the insertion length. A small but significant 

number of FRDA patients are compound heterozygotes, containing a GAA expansion in one allele 

and a point mutation in the other [7]. About 15 distinct point mutations are currently known [7,8] 

and, although some account for atypical clinical presentations, no clear correlation can be made 

considering the lower number of patients characterized. 

In preliminary studies, we addressed the question of whether prevalent mutations that result in 

classical FRDA phenotypes were correlated with complete impairment of the frataxin fold [9]. We 

showed that, although destabilized, the two tested mutations (W155R and I154F) result in proteins 

that should be folded under physiological conditions. What then is the pathogenic mechanism? Two 

possible working hypotheses are that, in the mutants, the efficiency of folding is reduced compared 

to that of the wild-type protein and/or that the mutants have an enhanced susceptibility to 

degradation. Either scenario or a combination of both, is likely to lead to lower than normal frataxin 

concentrations. To address this important question, which bears direct relevance for our 

understanding of FRDA, we performed a comparative study of the protein dynamics of frataxin 

variants carrying mutations of clinical interest. We focused on how the frataxin mutations I154F, 

W155R, D122Y and G130V encompass structural perturbations that may compromise protein–

protein interactions [10–12], impair functional activity (in terms of iron binding and 

metallochaperone activity) [4] and increase post-translational proteolytic susceptibility. We also 

addressed in detail how mutations affect the protein dynamics. The study approach is expected to 

contribute to a better molecular and structural understanding of the disease mechanism, especially 

when taken in combination with recent data obtained in vivo in human cells for some of these 

mutations [10]. 

Results 

Mapping frataxin mutations on the structure 

The four mutations D122Y, G130V, I154F and W155R were mapped onto the human frataxin 

structure (Fig. 1). Three of them are replacements of exposed residues. The mutation D122Y is 

located at the very beginning of the β1 strand and is an integral part of the turn connecting α1 to β1. 

The side chain of D122 could potentially form an H-bond with the amide group of the spatially 

contiguous G138. Being in a turn, the exact nature of this residue could influence the folding 

process. Furthermore, a stabilizing surface ionic interaction of D122 with the nearby K135 residue 

is disrupted upon mutation. Similarly, G130 is in the tight turn formed by G128, S129 and G130 

between strands β1 and β2 and both φ and ψ are positive. Its mutation into a valine must disturb the 

turn conformation, resulting in severe local strain. I154 is a buried residue that directly sits into the 

hydrophobic core; its replacement by another, albeit bulkier, but still hydrophobic residue does not 

disrupt the fold completely [9]. Finally, W155 is an exposed and extremely conserved residue that 

has been suggested to be relevant for protein–protein interactions. However, because W155 packs 

against a nearby arginine (R165), its mutation to an arginine results in a repulsive interaction arising 

from two spatially contiguous positively charged residues. 



 

Figure 1. 

 Frataxin mutations involved in Friedreich’s ataxia. Figures were drawn using the protein databank file 1EKG. 

Protein dynamics of wild-type human frataxin 

The dynamical properties of wild-type human frataxin were established by NMR 15N relaxation 

experiments, looking specifically at regions around the mutated positions (Fig. 2A; see also 

supplementary Figs S1–S3). This technique has proven to be very successful in providing 

information about molecular internal motions. Overall, longitudinal (T1) and transverse (T2) 

relaxation rates and NOE values are rather uniform along the protein sequence, in agreement with 

what is expected for a compactly folded globular protein. Such a flat behaviour is consistent with 

the presence of only short and rather stiff turns between secondary structure elements. The Lipari–

Szabo model-free formalism was used to analyse the data [13]. Smaller than average T1/T2 and 

small or negative NOE values, which suggest the presence of internal motions on the nano- and 

picosecond timescale, were observed at both termini and especially at the C-terminus. This suggests 

a higher mobility of these regions compared to the rest of the molecule, in agreement with the larger 

rmsd of the solution bundle in these regions [14]. Residues in the loop between strands β4 and β5 

(Thr149, Asn151 and Lys152), and at the end of strand β6 (Val174), have larger than average T1/T2 

ratios and shorter T2 (see supplementary Figs S1–S3). These features may indicate the presence of 

low-frequency motions, often associated with conformational exchange. The correlation time of the 

wild-type at room temperature, as estimated from the T1/T2 ratio, is 7.9 ns. This value is in good 

agreement with the value expected for a monomeric globular domain of equivalent size [14]. 



