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ALK, ROS1 and NTRK rearrangements define a new subtype of metastatic 

colorectal cancer 
 

 

1#
Filippo Pietrantonio, 

2,3#
Federica Di Nicolantonio, 

4
Alexa B. Schrock, 

5
Jeeyun Lee,  

6
Sabine Tejpar, 

7
Andrea Sartore-Bianchi, 

8
Jaclyn F. Hechtman, 

9
Jason Christiansen, 

 
3
Luca Novara, 

10
Niall Tebbutt, 

1
Giovanni Fucà, 

11,12
Carlotta Antoniotti,

 5
Seung Tae Kim, 

 
9
Danielle Murphy,

 1
Rosa Berenato, 

1
Federica Morano,  

4
James Sun, 

9
Bosun Min, 

4
Philip J. 

Stephens, 
9
Marissa Chen,

 2,3
Luca Lazzari,   

4
Vincent A. Miller, 

9
Robert Shoemaker, 

7
Alessio 

Amatu, 
13

Massimo Milione, 
14

Jeffrey S. Ross, 
7,15

Salvatore Siena, 
2,3

Alberto Bardelli, 

 
4
Siraj M. Ali, 

11,12
Alfredo Falcone, 

1,15
Filippo de Braud and 

11,12
Chiara Cremolini 

 

Authors’ affiliations: 

1- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 

Italy 

2- Department of Oncology, University of Torino, 10060 Candiolo (TO), Italy; 

3- Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo (TO), Italy; 

4- Foundation Medicine, Inc., Cambridge, Massachusetts; 

5- Samsung Medical Center, Sungkyunkwan University School of Medicine, Kangnamgu, 

Seoul, Korea; 

6- Molecular Digestive Oncology Unit, University Hospital Gasthuisberg, Leuven, Belgium; 

7- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.  

8- Memorial Sloan Kettering Cancer Center, New York, NY 

9- Ignyta Inc., San Diego, CA 

10- Austin Health, Melbourne VIC, Australia 

11- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy 

12- University of Pisa, Pisa, Italy 

13- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto 

Nazionale dei Tumori, Milan, Italy; 

14- Department of Pathology, Albany Medical College, Albany, NY 

15- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, 

Italy. 

 

 

 

 



2 

 

# Drs. Pietrantonio and Di Nicolantonio contributed equally to this article 

* To whom correspondence should be addressed: 

Dr Filippo Pietrantonio,  

Department of Medical Oncology, Medical Oncology Unit,  

Fondazione IRCCS Istituto Nazionale dei Tumori,  

Via Venezian 1, 20133 Milan, Italy 

Phone: + 39-0223903807 

E-mail: filippo.pietrantonio@istitutotumori.mi.it 

 

Dr Federica Di Nicolantonio 

Department of Oncology, University of Torino 

Strada Provinciale 142, Km 3.95 

10060 Candiolo, Torino, Italy 

Phone: +39-011-9933523 

Fax: +39-011-9933225 

E-mail: federica.dinicolantonio@unito.it 

 

Acknowledgment of research support for the study: 

This work was supported by Fondazione ARCO (Associazione Ricerche e Cure in Oncologia), Italy 

and partly supported by grants AIRC IG n. 17707 (F.D.N.); AIRC IG n. 16788 (A.B.); Fondo per la 

Ricerca Locale (ex 60%), Università di Torino, 2014 (F.D.N.); and grant Fondazione Piemontese 

per la Ricerca sul Cancro-ONLUS 5 per mille 2011 Ministero della Salute (A.B.). Investigators at 

Niguarda Cancer Center are supported by the following grants: Terapia Molecolare dei Tumori 

(A.S-B, S. S.) and Dynamic of Tumor Evolution & Therapy (A. S-B) from Fondazione Oncologia 

Niguarda Onlus; Associazione Italiana per la Ricerca sul Cancro (AIRC) 2010 Special Program 

Molecular Clinical Oncology 5x1000, project 9970 (S.S., A.B.). European Community’s grant 

agreement no. 635342-2 MoTriColor (A.B., S.S.). 

The Authors would like to thank Fabio Picchini for graphical support. 

 

Running head: ALK, ROS1 and NTRK rearranged metastatic colorectal cancer 

 

Number of tables/figures: 5 

 

 

 

 

mailto:filippo.pietrantonio@istitutotumori.mi.it
mailto:federica.dinicolantonio@unito.it


3 

 

Abstract 

 

Background: ALK, ROS1 and NTRK fusions occur in 0.2%-2.4% of colorectal cancers. Pioneer 

cases of mCRC patients bearing rearrangements who benefited from anti-ALK, ROS, TrkA-B-C 

therapies were reported.  

Methods: Clinical features, molecular characteristics and outcome of 27 mCRC patients bearing 

ALK, ROS1, NTRK rearranged tumors were compared with those of a cohort of 319 patients not 

bearing rearrangements. Deep molecular and immunophenotypic characterizations of rearranged 

cases, including those described in the TCGA database, were performed. 

Results: Closely recalling the “BRAF history”, ALK, ROS1 and NTRK rearrangements more 

frequently occurred in elderly patients (p=0.024) with right-sided (p<0.001) and node-spreading 

(p=0.03), RAS wild-type (p<0.001), MSI-high (p<0.001) cancers. All patients bearing ALK, ROS1, 

and NTRK fusions had shorter overall survival (15.6 months) than negative patients (33.7 months), 

both in the univariate (HR 2.17, 95%CI 1.03-4.57; p<0.001) and multivariate models (HR 2.78, 

95%CI 1.27-6.07; p=0.011). All four evaluable patients with rearrangements showed primary 

resistance to anti-EGFRs. Frequent association with potentially targetable RNF43 mutations was 

observed in MSI-high rearranged tumors.  

Conclusion: ALK, ROS1, NTRK rearrangements define a new rare subtype of mCRC with 

extremely poor prognosis. Primary tumor site, MSI-high, RAS and BRAF status may help to identify 

patients bearing these alterations. While sensitivity to available treatments is limited, targeted 

strategies inhibiting ALK, ROS and TrkA-B-C provided encouraging results. 
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Genomic translocations leading to the constitutive activation of receptor tyrosine kinases (RTKs) 

play a crucial role in tumorigenesis across different malignancies, including colorectal cancer 

(CRC) 
1,2

. RTK fusions involving ALK, ROS1, and NTRK1-2-3 (NTRK) occur in 0.2%-2.4% of 

CRCs 
3,4

, and may represent new targets for therapeutic intervention 
5-17

. Addiction to kinase 

suppression or pharmacological inhibition has been reported in CRC preclinical models bearing 

RTK fusions, including the TPM3-NTRK1 rearranged KM12 cell line 
18

, the ALK rearranged cell 

line C10 
19

, patient-derived primary cell lines 
10

 and patient-derived xenografts 
20

. So far, a single 

heavily pre-treated metastatic CRC (mCRC) patient whose tumor bore an LMNA-NTRK1 fusion 

was treated with entrectinib, an oral selective inhibitor of ALK, ROS1, and TrkA-B-C (the protein 

products of the NTRK1-2-3 genes, respectively), with clinical benefit 
15

. Another mCRC patient 

whose tumor harbored STRN-ALK fusion received the oral ALK inhibitor ceritinib and achieved 

response 
16

, and a patient with a CAD-ALK rearrangement responded to entrectinib 
6
.  

