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Abstract 

Diamond based p-i-n light-emitting diodes, developed to electrically drive single-photon sources in 

the visible spectral region at room temperature, have the potential to play a key role in quantum based 

technologies. In order to gain more insight into the charge injection mechanism occurring in these 

diodes, we carried out an experiment aimed to investigate the electrostatics and the charge carrier 

transport by the Ion Beam Induced Charge (IBIC) technique, using 1 MeV He microbeam raster 

scanning of p-i-n structures fabricated in a high purity diamond substrate, using lithographic masking 

and P and B ion implantation doping. 

Charge Collection Efficiency (CCE) maps obtained at low ion fluence, show that induced charge 

pulses arise only from the P-implanted region, whereas no IBIC signals arise from the B-implanted 

region. This result suggests the formation of a slightly p-type doped substrate, forming a n+-p-p+, rather 

than the expected p-i-n, structure. 

However, for high fluence scans of small areas covering the intrinsic gap, CCE maps are more 

uniform and compatible with a p-i-n structure, suggesting the occurrence of a “priming effect”, which 

saturates acceptor levels resulting in a decrease of the effective doping of the diamond substrate.  
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Introduction 

One of the most interesting features of diamond diodes is electroluminescence induced by charge 

injection in recombination centers and, remarkably, in individual single nitrogen-vacancy (NV) centers 

located in the intrinsic region [1]. The possibility to develop diamond optoelectronic devices with 

stable, room-temperature, electrically driven single-photon sources is a key technology with a broad 

range of application ranging from quantum communication, computing and metrology [2]. The 

electrical control of the charge state of NV centers in diamond requires the control of the Fermi level in 

the diamond band-gap, which has been successfully achieved by incorporating the luminescent center 

in an intrinsic diamond layer sandwiched between graphitic/graphitic electrodes [3] or in p-i-n 

structures with graphitic ohmic contacts [4][5][6]. However, for the optimization of these devices and 

their standardization in the perspective of their large scale production, an accurate and spatially 

resolved characterization of their electrostatic features is essential.  

This analysis can be effectively carried out by the Ion Beam Induced Charge (IBIC) technique, 

which has been widely proven to be suitable to provide valuable information on the electrostatic and 

transport characteristics of semiconductor/insulator electronic devices [7][8]. Besides, it is of high 

interest in the field of quantum technology, for example, for its potential to accurately measure the ion 

strike location for single atom deterministic doping [9][10] in silicon and for the detection of single low 

energy ion (Si, 200 keV) in diamond for the optimization of the production yield of single colour 

centres [11].  

However, to our best knowledge, IBIC technique has not been so far applied to the electronic 

characterization of p-i-n diamond structures, in order to extract electric field profiles, and carrier 

diffusion/drift lengths as done for example in Si, GaAs, SiC junction or Schottky diodes  [7] [12]. 

In order to explore the potential of IBIC in this field, in this paper, we report on the first IBIC 

analysis of diamond-based p-i-n light-emitting diodes capable of single-photon emission in the visible 

spectral region at room temperature [4]. 

2. Experimental 

The p-i-n diamond diodes were fabricated on an electronic grade ultra-pure highly polished (100)-

oriented single crystal CVD diamond film, 0.5 mm thick, using photolithographic masking and ion 

implantation doping. The p-type and n-type regions were realized by the implantation of 70 keV B ions 

with a fluence of 21016 ions/cm2 and 90 keV P ions with a fluence of 1016 ions/cm2, respectively.  
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Fig.1 summarizes the P and B implantation and the vacancy profiles evaluated by SRIM2013 

simulations [13]. 

After B and P implantation, the sample was annealed at 1600°C for 4 hours in vacuum.  

This annealing process had a double function: first to convert the highly damaged cap layers into 

graphite, with a vacancy density overcoming the graphitization threshold (assumed to be VG=1022 

vacancies/cm3 [14]). Second, to recover the diamond lattice from implantation damage and activate the 

P and B dopants located below this graphitized conductive layer, where the vacancy concentration is 

lower than VG.  The conductive graphitic cap layers act as ohmic contact to the buried doped regions 

and allow direct bonding to be performed without additional metallization [4]. 

The sample was finally mounted on a ceramic PCB and two diodes were connected to the PCB gold 

pads by Al wires (20 µm) soldered on the top graphitic layers. The back side of the sample had no 

electrical contacts. The gaps (namely i-gaps) between the P- and B- doped regions of the two diodes 

under study, namely B3 and C4, were 7 and 9 µm, respectively. Figure 2 shows optical images of the 

sample and of one of the diodes with the electrical connections. The bias voltage was applied on the n+ 

electrode. 