 

Figure 2. 

Comparison of the HSQC spectra for the four frataxin mutants. (A) D122Y; (B) G130V; (C) W155R; and (D) I154F. The spectra 
were recorded at 600 MHz and 25 °C. 

Conformational dynamics of frataxin mutants: different mutants have different tendencies to 

aggregate 

The NMR spectra for the four frataxin mutants are all compatible with folded species, having 

appreciable peak dispersion (approximately 4 p.p.m. and 30 p.p.m. dispersion in the 1H and 15N 

dimensions, respectively) (Fig. 2B–D). This is confirmed by far-UV CD because the spectrum of 

the mutants is overall identical to that of the wild-type frataxin (not shown). The NMR spectra 

obtained for W155R and G130V are very similar to that of the wild-type [15], and the spectrum for 

D122Y shows some local rearrangement of several resonances. The spectrum for I154F is of lower 

quality, suggesting the presence of a small, but appreciable, population of either degraded or 

unfolded protein. Accordingly, it was relatively easy to assign the spectra for the W155R, G130V 

and D122Y mutants from that of the wild-type, whereas the spectrum for I154F could only be 

tentatively assigned. 

T1 and T2 as well as steady-state 1H-15N NOE and correlation times (τc) were determined and 

analysed for the wild-type and the mutant frataxins (Table 1 and Fig. 3; see also supplementary 

Figs S1–S3). Apart from I154, whose resonance is not observable because of overlap, the other 

mutation sites have average T1/T2 and NOE values. We observed a progressive increase of the 

average T1 values, with a concomitant decrease of the average T2, which follows the order wild-

type < D122Y < G130V < I154F < W155R (see supplementary Doc. S1 and Scheme S1). In 

agreement, the correlation times extend from 7.5 to 9.2 ns for W155R (Table 1 and Fig. 3). This 

strongly suggests that the mutants have a different tendency towards aggregation. Such behaviour is 

fully consistent with what had been noticed at the protein purification level because expression of 

frataxin mutants always results in formation of aggregates and inclusion bodies. 

Table 1.   Relaxation rate constants, NOE and correlation time. T1 and T2 as well, as steady-state 1H-15N NOE and τc, 

were measured for frataxin variants. 



Protein T1 (ms) T2 (ms) NOE τc (ns) 

WT 544.3 106.9 0.76 7.9 

D122Y 578.2 115.5 0.76 7.7 

G130V 634.5 98.4 0.77 7.5 

I154F 712.1 97.7 0.75 8.5 

W155R 746.6 90.6 0.71 9.2 

 

Figure 3.  

 Representative relaxation parameters of the W155R mutant. The data were collected at 600 MHz and 25 °C. The data for the other 
mutants are available in the supplementary material. 

This was further investigated by carrying out a semi-quantitative analysis of frataxin expression in 

cell extracts by SDS/PAGE (Fig. 4) and western blot analysis (not shown). Expression systems 

have been used as a tool to study the foldability and conformational destabilization of human 

proteins [16], including other mitochondrial proteins [17,18]. The data obtained for the different 

frataxin variants showed that these have different tendencies to aggregate (Fig. 4). Although wild-

type frataxin remains to a considerable extent, and mostly soluble after expression, the same is not 

observed for the mutant variants. For those, the percentage of frataxin that remains soluble after 

expression is considerably lower than the fraction that aggregates, and the I154F and the W155R 

mutants are mostly expressed in an insoluble form (79% and 68%, respectively; Fig. 4). This 

analysis shows that, although all the variants are also found in the soluble fraction, their tendency to 

misfold in the confined cellular environment could result in an appreciable quantity of aggregated 

and/or destabilized protein. On the other hand, the average NOE values remain comparable among 

variants, indicating that the internal flexibility of the protein is essentially invariant. 