Despite these pioneer case reports, it has not been clearly established whether ALK, ROS1, or NTRK 

rearranged tumors represent a distinct, although rare, disease subtype that should be detected early 

in order to adopt a tailored management strategy that may include targeted treatments.  

Although a few reports have described the occurrence of ALK, ROS1 and NTRK fusions in CRC 

(Supplementary Table 1), there is still limited knowledge about clinical and pathological 

characteristics, prognosis and sensitivity of these tumors to available treatments including anti-

EGFR monoclonal antibodies (MoAbs) such as cetuximab and panitumumab. Similarly, except for 

some preclinical reports 
11,19

, comprehensive molecular and functional data to clarify whether these 

alterations confer oncogene addiction and to suggest perspectives on optimal treatment strategies 

are not available yet. 

We therefore carried out a global effort aimed at characterizing the molecular and clinical landscape 

of ALK, ROS1 and NTRK rearranged mCRCs. Even though a broader list of gene fusions has been 

described in CRC, including those affecting RET, HER2 and BRAF 
2,8,22,23

, we specifically focused 
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on mCRC with ALK, ROS1 and NTRK rearrangements since their phylogeny is closely related and 

they are frequently grouped as targets of newly developed agents such as entrectinib 
24.  

 

Methods 

Study design and participants 

In the clinical step (Figure 1), the cohort of 319 ALK, ROS1 and NTRK negative cases included 

patients screened for Ignyta’s phase 1 program at: Samsung Medical Center (SMC), Seoul, South 

Korea (n=209); Azienda Ospedaliero-Universitaria Pisana (AOUP), Pisa, Italy (n=79); Fondazione 

IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy (n=31). The population of 27 ALK, ROS1, 

NTRK rearranged mCRCs included patients collected at: Foundation Medicine Inc. (FMI), 

Cambridge, Massachusetts (n=12); Samsung Medical Center (SMC), Seoul, South Korea (n=4); 

Memorial Sloan Kettering Cancer Center (MSKCC), NYC, New York (n=3); Austin Health, 

Heidelberg, Australia (n=3) on behalf of MAX trial Investigators; Fondazione IRCCS Istituto 

Nazionale dei Tumori (INT), Milan, Italy (n=2); Niguarda Cancer Center (NCC), Milan, Italy 

(n=2); University Hospital Gasthuisberg (UHG), Leuven, Belgium (n=1). Molecular screening 

methods are detailed as Supplementary Methods and summarized in Figure 1. Study participants 

signed a written informed consent and the study was approved by the Institutional Review Board of 

INT, Milan. 

Statistical analysis 

We investigated the association of ALK, ROS1 and NTRK rearrangements with the following 

variables collected at the diagnosis of mCRC: age, gender, ECOG performance status (0, 1), 

primary tumor location (right colon, left colon, rectum), primary tumor resection, mucinous 

histology, time to metastases (synchronous, metachronous), number of metastatic sites (1, >1), 

metastatic sites (lung, lymph nodes, liver, peritoneum), RAS and BRAF status (mutated, wild-type), 
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MMR status (proficient, deficient). Fisher’s exact test, χ2 test or Mann-Whitney tests were used 

when appropriate to assess the associations of the ALK, ROS1, NTRK rearrangements with 

investigated characteristics. Statistical significance was set at p=0.05 for a bilateral test. 

We investigated the impact of ALK, ROS1 and NTRK rearrangements on overall survival (OS), 

defined as the time from diagnosis of metastatic disease to death or last follow up for alive patients. 

OS analysis was determined according to the Kaplan-Meier method and survival curves were 

compared using the log-rank test. The correlation of ALK, ROS1, NTRK status and 

clinicopathological characteristics with OS was assessed in univariate analysis. In order to minimize 

the bias of multiple comparisons, according to the false discovery rate correction, statistical 

significance was set at p=0.009 for a bilateral test. Cox proportional hazard model was adopted in 

the multivariate analysis, including as covariates variables correlated with survival with p<0.1 in the 

univariate analyses. Hazards’ proportionality was assumed. 

All analyses were carried out by means of Prism 7 for Mac OS X v7.0. 

Translational analyses 

As shown in Figure 1 and Supplementary Methods, NGS data were obtained through 3 different 

panels: FMI panel in 15 cases, Minerva panel (Ignyta Inc.®) in 11 cases, MSK-IMPACT panel in 1 

case. The association of individual samples with the type of translocation identified and NGS panel 

is shown in Supplementary Table 2. Finally, analysis in silico from TCGA data was performed 

(Supplementary Methods). 

 

Results 

Study population 

Based on a systematic literature review, we identified 24 published cases of ALK, ROS1 or NTRK 

rearranged CRCs (Supplementary Table 1). Nineteen were staged as metastatic, and informative 

medical records were retrieved for fifteen of them. Taking advantage of screening programs 
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worldwide, we were able to identify 12 additional cases. Therefore, the final population consisted of 

27 ALK, ROS1, NTRK rearranged mCRCs (Figure 1; Supplementary Table 2) including a newly 

described SCYL3-NTRK1 fusion (Supplementary Figure 1). We compared the clinical and 

pathological features of ALK, ROS1, and NTRK rearranged mCRCs with a cohort of ALK, ROS1, 

and NTRK negative patients (n=319), screened for phase 1 studies at three Institutions (Figure 1). 

The overall incidence of ALK, ROS1, or NTRK rearrangements at these Institutions was 1,5% (5 out 

of 324 screened samples).   

Clinical and pathological features of ALK, ROS1 and NTRK rearranged mCRC 

As shown in Table 1, rearrangements were more frequent in older patients (p=0.024) with right-

sided tumors (80.0% vs 30.0%; p<0.001), and spread more frequently to lymph nodes (45.8% vs 

24.7%; p= 0.030) and less frequently to the liver (41.7% vs 65.5%; p=0.026). Additionally, 

although only 50% of patients in the control group had available information on MSI status, a 

higher percentage of tumors bearing rearrangements were MSI-high (48.1% vs 8.1%; p<0.001).  

Of note, RAS mutations were much less frequent in rearranged than in other tumors (7.4% vs 

48.3%; p<0.001). Only one (3.7%) rearranged sample showed the co-occurrence of SLC34A2-ROS1 

fusion and BRAF V600E mutation. Overall, right-sided primary location, RAS wild-type and MSI-

high status, in addition to female gender, were particularly associated with NTRK rearrangements. 

Notably, patients with right-sided, RAS and BRAF wild-type, MSI-high mCRCs had 54- and 453-

fold higher chances of harboring ALK, ROS1, or NTRK rearrangements (OR=54.0, 95% CI: 13.3-

219.1; p<0.001) or specifically NTRK rearrangements (OR=453.0, 95% CI: 67.2-3053.4; p<0.001), 

respectively. These four easy to collect characteristics (primary tumor site, MSI, RAS and BRAF 

status) enable identification of patients bearing an ALK, ROS1, or NTRK rearrangement with 

positive and negative predictive values of 75% and 95%. The positive and negative predictive 

values with specific regard to NTRK rearrangements were 75% and 99%.  