IBIC characterization was carried out at the LIPSION nanoprobe laboratory of the University of 

Leipzig [15], using 1 MeV He ion beams (ion current  0.1 fA) focused down to 1 μm spot size. The 

electronic energy loss profile, which corresponds to the electron/hole generation profile, induced by 1 

MeV He ion in diamond extends to 1.8 m in depth. 

The electronic chain was composed by an Amptek 250 charge sensitive pre-amplifier,  a Canberra 

2025 shaping amplifier (shaping time: 1 s) and pulse heights were digitized by a Canberra 8701 ADC 

[16]. 

A Hamamatsu S1223-01 pin diode was used as the reference detector for charge collection 

efficiency (CCE) calibration (assuming 100% CCE). The analysis of the 1 MeV He IBIC spectrum 

provides a a spectral resolution of about 5 keV in Si; the noise threshold was set to channel 35, 

corresponding to 6300 electrons (  23 keV in silicon). The CCE of diamond, was calculated assuming 

an electron/hole pair generation energy of 13 eV [17]. 

 IBIC maps (typically 256x256 pixels) were acquired by scanning the ion micro-beam over the 

sample surface, and recording the charge pulse heights as function of the beam position.  The ADC and 

beam scanning were controlled by the MicroDAS data acquisition system [18] working in “clock 

triggering mode” with dwell times of 500 s and 1000 μs in each pixel, depending on measurement. 
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 All the measurements were carried out in dark conditions [19] and at room temperature.  

3. Results and discussion 

Fig. 3 shows an IBIC map of a 720x720 m2 scan including the whole p-n structure. The “shadows” 

of the bonding and Al wires make easy the correlation between this map and the diode photograph 

shown in Fig. 2b. It is apparent that only the phosphorous implanted region is visible, whereas the 

charge induced when 1 MeV He ions probe the boron implanted region is null, or is below the 

electronic threshold (it should be noted that the B-doped region remained invisible in measurements 

with reversed polarity of the shaping amplifier). This result was unexpected, since the electric field in a 

p-i-n diode arises from both the doped regions and extends deeply into the intrinsic (undoped) region.  

However, if we assume that the bulk diamond is not perfectly intrinsic, but is slightly p-type doped, 

Fig. 3 is compatible with a single n+-p junction model, where the depletion region surrounds the n+-

type (phosphorous doped) region and extends into the p-type region, whereas the p+-type (boron doped) 

region acts essentially as an injecting or ohmic contact to the p-type substrate.  

In order to corroborate such an interpretation, we extracted CCE spectra from a selected region of 

the IBIC maps acquired at different bias voltage Vbias (Fig.4a). From the measurement of the CCE, it is 

possible to evaluate the depletion layer width (w), assuming a complete collection of induced charge 

generated in  the depletion region and neglecting any diffusion effect, from the integral electron energy 

loss of 1 MeV He ions in diamond, as evaluated by SRIM (Fig. 4b). By plotting w2 vs. Vbias, we noticed 

a linear behavior, which is compatible with the elemental Shockley model of an ideal n+-p junction 

diode in reverse bias [20]; 

(1) 
 

A

bibias2

Nq

 VV 2
w




  

where  is the diamond dielectric constant (0.5 pF/cm) and q is the elementary charge. 

From eq. (1), both the effective acceptor concentration NA=(1.500.08)·1016 cm-3 and the built-in 

potential of Vbi=(3.70.6) V, can be extracted from the slope and the intercept of the linear fit (Fig. 4c). 

It is worth noticing that the depletion region should extend not only in depth, i.e. underneath the n+ 

electrode, but also laterally, surrounding the whole n+ electrode. However, the scarce resolution of the 

large-scan maps prevents a direct observation of the active region widening. 

Although our elementary model provides values of built-in potential reasonably compatible with 

those relevant to diamond pn junctions available in literature [21], it is unsuitable to interpret IBIC 
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maps generated by 1 MeV He ion scans over smaller areas in between the two P and B implanted 

regions. Actually, both regions are visible in the (22x22) μm2 CCE maps shown in Fig. 5, which have 

been acquired at different bias voltages. Furthermore, IBIC signals arise also from the i-gap with U- or 

V- shaped profiles at different voltages, which resemble the electric field profiles in an ideal p-i-n 

diode, which extends in the intrinsic (or slightly doped p-type) layer from the borders of both the p+- 

and n+-type regions [22].  

As the experimental conditions were identical to those adopted for the large scan map shown in Fig. 