 

Figure 4.  

Effect of frataxin clinical mutations on the protein aggregation propensity. Top: SDS/PAGE gels obtained from E. coli lysates 

expressing GST-frataxin fusion proteins (Mr = 39.2 kDa). Frataxin identity was confirmed by western blot analysis (not shown). For 

each protein variant, the electrophoretic separations of total protein in both the soluble (s) and insoluble (p) fractions are shown. 

Bottom: Semi-quantitive analysis of the relative proportion of frataxin present in the soluble and insoluble fractions, obtained from 

densitometric analysis of gel bands (n = 3). 

 



Probing structural flexibility by limited proteolysis 

Limited proteolysis experiments were used to further identify and characterize the sites of enhanced 

flexibility or of local unfolding in the frataxin mutants. The rationale for this approach is that chain 

flexibility is determinant in the proteolytic reaction because digestion of rigid secondary structure 

elements is extremely disadvantageous thermodynamically [19]. Frataxin nicking reactions were 

carried out at physiological temperature (37 °C), the reaction products were separated by reverse 

phase HPLC, and the resulting peptides identified by MS. A comparison of the obtained tryptic 

maps clearly shows that mutant frataxins are destabilized relatively to the native protein (Fig. 5). All 

frataxin mutants exhibit an increased proteolytic susceptibility compared to the wild-type, as shown 

by the higher number of obtained peptides during identical proteolysis periods (Fig. 5). Furthermore, 

the complexity of the tryptic maps is not identical between mutations: overall, I154F and W155R 

are more easily accessible to the protease having more degradation sites and peaks, whereas the 

G130V and D122Y mutants have simpler tryptic maps (Fig. 5). Some additional differences are 

observed between the mutants, which are suggestive of the local impact that the different mutations 

have on the protein structure and dynamics. For example, the G130V and D122Y mutations are 

highly flexible in the loop between strands β3 and β4, as shown by the appearance of a peak 

corresponding to the Q153-K164 segment (approximately 36 min; Fig. 5), which is absent in the 

other mutants. On the other hand, the α1 helix in the I154F and W155R mutants has a decreased 

rigidity compared to the native protein and the remaining mutants. Proteolysis within a regular 

secondary structure element such as helices is very unfavourable and does not occur unless some 

disorder or local breathing is present, as appears to be the case in the I145F and W155R mutants. 

 

Figure 5.  

 Trypsin limited proteolysis of frataxin at pH 8.5. (Top) Secondary structure wiring diagram. The fragments resulting from the 

tryptic digestion are highlighted by boxes. (Bottom) Peptide maps resulting from partial tryptic digestion: wild-type and mutant 

variants (D122Y, G130V, I154F and W155R) (data from the wild-type and the last two mutants are redrawn from [9]) after being 

http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2008.06512.x/full#f5
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2008.06512.x/full#f5
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2008.06512.x/full#f5
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2008.06512.x/full#f5


incubated with trypsin for 90 min at 37 °C. Boxes highlight the peaks that are only present on the tryptic digestion of D122Y and 

G130V or I154F and W155R. 

Frataxin mutants have distinct kinetics of proteolytic degradation 

To investigate whether particular regions of frataxin have different degradation rates, we analysed 

the kinetics of proteolysis of the different frataxin variants (Figs 6 and 7; Table 2). Under the tested 

conditions, the G130V and D122Y variants are found to undergo proteolysis at higher rates. By 

contrast, for the I154F and W155R mutants, proteolysis is restricted to particular regions of the 

protein: fast degradation is observed at cleavage sites within helix α1 (R97), at strand β5 (R165) 

and on the loop between strands β5 and β6 (K171). The W155R mutant is also cleaved at a faster 

rate at the protein termini and at the loop between the β2 and β3 strands, probably as a result of the 

destabilization of the β3/β4 inter-strand interactions that are affected by this mutation, which is 

likely to increase the flexibility of the contiguous loop and its cleavability (K135). A comparison 

between these two mutants suggests that the conformational strain introduced by these mutations 

results in a more localized destabilization, affecting the stability of the first helix, and eventually 

perturbing the ridge of negatively charged residues that cluster along the first helix and the first 

strand, which are known to be involved in iron binding [20]. 