Molecular features of ALK, ROS1 and NTRK rearranged CRC 
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Molecular reports from next-generation sequencing DNA analyses performed on rearranged cases 

were retrieved (Figure 1). Additionally, molecularly annotated genomic variants from seven CRC 

samples harboring ALK or NTRK3 fusions (Supplementary Figure 2 and 3) in the TCGA database 

were gathered. First, we focused on the subset of genes previously reported as the most frequently 

mutated in CRCs (Figure 2A) 
23

 . In line with previous reports regarding MSI-high BRAF mutated 

CRC 
24-26

, MSI-high rearranged tumors were enriched for alterations affecting RNF43 (64.7% vs 

5.9%; p=0.0004 Fisher’s exact test), most of which were frameshift changes affecting glycine 659, 

which lies within a mononucleotide repeat (Figure 2A).  

A low prevalence of RAS/BRAF mutations, also accounting for MSI-high status (Figure 2B), was 

reported. Only one MSS rearranged tumor displayed a BRAF V600E mutation, while two MSI-high 

rearranged mCRC samples carried BRAF alterations (I371M and K475R) of unknown significance 

and two MSS rearranged CRCs showed a well-established oncogenic variant (G469A), and an 

alteration (D594H) that impairs BRAF kinase activity but paradoxically activates MEK and ERK 

through transactivation of CRAF, respectively. The prevalence of PIK3CA mutations in CRCs 

carrying rearrangements (12.1%) did not significantly differ from what reported in unselected 

colorectal tumors 
23

. 

An explorative analysis of selected genes implicated in immune-escape mechanisms 
27

 was 

conducted by retrieving the transcriptomic profiles of the seven rearranged samples for which RNA 

seq data was available from the TCGA and these were compared with non rearranged MSI-high 

CRC samples also from TCGA (Figure 2C). Although the analysis suggested that the presence of 

rearrangements did not impact the typical MSI-high phenotype represented by the upregulation of 

immunoinhibitory molecules 
27

, the small number of samples limits the power of this observation.   

Prognostic impact of ALK, ROS1 and NTRK rearrangements in mCRC 

Finally, we explored the clinical impact of ALK, ROS1 and NTRK rearrangements in the metastatic 

setting (TCGA samples were excluded from survival analyses, since they were mostly found in 

earlier disease stages and had incomplete follow-up data). When looking at OS results, at a median 
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follow-up of 28.5 months [95%CI 23.8-36.9], patients bearing ALK, ROS1 or NTRK rearranged 

tumors had poor prognosis when compared with rearrangement negative tumors (median OS: 15.6 

[95%CI 10.0-20.4] versus 33.7 [95%CI 28.3-42.1] months; HR for death: 2.17, 95% CI 1.03-4.57; 

p<0.001) (Figure 3A). When applying the false discovery rate correction, the association of ALK, 

ROS1 and NTRK rearrangements with OS was still statistically significant (p<0.005). In the 

multivariable model (Table 2) including other covariates associated with OS with p<0.1 (age, 

primary tumor location, primary resection, BRAF mutation and MSI status), the presence of gene 

rearrangements was still associated with shorter OS [HR for death: 2.33, 95% CI 1.10-4.95; 

p=0.020]. Notably, patients with ALK, ROS1 or NTRK rearranged tumors had short OS 

independently from MSI status (Figure 3B). In fact, median OS was 17.0 (95% CI 10.0-31.4) 

months for patients with MSS rearranged tumors and 15.6 (95% CI 10.0-20.4) months for MSI-high 

ones. Moreover, the poor prognostic impact of gene rearrangements was independent of primary 

tumor location: both in right- and left-sided tumors patients bearing rearrangements had shorter OS 

than those with negative tumors (Supplementary Figure 4). 

Therapeutic implications of ALK, ROS1 and NTRK rearrangements in mCRC 

All the patients with rearranged tumors that were treated with cetuximab or panitumumab (N=4) 

experienced disease progression as best response during the treatment with anti-EGFR agents 

(Supplementary Methods; Supplementary Figure 5).  

One patient with EML4-ALK rearrangement and MSI-high tumor received single agent anti-PD-1 

treatment with nivolumab and achieved a durable response (Supplementary Figure 5). Notably, the 

IHC staining of this tumor revealed intense staining for CD4, CD8, CD68 and especially PDL-1, 

with an abundant intra and extratumoral lymphocytic infiltration (Supplementary Figure 6).  
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Discussion 

Here we showed that ALK, ROS1 and NTRK rearrangements identify an uncommon CRC molecular 

subtype with specific clinical, pathological and molecular features. The investigated fusions (and 

particularly those affecting NTRK) were more frequent in elderly females with right-sided tumors, 

spreading to extra-regional lymph nodes. However, the most clinically relevant association was 

found with MSI-high and RAS wild-type status, which are two relevant and commonly used 

biomarkers for patient selection for immunotherapy and anti-EGFRs, respectively. This type of 

clinical and molecular associations resemble very closely what observed for codon 600 BRAF 

mutations and, interestingly, BRAF V600 mutations and gene fusions were almost invariably 

mutually exclusive. Since MSI-high status is reported in less than 5% of mCRCs 
28

, the frequency 

of MSI-high rearranged tumors is unexpectedly high (48.1%), even considering the right-sided 

location 
29

. The frequency of MSI-high status in ALK, ROS1 and NTRK rearranged tumors seems 

similar or even higher than in BRAF V600E mutated mCRCs, where it reaches 30-35% 
24,28

. While 

the association between right-sided tumors, MSI-high and BRAF mutations is well established, we 

report for the first time a strong association with right-sided tumor location and MSI-high status 

also for gene fusions. Of note, while frame-shift mutations occurring in MSI-high cancers are 

heterogeneously represented in tumor sub-clones
30

, gene rearrangements appear as “founder” 

events, as they are present in most, if not all, tumor cells. Nevertheless, since defective mismatch 

repair is also an early event in CRC carcinogenesis, the adenoma-carcinoma sequence should be 

further elucidated for this rare subtype., Future studies exploring the role of food carcinogens and/or 

peculiar microbiota components in the right colon are also warranted to clarify the potential link 

between MSI status and kinase rearrangements. 