3, the different response of the device has to be ascribed to the different ion fluences used for the two 

IBIC scans. In the former case (720x720 μm2 scan area), the fluence was of the order of 107 ions/cm2, 

whereas, for the detailed (22x22 μm2 scan area) map, the fluence was higher than 1010 ions/cm2, 

corresponding to an absorbed dose within the irradiated volume, i.e. (irradiated area) x (ion range)  

22x22x1.5 μm3), of about 4 kGy. It has been extensively demonstrated that in mono- and poly-

crystalline diamond [23] [24], as well as in other wide band gap semiconductors [25], ionizing particle 

irradiation at high fluence induces a “priming” effect, which is usually explained by the saturation of 

active traps in the diamond bulk, which are filled by charge carriers generated by ionization. This 

priming effect suggests a tentative explanation of the controversial results given in Figs. 3 and 5: the 

high ionization rate induced by He ions during the small area scan passivate the effective acceptors in 

the diamond substrate responsible for the abovementioned n+-p junctions observed in large area IBIC 

maps (Fig. 3). Therefore, the region irradiated at high fluence assumes an almost intrinsic nature, which 

is compatible with the formation of a depletion region extending over the entire irradiated area. The 

electric field is then supposed to permeate the whole i-gap and the surroundings of the p+ and n+ 

regions up to the ionization depth of the 1 MeV He ions (around 1.5 μm), promoting the drift of 

carriers generated by ionization, and hence the induction of charge at the sensing electrode.  

4. Conclusions 

In this work, we have for the first time performed an IBIC analysis of p-i-n diamond structures. Two 

significant and unexpected results have been achieved:  

1) Large area/low fluence IBIC maps show only the phosphorous implanted region, whereas both 

the i-gap and the boron implanted regions are inactive for charge induction. The confinement of 

the electric field at the n+ type region contradicts the hypothesis of an intrinsic diamond 

substrate, whereas is compatible with the presence of a unique n+-p junction. Therefore, it seems 

that the high temperature annealing plays a role not only for the electrical activation of dopants 
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in the P and B implanted regions, but also to activate acceptor impurity/defects in the diamond 

substrate, with an effective concentration of 1.5·1016cm-3. 

2) Both the P- and B-implanted regions and the i-gap are IBIC active only if they are irradiated 

with high ion fluence. This effect has been interpreted as due to the saturation of the acceptor 

levels in the bulk induced by ionization, resulting in a sort of dopant compensation, which 

drastically reduces the effective p-type doping observed during low fluence scans. Under these 

high fluence conditions, IBIC maps show features typical of p-i-n structures. 

It is worth underlying that our model is rather elementary and does take into account neither the 

complex structure of the device shown in Fig. 1, which generates a complex electric field profile due to 

the combination of rectifying, ohmic (graphitic), injecting contacts, nor the possible induction of 

“anomalous polarity pulses” due to a selective recombination of carriers before collection at the 

electrodes [26]. More experiments and more computational efforts will be needed to definitely validate 

our interpretation 

However, this phenomenological model seems to be sufficient for a basic interpretation of the 

experimental findings and, in general, it can also provide some remarks regarding the IBIC technique 

which deserve some consideration: point 1) once more highlights the sensitivity of the IBIC technique 

for the functional characterization of semiconductor/insulator devices, revealing details not observable 

with other standard techniques.  

On the other hand, point 2) evidences that the IBIC technique cannot always be considered a fully 

non-invasive technique: as apparent in highly resistive materials subjected to “priming effects”, where 

the high charge density induced by high ion fluence can remarkably perturb the electronic features of 

the device under study. 
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Figure Captions:  

Fig. 1:  a) Vacancy and implanted B profiles (70 keV, fluence=2·1016 cm-2); b) vacancy and implanted 

P profiles (90 keV, fluence=1016 cm-2).  The horizontal line indicates the graphitization 

threshold VG. Regions on the left side of the vertical lines are relevant to highly damaged 

layers, with vacancy densities higher than VG, which convert to graphite following the 

annealing process. On the right side of the vertical lines, the vacancy density is lower than VG 

and the annealing process promotes both the recovery of the diamond lattice and the activation 

of dopants, providing p- and n-type buried layers (bright red and green regions for B and P 

doping, respectively). 

 

Fig. 2:  a) Optical images of the diamond sample with the p-n junction diodes, c) optical image in 

transmittance of one diode with the scheme of the electronic connections. 

 

Fig. 3:  IBIC map of a p-n structure similar to the one shown in Fig. 2c. Reverse bias voltage (10 V). 

 

Fig. 4:  a) IBIC spectra from a selected region of the n-type region at different bias voltage; b) 

Normalized Ionization Energy Loss evaluated from Fig. 1b as function of depth; vertical 

colored segments indicate the depletion layer widths in correspondence of the median CCE 

values of the spectra at different bias voltages (colored horizontal lines); c) square of the 

depletion layer width as function of the bias voltage 

 

Fig. 5:  (top) CCE maps of a (22x22) μm2 region covering the n- and p- regions at different bias 

voltage. (bottom) CCE profiles extracted from the regions limited by white lines. Red lines 

border the i-gap region in between the n- and p- regions. 
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