 

Figure 6.  

 Time course of trypsin limited proteolysis. The appearance of the peptide eluting at 66 min (Fig. 5) was monitored for wild-type 

(filled squares) and mutant variants (unfilled diamonds, D122Y; unfilled squares, G130V; unfilled circles, I154F; unfilled triangles, 

W155R) during incubation with trypsin at 37 °C. Solid traces are fits to first-order reaction rates (wild-type: kobs = 12.7 × 10−3·min−1; 
D122Y: kobs = 32.2 × 10−3·min−1; G130V: kobs = 26.4 × 10−3·min−1; I154F: kobs = 8 × 10−3·min−1; W155R: kobs = 39.6 × 10−3·min−1). 

 



 

Figure 7.  

 Comparative plot of proteolysis rates per identified fragment. The observed proteolysis rates of the four frataxin mutant variants are 

compared for the different digested fragments. The rates determined for native frataxin have been subtracted in each case. 

Table 2.   Kinetic constants of proteolytic digestion observed for all the identified peaks. Time 

course of trypsin limited proteolysis: appearance of the peaks with different elution times was 

monitored for all the proteins under study and the data were fitted to a first-order reaction. 

Peak (min) HfrA 
kobs (× 10−3·min−1) 

Hfra D122Y Hfra G130V Hfra I154F Hfra W155R 

32 D91-R97 – – 28.1 ± 8.1 25.6 ± 11.2 

40 L136-K147 25.0 ± 1.4 37.9 ± 12.5   25.4 ± 11.0 

23 L198-K208 22.7 ± 2.6 45.6 ± 5.1 – – 

36 Q153-K164 26.7 ± 2.0 48.1 ± 8.3 – – 

26 Y166-K171 26.7 ± 2.6 42.7 ± 8.1 14.5 ± 3.8 39.8 ± 9.8 

66 N172-K192 24.5 ± 2.7 32.2 ± 2.9 26.4 ± 6.3 39.6 ± 21.1 

42 L198-K208 26.9 ± 4.0 25.0 ± 5.1 – 18.5 ± 10.6 

Impact of different clinical mutations on frataxin stability and iron binding 

To compare the effect of the mutations on the folding thermodynamics of frataxin, we studied their 

stabilities against chemical unfolding in the presence of urea as measured by far-UV CD and Trp 

fluorescence emission. As observed for the wild-type protein, the mutant variants show cooperative 

unfolding transitions (Fig. 8). The results obtained revealed that the two newly studied mutations 

(D122Y and G130V) are those leading to a higher frataxin destabilization, in agreement with what 

has been proposed for G130V [21]. The protein stability decreases according to the order: wild-

type > W155R > I154F > D122Y > G130V and corresponds to a Δ(ΔG) in the range −1.36 to 

−2.86 kcal·mol−1 (Table 3). This behaviour was compared with thermal unfolding, as recorded by 

far-UV CD. We measured the melting curves for G130V and D122Y (Fig. 8) and compared the 

values with those previously obtained for I154F and W155R [9]. In agreement with the chemical 

unfolding data, the G130V and D122Y mutants showed the largest variations of melting transitions 

(ΔTm of approximately 16 °C and 23 °C, respectively), while maintaining the reversibility (> 95%) 

of the unfolding reaction. 

 



 

Figure 8.  

 Thermal (A) and chemical (B) denaturation curves at pH 7.0. filled squares, Wild-type; unfilled diamonds, D122Y; unfilled squares, 

G130V; unfilled circles, I154F; unfilled triangles, W155R (data from the wild-type and the last two mutants are redrawn from [9]. 
Lines represent fits to the two-state model [33]; for parameters, see Table 3. 

Table 3.   Thermodynamic parameters for urea and thermal denaturation of frataxin variants. 