When compared with negative samples, ALK, ROS1, and NTRK rearranged tumors show a low 

frequency of RAS and BRAF oncogenic mutations. A low prevalence of BRAF V600E mutation 

was reported in the group of negative tumors (5.8%), probably as a consequence of the poor 
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prognosis and rapid progression of BRAF mutant tumors, preventing these patients to receive later 

lines of therapy and therefore to be screened for phase 1 trials. Therefore, we were unable to 

identify a statistically significant difference in terms of BRAF mutations between rearranged and 

not rearranged tumors (p=1.000) in the present series. However, the observation that ALK, ROS1 

and NTRK rearrangements co-occur rarely with other common driver events in the RTK-RAS 

pathway, and specifically RAS and BRAF codon 600 mutations, supports the hypothesis that gene 

fusions drive oncogene addiction. Indeed, previous reports indicate that NTRK1 and ALK rearranged 

CRC preclinical models and patients respond to pharmacological blockade of the fusion kinase 

6,11,15,19,20
. In spite of the relatively low prevalence of gene fusions, the identification of patients 

with tumors bearing these alterations may be simplified and enriched by the evaluation of four 

simple and easy-to-collect variables (i.e. primary tumor location, RAS, BRAF and MSI-high status), 

which are available for the vast majority of patients. Therefore, in an evidence-based perspective of 

resource sparing, the molecular screening for gene rearrangements should not be denied to patients 

with RAS and BRAF wild-type and/or MSI-high mCRC. 

A high prevalence of RNF43 frameshift mutations was reported among ALK, ROS1 and NTRK 

rearranged tumors, though in the absence of concomitant BRAF V600E mutations, thus suggesting 

that gene rearrangements may act as driver events alternative to BRAF in the tumorigenesis of MSI-

high right-sided tumors carrying RNF43 alterations. Since porcupine inhibitors are being developed 

to suppress paracrine WNT-driven growth of RNF43 mutant tumors 

(https://clinicaltrials.gov/ct2/show/NCT02278133), our findings may provide a rationale for co-

targeting tyrosine kinase oncogenic fusions as well as the WNT pathway in this rare tumor subset. 

Closely recalling the long “BRAF history”, we found that gene fusions occurring in mCRCs are 

associated with unfavorable outcome. However, it must be pointed out that patients with MSI-high 

mCRCs have worse OS independently from the co-occurrence of BRAF V600E mutation 28. 

Therefore, given the association of ALK, ROS1 or NTRK rearrangements with MSI-high status and 

the mutual exclusivity with codon 600 BRAF mutations, our findings may partly explain the 

https://clinicaltrials.gov/ct2/show/NCT02278133
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aggressive behaviour of MSI-high BRAF wild-type mCRCs. The same observations are true for the 

potential contribution of gene fusion to the poor prognosis of some right-sided mCRCs 
31

.  

Again, consistent with previous findings regarding BRAF V600E mutations 
32

, ALK, ROS and 

NTRK rearranged tumors seem not to derive benefit from anti-EGFR monoclonal antibodies,, thus 

confirming preclinical observations 
19

. Given the very low frequency of gene fusions in mCRC, the 

validation of this finding is quite unrealistic. However, these results are supported by a strong 

biologic rationale and may contribute to explain – at least in part - the limited activity of anti-

EGFRs in right-sided, RAS and BRAF wild-type tumors 
33. From a clinical perspective, it seems 

therefore reasonable to offer an intensive first-line regimen, such as the triplet FOLFOXIRI plus 

bevacizumab to patients with right-sided, ALK, ROS1, and NTRK rearranged mCRCs 
34

, based on 

their aggressive behaviour, and in line with current recommendations for BRAF V600E mutant 

tumors.  

Our observations argue that the early enrolment of patients with tumors bearing ALK, ROS1 and 

NTRK rearrangements in clinical trials with matched targeted agents should be highly encouraged, 

as this subset of patients may in fact be uniquely poised to benefit from targeted strategies. 

Nevertheless, benefit from targeted strategies against ALK, ROS1, and TrkA-B-C may be transient 

and mechanisms of acquired resistance may occur early 
17,20

. This is quite reasonable particularly 

when considering the impressive mutational burden of MSI-high tumors that may promote in these 

tumors the early emergence of acquired resistance.  

The combination of targeted agents and immunotherapy approaches in MSI-high rearranged tumors 

may be a promising strategy to be further investigated, supported by a strong molecular rationale, 

and by the absence of impact of rearrangements on MSI-high associated immunophenotype.   

The major limitation of this study is the choice of the control group. Although a wider series of 

negative cases, especially those analyzed by MSK-IMPACT or FoundationOne tests, would have 

been more appropriate, both MSK-IMPACT and FoundationOne are DNA-based assays and do not 



13 

 

completely cover intronic regions, thus making possible to miss some gene fusions. Moreover, 

clinical data were not available for the vast majority of these patients. Therefore, a cohort of well-

annotated patients screened at three Institutions for a phase 1 trial and quite representative of the 

general population of mCRC patients was adopted as control group. 

In conclusion, the features of ALK, ROS1 and NTRK rearrangements are somewhat reminiscent of 

the peculiar traits previously recognized in BRAF V600E mutant mCRC. These fusions define a 

new molecular subtype of mCRC associated with poor prognosis, whose recognition allows a 

proper tailored management for a new subgroup of patients. The large-scale diffusion of this 

assessment may be eased by the availability of a multi-step procedure for the detection of gene 

fusions, starting from a simple IHC test with high sensitivity, or a comprehensive approach able to 

identify ALK, ROS1, and NTRK rearrangements, as well as other potentially targetable kinase 

fusions 
22

. Finally, while the poor prognosis of rearranged tumors may suggest the adoption of 

upfront intensive treatments when feasible, new targeted strategies are under investigation and the 

high prevalence of MSI-high status in rearranged tumors opens the way to evaluate new 

combination approaches, including targeted (ALK, ROS1, TrkA-B-C) and immunotherapy agents.  
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Table 1. Patients’ characteristics according to the presence or absence of ALK, ROS1, NTRK rearrangements, or specifically for presence or absence of NTRK and ALK 

rearrangements. 

Characteristics 

ALK, ROS1, NTRK 

negative 

(N=319) 

N (%) 

ALK, ROS1, NTRK 

rearranged 

(N=27) 

N (%) 

p* 

NTRK 

rearranged  

(N=13) 

N (%) 

p  

ALK 

rearranged  

(N=11) 

N (%) 

p  

 Sex 

 

Female 129 (40.4) 18 (66.7) 

0.159 

9 (69.2) 

0.047 

7 (63.6) 

0.211 

 Male 190 (59.6) 9 (33.3) 

4 (30.8) 

 

4 (36.4) 

 Age Median 57 64 

0.024 

68 

0.032 

55 

0.967 

 Range 15-88 40-62 33-73 40-87 

 ECOG PS 0 106 (33.4) 9 (64.3) 

0.250 

2 (25.0) 

1.000 

3 (75.0) 

0.115  1-2 211 (66.6) 5 (35.7) 6 (75.0) 1 (25.0) 

 NA 2  13 5 7 

 Primary tumor location Right colon 98 (31.0) 20 (80.0) 

<0.001 

10 (90.9) 

<0.001 

8 (72.7) 

 

0.014 

 

 Left colon 125 (39.6) 3 (12.0) 0 2 (18.2) 

 Rectum 93 (29.4) 2 (8.0) 1 (9.1) 1 (9.1) 

 NA 3 2 2 0 

 Mucinous histology Yes 40 (12.7) 1 (5.9) 0.706 0 0.602 1 (11.1)  



17 

 

 No 276 (87.3) 16 (94.1) 8 (100.0) 8 (88.9) 1.000 

 NA 3  10 5 2 

Primary tumor resected Yes 240 (75.2) 19 (86.4) 