Protein 
ΔGH2O 

(kcal·mol−1) 

m 

(cal·mol−1·m−1) 

[Urea]1/2 

(m) 
Δ[Urea]1/2a 

Δ(ΔG) 

(cal·mol−1)b 
Tm (°C) 

ΔTm 

(°C) 

Wild-

typec 
5.6 ± 0.3 1407 ± 41 4.3     66.3 ± 0.1 – 

D122Y 4.3 ± 0.2 1498 ± 23 2.9 –1.4 –2110 50.4 ± 0.1 –15.9 

G130V 3.1 ± 0.3 1310 ± 60 2.4 –1.9 –2863 43.2 ± 0.1 –23.1 

I154Fc 5.8 ± 0.3 1836 ± 67 3.2 –1.1 –1657 50.7 ± 0.1 –15.6 

W155Rc 5.1 ± 0.2 1483 ± 78 3.4 –0.9 –1356 61.4 ± 0.4 –4.9 

 

a Difference between the [urea]1/2 for the wild-type and the mutant forms. b Δ(ΔG) = Δ[urea]1/2 × average of the three m-values [34]. 
c Data from [9]. 

The impact of mutations in frataxin was also investigated with respect to its iron-binding properties. 

Independent experimental evidence suggests that frataxin acts as a cellular iron chaperone and 

human frataxin has been shown to bind six to seven irons, although with a low affinity [4]. We 

monitored the iron binding capacity by fluorescence spectroscopy using wild-type frataxin as a 

control. Under controlled pH conditions and at 25 °C, the ferric binding capacity of D122Y and 

G130V appears to be partially impaired; the mutants are only able to bind four irons per molecule 

(data not shown). As previously reported, the mutants, I154F and W155R, precipitate upon iron 

binding above the two iron per frataxin threshold [9]. 

Discussion 

In genetic disorders resulting from missense mutations, the mechanisms by which a single amino 

acid change triggers disease may result from loss of function, accumulation of toxic species, such as 

aggregates or amyloid fibres, or dominant negative effects inhibiting the function of the normal 

protein [22]. In FRDA, the link between a point mutation in frataxin and the disease 

physiopathology remains unclear, and hypothetical scenarios for the impact of mutations include an 



effect on the folding efficiency, maturation, protein stability, proteolytic susceptibility or function. 

We have studied different point mutations found in FRDA patients, which are compound 

heterozygotes for the pathology. These mutations can be grouped according to FRDA symptoms: 

whereas the I154F and W155R mutations lead to severe FRDA, the mutations G130V and the 

D122Y account for milder clinical symptoms, although the latter has a very low prevalence [7]. 

Among these, the most common mutation found in the non-expanded allele is the G130V mutation 

[7], which was included in the present study. Preliminary work on this mutation has shown that, 

although human G130V frataxin can complement frataxin-deficient yeast, protein stability is 

affected and the levels of mature frataxin are diminished [21]. This is in agreement with our 

findings, which show that this mutation results in a frataxin variant with a decreased conformational 

stability and iron-binding capacity. 

From a structural point of view, our results demonstrate that none of the mutations change 

significantly the protein fold at room temperature. The heteronuclear single quantum coherence 

(HSQC) spectra obtained for the frataxin variants are typical of folded species and are very similar 

to those of wild-type protein. Furthermore, frataxin flexibility is not significantly altered by the 

insertion of the mutations. Despite retaining the fold, the four mutant variants present a reduced 

thermodynamic stability, which, in vivo, is likely to cause an increase in the molecular motions and 

enhance the susceptibility to aggregate and/or to be degraded by the cellular proteases. Limited 

proteolysis at 37 °C shows that mutant frataxins have an increased susceptibility towards proteolytic 

degradation, which is indicative of an enhanced flexibility of the polypeptide chain. A comparison 

of these results with those obtained by NMR at 25 °C suggests that raising the temperature to 37 °C 

increases the molecular motions enough to allow proteolysis. The increased correlation times 

measured for the mutants (Table 1) reflect a higher tendency towards aggregation. Furthermore, 

expression assays revealed that, in mutant frataxins, the soluble/insoluble protein ratio is decreased, 

and this may play a role in the molecular pathogenesis of FRDA. Accordingly, it has been found 

that there is an inverse correlation between the level of protein expression and the aggregation rate 

[23], so that proteins are only marginally soluble to function and aggregation can result from small 

changes such as chemical modification (e.g. as a consequence of oxidative stress) or genetic 

mutation (e.g. as in the case of FRDA heterozygous patients). 

The observed reduction in iron-binding could also be related to the increased molecular motions. 

The increased flexibility, combined with the enhanced propensity towards aggregation, could 

explain why some mutants precipitate upon iron binding (I154F and W155R) or have a lower 

binding stoichiometry (G130V and D122Y). Under adverse physiological conditions occurring 

in vivo, such as the oxidative stress observed in FRDA model cells [24–27], these effects could also 

lead to a perturbation of frataxin structure and dynamics, which could lead to its inactivation or 

misfolding, further reducing the cellular concentration of functional frataxin. 

Altogether, the clinical effects in heterozygous FRDA patients are likely to result from a 

combination of effects, as observed in other human diseases. For example, in amyotrophic lateral 

sclerosis, the mutations identified in SOD1 are very different in character, and it has been suggested 

that the pathology emerges as a result of different reasons or a combination of reasons, from apo-

protein destabilization to local unfolding [28]. In the case of FRDA, the results obtained in the 

present study suggest that factors such as a reduced efficiency of protein folding (resulting in an 

increase of the aggregation rates), an accelerated degradation in vivo (leading to decreased frataxin 

levels) and misfolding and conformational destabilization, contribute to a decrease in the levels of 

functional frataxin. In this scenario, FRDA in heterozygous patients carrying frataxin single point 

mutations could be considered a type of protein misfolding disorder [22]. 



Experimental procedures 

Chemicals 

All reagents were of the highest purity grade commercially available. The chemical denaturant urea 

was purchased from Ridel-de Haën (Seelze-Hannover, Germany) and the accurate concentration of 

the stock solutions in different buffers was confirmed by refractive index measurements. 

Protein purification 

All constructs were expressed in Escherichia coli [competent cells BLC21 (DE3); Novagen, EMD 

Biosciences Inc., San Diego, CA, USA] as fusion proteins with a His-tagged glutathione S-

transferase (GST) and a cleavage site for tobacco etch virus or PreScission protease (GE Healthcare 

Bio-Science GmbH, Freiburg, Germany) as previously described [29,30]. The protein concentration 

was determined using the extinction coefficient ε280 nm = 21 930 m−1·cm−1. As in in previous studies, 

the protein used corresponded to the conserved C-terminal domain (amino acids 90–210). This form 

of frataxin has been compared with longer constructs and the mature form, and it has been show 

that additional residues at the N-terminus are likely unfolded, providing limited information about 

the protein fold [29]. The mutants were stable in solution, although susceptible to precipitate upon 

slow freezing. Nevertheless, thawed proteins that had been fast frozen retained their spectroscopic 

properties and melting temperatures. 

SDS/PAGE 

After cell harvesting, 100 mg of cells from each bacterial growth were resuspended in 1.5 mL of 

lysis buffer (20 mm Tris–HCl, pH 8, 150 mm NaCl, 40 mm Imidazole, 1 mm 

phenylmethanesulfonyl fluoride, DNaseI and lysozyme) and lysed on the French press. After lyses, 

the samples were centrifuged at 168 000 g for 45 min. The pallet fraction was resuspended in 

1.5 mL of 6 m GuHCl. The protein concentration of both the pallet and the soluble fraction was 

determine using Bradford reagent in order to prepare aliquots with the same protein concentration 

(1 mg·mL−1) to further apply on the gel. A 15% SDS/PAGE was performed at 200 V and 25 mA. 

Proteins were visualized by Coomassie blue staining. 

Western blotting 

Proteins separated using SDS/PAGE were transferred from the gel onto poly(vinylidene difluoride) 

membrane for 1 h at 45 mA using a ECL semi-dry blotter (GE Healthcare, Piscataway, NJ, USA). 