0.308 

8 (72.7) 

1.000 

0 

<0.001  No 79 (24.8) 3 (13.6) 3 (27.3) 8 (100.0) 

 NA 0 5 2 3 

 Time to metastases Synchronous 210 (66.2) 11 (64.7) 
 

5 (62.5) 

1.000 

6 (75.0) 

0.723 
 Metachronous 107 (33.8) 6 (35.3) 

1.000  

3 (37.5) 

2 (25.0) 

 NA 2 10  5 3 

 Number of metastatic sites 1 161 (50.9) 14 (58.3) 

0.531 

7 (63.6) 

0.544 

6 (54.5) 

1.000  >1 155 (49.1) 10 (41.7) 4 (36.4) 5 (45.5) 

 NA 3 3 2 0 

 Lung metastases Yes 129 (40.8) 5 (20.8) 

0.053 

0 

1.000 

4 (36.4)  

 No  187 (59.2)  19 (79.2) 11 (100.0) 7 (63.6) 1.000 

 NA 3 3 2 0  

 Lymph Nodes metastases Yes 78 (24.7) 11 (45.8)  

0.030 

 

7 (63.6) 

0.008 

3 (27.3)  

  No 238 (75.3) 13 (54.2) 4 (36.4) 8 (72.7) 0.737 

 NA 3 3 2 0  

Liver metastases Yes 207 (65.5) 10 (41.7) 

0.026 

4 (36.4) 

0.058 

5 (45.5)  

0.204  No 109 (34.5) 14 (58.3) 7 (63.6) 6 (54.5) 
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 NA 3 3 2 0 

 Peritoneal metastases Yes 89 (28.2) 8 (33.3) 

0.640 

5 (45.5) 

0.306 

3 (27.3)  

  No 227 (71.8) 16 (66.7) 6 (54.5) 8 (72.7) 1.000 

 NA 3 3 2 0  

 RAS status wild-type 155 (51.7) 25 (92.6)  

<0.001 

 

11 (84.6) 

<0.001 

9 (81.8) 

0.065  mutated 145 (48.3) 2 (7.4) 2 (15.4) 2 (18.2) 

 NA 19 0 0 0 

 BRAF status wild-type 258 (94.2) 26 (96.3) 

1.000 

13 (100.0)  

1.000 

 

11 (100.0) 

1.000   V600E mutated 16 (5.8) 1 (3.7) 0 0 

 NA 45 0 0 0 

MSI status MSS 148 (91.9) 14 (51.9) 

<0.001 

3 (23.1)  

<0.001 

 

4 (36.4) 

<0.001  MSI-high 13 (8.1) 13 (48.1) 10 (76.9) 7 (63.6) 

 NA 158 0 0 0 

NA: not available. *Comparison of ALK, ROS1, NTRK rearranged versus not rearranged tumors; Comparison of NTRK rearranged versus not rearranged tumors; Comparison of ALK 

rearranged versus not rearranged tumors. ROS1 rearranged tumors were not separately analyzed because of the small sample size (N=3) 
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Table 2. Association of ALK, ROS, NTRK rearrangements and known prognostic baseline characteristics with OS 

Characteristics 
 

N 

Univariate analyses Multivariable model 

HR 95% CI p HR 95% CI p 

ALK, ROS, NTRK status Negative 316 1 - - 1 - - 

 Rearranged 20 2.17 1.03-4.57 <0.001 2.33 1.10-4.95 0.020 

Age - 336 1.04 1.02-1.05 <0.001 1.04 1.02-1.07 <0.001 

 ECOG PS 0 112 1 - - - - - 

 1-2 216 1.01 0.72-1.42 0.950 - - - 

 Primary tumor site Left 

colon/Rectum 

221 1 - - 1 - - 

 Right colon 113 1.41 1.01-2.00 0.038 1.11 0.62-1.98 0.733 

 Mucinous histology No 290 1 - - - - - 

 Yes 41 0.97 0.59-1.58 0.885 - - - 

 Primary resection Yes 257 1 - - 1 - - 

 No 82 1.51 1.01-2.29 0.024 1.69 0.94-3.05 0.079 

Time to metastases Metachronous 113 1 - - - - - 

 Synchronous 220 1.24 0.88-1.74 0.242 - - - 

Number of metastatic sites 1 171 1 - - - - - 

 >1 164 1.28 0.93-1.77 0.134 - - - 

RAS status Wild-type 173 1 - - - - - 

 Mutated 147 1.31 0.94-1.82 0.117 - - - 

BRAF status Wild-type 275 1 - - 1 - - 

 Mutated 17 2.20 0.97-4.95 0.058 0.91 0.35-2.38 0.855 

 MSI status MSS 156 1 - - 1 - - 

 MSI-high 22 2.28 1.09-4.76 0.005 1.42 0.63-3.21 0.397 
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Figure Legends 

 

Figure 1. Study flow-chart.  

Top: A total of 27 metastatic colorectal cancer (mCRC) cases with ALK (n=11), ROS1 (n=3) and 

NTRK (n=13) translocations were collected. Patients were retrieved by: Ignyta’s phase 1 screening 

program in Italy, Belgium and South Korea; MAX trial’s post-hoc analysis conducted in Australia; 

Foundation Medicine Inc. (FMI) dataset in USA; Memorial Sloan Kettering-Integrated Mutation 

Profiling of Actionable Cancer Targets (MSK-IMPACT) screening program in USA. Bottom left: 

Clinicopathological characteristics, RAS and BRAF status, Mismatch-repair (MMR) status, survival 

and treatment outcome data in the ALK, ROS1, NTRK rearranged population (n=27) were compared 

with those from a cohort of ALK, ROS1, NTRK negative mCRC patients (n=319) included in 

Ignyta’s phase 1 screening program. Bottom right: Annotated genetic variants were retrieved from 

targeted next-generation sequencing analyses of tumor samples  (N=27) from ALK, ROS1, NTRK 

rearranged mCRC patients. The number of samples analyzed by different gene panels is shown. 

Analysis of publicly available RNA sequencing data from the TCGA COADREAD (colorectal) 

study allowed the identification of 7 additional tumors carrying ALK or NTRK3 translocations. 

Molecular annotations from TCGA translocated tumors were pooled with those from mCRC 

patients to increase power of detecting genetic alterations co-existing with ALK, ROS1, NTRK 

rearrangements.  

Figure 2. Molecular profile of ALK, ROS1, NTRK rearranged colorectal cancer. A. OncoPrint 

map depicting alterations in top mutated colorectal cancer genes in ALK, ROS1, NTRK rearranged 

cancers (27 cases from this study and 7 samples from TCGA
23

). Individual sample cases are 

designated by columns (top) and grouped by MMR status, while individual genes are presented by 

rows. B. Gene mutation profiles, excluding silent mutations, were compared between ALK, ROS1, 

NTRK rearranged cancers (27 cases from this study and 7 samples from TCGA) and data previously 

reported in a large-scale sequencing study of unselected CRC
25

. Grey bars indicate the number of 

samples that were not sequenced for the indicated genes. C. Expression (RNA sequencing data) of 

selected genes implicated in immunoevasion (gene list was obtained from
25

) in ALK or NTRK3 

rearranged tumors identified in TCGA, grouped based on their MMR status. The average 

expression of non-rearranged TCGA MSI-high CRC samples (n=92) from TCGA is also shown. 