Immunochemical detection of the His-tagged GST frataxin fusion protein was achieved by 

incubation with anti-GST produced in rabbit (Sigma, St Louis, MO, USA). The antibody was 

diluted (1 : 1000) in NaCl/Pi-Tween containing nonfat milk. After washing with NaCl/Pi-Tween, 

the membrane was incubated with secondary anti-rabbit sera conjugated with horseradish 

peroxidase (Sigma) and developed with ECL (GE Healthcare). 

Spectroscopic methods 

UV/visible spectra were recorded at room temperature in a Shimadzu UVPC-1601 spectrometer 

(Shimadzu, Kyoto, Japan) equipped with cell stirring. Fluorescence spectroscopy was performed on 

a Cary Varian Eclipse instrument (Varian NMR, Inc, Palo Alto, CA, USA) (λex = 280 nm, 

λem = 340 nm, slitex: 5 nm, slitem: 10 nm, unless otherwise noted) equipped with cell stirring and 

Peltier temperature control (MJ Research, Watertown, MA, USA). Far-UV CD spectra were 



recorded typically at 0.2 nm resolution on a Jasco J-715 spectropolarimeter (Jasco Inc., Tokyo, 

Japan) fitted with a cell holder thermostated equipped with a Peltier. 

Trypsin limited proteolysis and LC-MS analysis 

Frataxins were incubated with trypsin (bovine pancreas trypsin, sequencing grade; Sigma) at 37 °C 

in 0.1 m Tris–HCl (pH 8.5), in a 100-fold excess over the protease. Aliquots (approximately 

0.5 nmol of protein) were sampled at different incubation periods and the reaction stopped by the 

addition of 0.2% (v/v) of trifluoroacetic acid. The products of the proteolysis reaction were analysed 

by reverse-phase HPLC [9]. The column was regenerated with 0.1% (v/v) trifluoroacetic acid. MS 

analysis was carried out at the ITQB Mass Spectrometry Service Laboratory (Oeiras, Lisbon, 

Portugal). 

Iron-binding assays 

Iron binding stoichiometry was quantitated by iron dependent fluorescence measurements, 

essentially as described previously [4]. Briefly, tryptophan fluorescence was measured in 1 mL 

quartz cuvettes with continuous stirring. The excitation and monitoring wavelengths were 290 and 

340 nm, respectively. The binding stoichiometry for ferrous and ferric ion are identical (six or seven 

irons per frataxin, [4]) and therefore binding of ferric iron was routinely monitored. For the 

measurements, a 10 μm solution of apo frataxin was titrated with ferric ion from a stock solution of 

FeCl3, over the concentration range 0–120 μm. The quenching of tryptophan fluorescence induced 

by the binding of ferric ions was used to calculate the fraction of binding sites occupied. The 

stoichiometry, p, and apparent dissociation constant, Kd, were then obtained as previously described 

by Winzor and Sawyer [31]. 

NMR spectroscopic methods 

15N T1, T2 and NOE NMR relaxation measurements were performed at 600 MHz and 25 °C on 

approximately 0.4 mm samples. Both T1 data and T2 data were acquired with ten relaxation delays 

(10, 100, 200, 300, 400, 500, 600, 700, 800, 100 ms and 10, 20, 35, 50, 65, 80, 100, 125, 150, 

25 ms, respectively). Experimental steady-state NOE values were determined from the peak 

intensity ratios of amide signals obtained by recording interleaved 2D Watergate 1H-15N HSQC 

spectra with and without a proton saturation delay of 4 s and a repetition delay of 4.2 s. T1 and T2 

relaxation times were obtained by fitting the data with a two-parameter single exponential decay 

function. The T1 and T2 values of residues 115, 116, 127, 130, 171, 176, 177, 200, 207, 209 and 210 

differ by more than one standard deviation from the mean value and therefore were not considered 

in the correlation time calculations. 

The errors on the T1 and T2 measurements were estimated to have an average value of 3%, whereas 

the error on the NOE measurements is approximately 5%. The 15N heteronuclear relaxation rates 

were interpreted using the program tensor2 [32]. The internuclear distance rNH was assumed to be 

1.02 Å. The dipolar and chemical shift anisotropy interactions were assumed to be collinear. 
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