Figure 3. Survival in metastatic colorectal cancer patients carrying ALK, ROS1, NTRK 

rearranged tumors.  Panel A: Kaplan-Meier curves for overall survival (OS) in patients with ALK, 

ROS1, NTRK rearrangements (n=20; red line) as compared to those with ALK, ROS1, NTRK 

negative tumors (n=316; blue line). Panel B: Kaplan-Meier curves for overall survival (OS) in 

patients with ALK, ROS1, NTRK rearrangements and MMR proficient status (n=11; red line) or 

patients with ALK, ROS1, NTRK rearrangements and MMR deficient status (n=9; green line) as 

compared to those with ALK, ROS1, NTRK negative tumors (n=316; blue line). 
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Supplementary Methods 
 

Patients screening and translational analyses 

1 - STARTRK1 phase 1 study by Ignyta®. In the first step, all screened samples were submitted to 

Immunohistochemistry (IHC) staining, as previously described 
1
. Briefly, a cocktail of antibodies 

targeted to the C-terminal domains of pan-Trk (including TrkA, TrkB, TrkC, Cell Signaling, clone 

C17F1, 1:25 dilution), ROS1 (Cell Signaling, clone D4D6, 1:500 dilution) and ALK (Cell 

Signaling, clone D5F3, 1:500 dilution) was used with a single diaminobenzidine (DAB) reporter 

system.  The presence of staining indicates the elevation of expression for at least one of the 

proteins targeted by the antibody cocktail.  In the second step, all samples scored positive for IHC 

staining were tested by RNA-based next generation sequencing to determine the presence/absence 

of a gene fusion.  The presence and nature of gene rearrangements/fusions was determined by RNA 

sequencing using a method previously described 
1
.  Total nucleic acid (a combination of both DNA 

and RNA) was isolated from FFPE tissues (Agencourt, Beckman) and sequencing libraries were 

generated using an anchored multiplex PCR (AMP) method 
1,2

.  RNA quality and amplifiable 

ability of the extracted material was assessed as previously described 
1
. Briefly, the PreSeq RNA 

QC assay, which uses qPCR analysis of the housekeeping gene, VCP was performed on all 

samples.  The RNA quality assessment was used to determine the potential for a false negative 

result from specimens where the RNA was fragmented to a degree that a gene rearrangement could 

not be amplified or mapped reliably. Sequencing was performed on the Illumina MiSeqDx platform 

(Illumina, San Diego, CA).   

For patients screened at Ignyta, DNA next generation sequencing (NGS) analysis was performed 

through the custom “Minerva” panel, which interrogated 263 genes resumed in the list below: 

ABL1 BRIP1 CHEK2 ERG GLI1 IHH MET NTF4 RUNX1 TSC2 

AKT1 BTC CHMP2A ESR1 GNA11 IKZF1 MIB1 NTRK1 RUNX1T1 TYRO3 

AKT2 BTK CREBBP EZH2 GNAQ IL12A MKI67 NTRK2 SDHB VCAM1 

AKT3 CAD CRKL FANCA GPI IL12B MLH1 NTRK3 SETD2 VCP 

ALDH1A1 CBFB CSF1R FANCB GSK3B IRF1 MPL PALB2 SHH VEGFA 

ALK CCL2 CSF3R FANCC GTSE1 IRS2 MS4A1 PDCD1 SMAD4 VHL 

AMER1 CCL5 CTLA4 FANCD2 GZMA JAG1 MSH2 PDGFRA SMO VIM 

APC CCND1 CTNNB1 FANCF GZMB JAK1 MSH6 PDGFRB SNAI1 WNT1 

AR CCND2 CX3CL1 FANCG GZMH JAK2 MTOR PIK3CA SOX2 WNT10A 

ATAD2 CCND3 CXCL10 FANCI HBEGF KDR MYC PIK3CG SOX9 WNT10B 

ATM CD22 CXCL11 FANCL HDAC1 KEAP1 MYCN PIK3R1 SRC WNT2B 

ATR CD274 CXCL9 FANCM HDAC4 KIT MYD88 PMS2 STAT3 WNT3 

AURKA CD3D CXCR3 FAS HES1 KMT2A NANOG PRKCG STAT6 WNT4 

AXIN1 CD4 CXCR4 FBXW7 HGF KRAS NF1 PRKCI STK11 WNT5A 

AXIN2 CD47 DBF4 FGF23 HNF1A LAG3 NF2 PTCH1 SYK WNT7A 

AXL CD68 DDR2 FGFR1 HOXA9 LNX2 NFE2L2 PTEN TBX21 WNT8A 
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BAP1 CD79B DOT1L FGFR2 HRAS LYN NFKBIA RAB7A TCF3 WNT9A 

BARD1 CD8A EGF FGFR3 ICAM1 MAP2K1 NGF RAD50 TCF4 WNT9B 

BCL2 CDC7 EGFR FGFR4 IDH1 MAP2K2 NGFR RAD51 TCF7L2 WT1 

BCL6 CDH1 EP300 FH IDH2 MAP2K4 NKX2-1 RAF1 TGFA XPO1 

BDNF CDH2 EPGN FLT1 IDO1 MAPK1 NOTCH1 RALA TGFBR2 

BRAF CDK4 EPHA2 FLT3 IFNG MAPK3 NOTCH2 RALB TNFRSF4 

BRCA1 CDK6 EPHA3 FLT4 IGF1 MCL1 NOTCH3 RARA TNIK 

BRCA2 CDKN1B ERBB2 FOXP3 IGF1R MCM2 NPM1 RB1 TOP1 

BRD3 CDKN2A ERBB3 GAS6 IGF2 MDM2 NRAS RET TOP2A 

BRD4 CEBPA ERBB4 GATA3 IGF2R MEN1 NRG1 RNF43 TP53 

BRDT CHEK1 EREG GATA6 IGFBP1 MERTK NTF3 ROS1 TSC1 

 

2 - Retrospective translational study of the Australian MAX trial, as previously described 
3
. 

3 - Samples tested by Foundation Medicine were assayed with a validated comprehensive genomic 

profiling (CGP) platform during the course of clinical care at the request of the treating physician. 

DNA was extracted from 40 microns of FFPE sections, and CGP was performed on hybridization-

captured, adaptor ligation based libraries to a mean coverage depth of >650X for 236 or 315 cancer-

related genes plus select introns from 19 or 28 genes frequently rearranged in cancer as described 

previously 
4
. All classes of genomic alterations (GA) were identified including base pair 

substitutions, insertions/deletions, copy number alterations, and rearrangements. Microsatellite 

instable (MSI-H) or stable (MSS) status as a measure of mismatch repair deficiency was determined 

using a proprietary computational algorithm. Tumors were classified as microsatellite instable 

(MSI-H) or microsatellite stable (MSS) using a principal component 1 cutoff value of less than -8.5 

or greater than -4, respectively 
5
. 

4 - Samples tested by Memorial Sloan Kettering Cancer Center underwent analysis by the clinically 

validated MSK-IMPACT assay. This hybridization-based next generation sequencing assay 

interrogates all exons and select introns and promoters of over 340 cancer-related genes. Tumor 

samples are sequenced against matched normal samples and only somatic alterations including 

structural variants, mutations, and copy number alterations are reported. Further details about this 

assay have been published by Cheng et al. 
6
. 

 

In silico analysis of the TCGA data (ALK, ROS1, NTRK fusion search in TCGA-COAD-

READ) 

FPKM-normalized transcriptomic profiles were downloaded from the Genomic Data Commons 

Data Portal (https://gdc-portal.nci.nih.gov) for the tumor samples in the TCGA-COAD and TCGA-

READ datasets and the z-score for each gene was calculated. Tumors in the 95
th

 percentile for ALK, 

NTRK1, NTRK2, NTRK3 or ROS1 gene expression were selected for further analyses, since outlier 

https://gdc-portal.nci.nih.gov/
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kinase expression is often driven by fusion transcripts 
7,8

. For the 154 tumor samples carrying 

outlier expression in one of the selected kinases (as shown in Supplementary Fig. 2 and listed in 

Supplementary Table 4), RNAseq reads were downloaded from the Genomic Data Commons Data 

Portal. Reads were aligned using the BWA-mem 
9
 algorithm to hg19 human reference genome, then 

all the non-perfect alignments falling on the genes of interest were selected and aligned using 

BLAT 
10

 with tileSize=11 and stepSize=5. The resulting alignment was post-processed to detect 

chimeric alignments, by applying the following criteria: i) each fusion partner must have at least 15 

nucleotides mapped of the respective end of the read; ii) the two parts of the read must map to 

different genes; iii) at least one of the two fusion breakpoints must be on the exon boundary. Due to 

the short read length (ranging from 48 to 76, Supplementary Table 4), it was not possible to impose 

a threshold on the number of reads supporting each fusion breakpoint. After the first gene-specific 

analysis, we did a cross-validation on the entire transcriptome using FusionMap
11

. In addition to the 

six fusion transcripts found on selected genes using our custom-built pipeline, FusionMap was able 

to identify also a previously reported VPS18-NTRK3 translocation
12

. 

 

Characterization of the novel SCYL3-NTRK1 fusion 

For Patient #13 harboring the novel fusion, SCYL3-NTRK1, a set of PCR primers was generated to 

further confirm the result (SCYL3: 5’- GGAGGAGAACGAACCAAGAT; NTRK1: 5’-

CATGAAATGCAGGGACATGG).  Total nucleic acid was reverse-transcribed and amplified by 

PCR using SuperScript III One-Step RT-PCR System with Platinum Taq High Fidelity 

(ThermoFisher, Carlsbad, CA). The PCR products were assessed on a 2100 Bioanalyzer 

electrophoresis system (Agilent, Santa Clara, CA).  A parallel no template control was also included 

to determine the presence of any background hybridization. 

 

Criteria for evaluation of primary resistance to anti-EGFR monoclonal antibodies 

To assess the association of ALK, ROS1 and NTRK status with primary resistance to anti-EGFR 

MoAbs, we restricted the analysis to RAS and BRAF wild-type patients receiving cetuximab or 

panitumumab as single agents or in combination with irinotecan, only in strictly defined irinotecan-

refractory patients (i.e. those with documented disease progression during or within three months 

from the last irinotecan-containing therapy). We excluded patients receiving an anti-EGFR agent in 

combination with chemotherapy, except in the case of disease progression as best response 

indicating primary resistance to the whole treatment. Thus, we were able to focus on the true impact 

of ALK, ROS1 and NTRK translocations on treatment resistance. 
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Supplementary Table S1. ALK, ROS1, NTRK rearranged cases described in the literature. 

Reference 
NTRK fusions 

N=9 

ALK fusions 

N=13 

ROS1 fusions 

N=2 
Retrieved case 

Lin et al, 2009 [2] 
 EML4-ALK  No 

 EML4-ALK  No 

Lipson et al, 2012 [3]  C2orf44-ALK  No 

Aisner et al, 2014 [4] 

 EML4-ALK  Yes 

  SLC34A2-ROS1 Yes 

  Unknown-ROS1 Yes 

Houang et al, 2015 [5] 
 PPP1R21–

ALK 

 No, stage II 

Créancier et al, 2015 [6] 
TPR-NTRK1   No, stage II 

TPM3-NTRK1   No, stage II 

Lee J et al, 2015 [6] 
 CAD-ALK  Yes 

 EML4-ALK  Yes 

Sartore Bianchi et al, 2015 [7] LMNA-NTRK1   Yes 

Lee S et al, 2015 [8] 
TPM3-NTRK1   Yes 

TPM3-NTRK1   Yes 

Amatu et al. 2015 [9]  CAD-ALK  Yes 

Park et al. 2016 [10] 

LMNA-NTRK1   No, stage II 

TPM3-NTRK1   No, stage III 

TPM3-NTRK1   No 

Yakirevich et al. 2016 [11] 

 STRN-ALK  Yes 

 CENPF-ALK  Yes 

 MAPRE3-ALK  Yes 

 EML4-ALK  Yes 

 PRKAR1B-

ALK 

 Yes 

Hechtman et al. 2016 [12] ETV6-NTRK3   Yes 
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Supplementary Table S2. List of patients bearing ALK, ROS1, NTRK rearrangements with 

retrieving source, clinical center, identified gene fusion and NGS panel used. 

Patient Retrieving source Clinical center Gene Fusion NGS panel 

#1 Ignyta Inc. SMC, South Korea TPM3-NTRK1 Minerva panel 

#2 Ignyta Inc. SMC, South Korea EML4-ALK Minerva panel 

#3 Ignyta Inc. SMC, South Korea TPM3-NTRK1 Minerva panel 

#4 Foundation Medicine, MA, USA SMC, South Korea CAD-ALK FMI panel 

#5 Foundation Medicine, MA, USA MSKCC, NYC, USA ETV6-NTRK3 FMI panel 

#6 MSKCC, NYC, USA MSKCC, NYC, USA LMNA-NTRK1 MSK-IMPACT 

#7 Foundation Medicine, MA, USA MSKCC, NYC, USA LMNA-NTRK1 FMI panel 

#8 Austin Health, Australia MAX study Investigators C2orf44-ALK Minerva panel 

#9 Austin Health, Australia MAX study Investigators Unknown-ROS1  Minerva panel 

#10 Austin Health, Australia MAX study Investigators SLC34A2-ROS1 Minerva panel 

#11 Ignyta Inc. NCC, Italy LMNA-NTRK1 Minerva panel 

#12 Ignyta Inc. NCC, Italy CAD-ALK Minerva panel 

#13 Ignyta Inc. INT, Italy SCYL3-NTRK1 Minerva panel 

#14 Ignyta Inc. INT, Italy TPM3-NTRK1 Minerva panel 

#15 Ignyta Inc. UHG, Belgium EML4-ALK Minerva panel 

#16 Foundation Medicine, MA, USA Unknown CENPF-ALK FMI panel 

#17 Foundation Medicine, MA, USA Unknown PRKAR1B-ALK FMI panel 

#18 Foundation Medicine, MA, USA Unknown TPM3-NTRK1 FMI panel 

#19 Foundation Medicine, MA, USA Unknown TPM3-NTRK1 FMI panel 

#20 Foundation Medicine, MA, USA Unknown EML4-ALK FMI panel 

#21 Foundation Medicine, MA, USA Unknown TPM3-NTRK1 FMI panel 
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#22 Foundation Medicine, MA, USA Unknown MAPRE3-ALK FMI panel 

#23 Foundation Medicine, MA, USA Unknown STRN-ALK FMI panel 

#24 Foundation Medicine, MA, USA Unknown CAD-ALK FMI panel 

#25 Foundation Medicine, MA, USA Unknown TPM3-NTRK1 FMI panel 

#26 Foundation Medicine, MA, USA Unknown GOPC-ROS1 FMI panel 

#27 Foundation Medicine, MA, USA Unknown ETV6-NTRK3 FMI panel 
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Supplementary Figure 1. Identification and characterization of a novel SCYL3-NTRK1 in a 

CRC sample. Panel A: Immunohistochemistry (IHC) staining of tissue from Patient #13 using a cocktail 

of pan-Trk, ROS1 and ALK antibodies and a single DAB detection system.  Strong staining intensity was 

seen in almost 100% of tumor nuclei indicating the elevated expression of at least one of the targeted 

proteins.  Panel B: NTRK1 FISH (Abnova  SPEC NTRK1) was performed on the same specimen and 

resulted in break-apart positivity for the NTRK1 gene in 100% of nuclei. Panel C: An RNA-based NGS 

assay using AMP-technology was performed to identify the fusion/fusion partner. This patient exhibited an 

intrachromosomal inversion and rearrangement that leads to a novel in-frame fusion of SCYL3 exon 11 to 

exon 12 of NTRK1 (upstream of the NTRK1 kinase domain in exons 13-17). Panel D: To confirm the novel 

fusion, RT-PCR was performed using primers specific to the SCYL3-NTRK1 gene rearrangement.  Lane a is 

a nucleic acid size ladder, annotated in base pair sizes by the column titled ‘Bp’; lane b is the RT-PCR 

product obtained from the patient specimen using rearrangement primers. The arrow indicates the specific 

RT-PCR product, which migrated at the expected 126 bp size; lane c is a no template control using the same 

primers as in lane b, which resulted in absence of a PCR product at the expected 126 bp (the strongest 

product generated migrates at 66 bp). 
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Supplementary Figure 2. Identification of gene fusions in TCGA colorectal cancer samples by 

outlier kinase analysis. Scatter-plot representation of transcriptional outlier kinases in TCGA CRC 

samples (N = 644). Grey coloured circles indicate 154 samples (listed in Supplemental Table S4) carrying 

outlier ALK, NTRK1, NTRK2, NTRK3, ROS1 gene expression, defined as the 95th percentile for each gene 

based on z-score normalization. Gene fusion identification in the RNA sequencing reads from these 154 

samples was performed by applying a custom pipeline (see Online Methods) and the FusionMap
1
 algorithm. 

A total of 7 fusions (red circles) in the selected kinases were found. 

 

 

 

 

1. Ge, H., et al. FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution. 

Bioinformatics 27, 1922-1928 (2011). 
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Supplementary Figure 3. Putative fusion diagrams for each TCGA CRC sample based on 

publicly available RNA sequencing data.  All fusions include the ALK or NTRK3 full tyrosine kinase 

domain (shown in purple), with the exception of sample TCGA-A6-2674, in which only a portion of the 

kinase domain was retained. Genomic partner (depicted in blue) is on the left and tyrosine kinase receptor is 

on the right. Arrows indicate the direction of transcription for each gene. Chromosomes and exons (ex) are 

also indicated.  1, PRKAR1A–ALK fusion containing a portion of the PRKAR1A regulatory subunit of type 

II PKA R-subunit (RIIa). 2, EML4–ALK fusion containing the EML4 Hydrophobic EMAP-like protein 

(HELP) motif and a portion of the WD40 domain. 3, PPP4R3B–ALK fusion containing also the 

meprin/A5/mu (MAM) and the transmembrane (TM) domains of ALK. 4, ETV6–NTRK3 fusion. 5, 

COX5A-NTRK3 fusion. 6, ETV6–NTRK3 fusion. 7, VPS18-NTRK3 fusion, in which only a portion of the 

kinase domain of NTRK3 is retained. Other abbreviations are as follows: PP4R3B, protein phosphatase 4 

regulatory subunit 3B; SAM, Sterile alpha motif (SAM)/Pointed domain; HELP, Hydrophobic EMAP-Like 

Protein motif WD, WD40 repeat (also known as the beta-transducin repeat); WH1, WASp Homology 

domain 1; MAM, meprin/A5/mu domain; TM, transmembrane domain.  
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Supplementary Figure 4. Survival in metastatic colorectal cancer patients in subgroups defind 

by ALK, ROS1, NTRK rearrangements and primary tumor location. Kaplan-Meier curves for 

overall survival (OS) in patients with left-sided primary and ALK, ROS1, NTRK rearranged tumors 

(n=4; light blue line) as compared to those with left-sided primary and ALK, ROS1, NTRK negative 

tumors (n=216; orange line) and in patients with right-sided primary and ALK, ROS1, NTRK 

rearranged tumors (n=16; blue line) as compared to those with right-sided primary and ALK, ROS1, 

NTRK negative tumors (n=96; red line). 
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Supplementary Figure 5. Summary of the clinical history of the four patients (N°1, 11, 13 and 

14) evaluable for response to anti-EGFR monoclonal antibodies (cetuximab or 

panitumumab). Shaded boxes indicate periods of administration of the indicated chemotherapeutic agents. 

Blue vertical lines indicate timing of tumor specimen acquisition from surgical procedures or biopsy, as well 

as dates of tumor assessment by radiological imaging. As shown, all evaluable patients had progressive 

disease to anti-EGFR-based therapy.  
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Supplementary Figure 6. Summary of the clinical history and immunohistochemical study of 

the patient (N°15) responding to immune checkpoint inhibition. Panel A. Summary of the clinical 

history of the patient with EML4-ALK fusion and MMR deficient status (N°15) receving anti-PD-1 

immunotherapy with nivolumab. Shaded boxes indicate periods of administration of the indicated 

chemotherapeutic agents. Blue vertical lines indicate timing of tumor specimen acquisition from surgical 

procedures or biopsy, as well as dates of tumor assessment by radiological imaging. As shown, the patients 

had partial response to anti-PD-1 which is still ongoing. Panel B. Positive immunohistochemical staining for 

CD4. Panel C. Positive immunohistochemical staining for CD8. Panel D. Positive immunohistochemical 

staining for CD68. Panel E. Positive immunohistochemical staining for PD-L1 in >50% of tumor cells.  
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