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Abstract Let S be asite. First we define the 3-category of torsors under a Picard S-2-stack and
we compute its homotopy groups. Using calculus of fractions, we define also a pure algebraic
analogue of the 3-category of torsors under a Picard S-2-stack. Then we describe extensions
of Picard S-2-stacks as torsors endowed with a group law on the fibers. As a consequence
of such a description, we show that any Picard S-2-stack admits a canonical free partial left
resolution that we compute explicitly. Moreover, we get an explicit right resolution of the
3-category of extensions of Picard S-2-stacks in terms of 3-categories of torsors. Using the
homological interpretation of Picard S-2-stacks, we rewrite this three categorical dimensions
higher right resolution in the derived category D(S) of abelian sheaves on S.
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Introduction

Let S be a site. Picard S-2-stacks might be succinctly described as the 2-categorical analogue
of abelian groups within the context of stacks. Thus, they are to be thought of as a generaliza-
tion of an abelian sheaf on S, but two categorical dimensions higher. This paper studies Picard
S-2-stacks as part of the larger program of translating between algebro-geometric informa-
tion and categorical information. Picard S-2-stacks reside on the categorical side, while the
derived category of abelian sheaves on S with cohomology in the range [—2, 0] resides on
the algebro-geometric side. In [3], we have introduced and studied extensions of Picard
S-2-stacks, which resides on the categorical side, and we have computed the homological
interpretation of such extensions (see [3, Thm. 1.1]) which resides on the algebro-geometric
side. In this paper, we introduce and study torsors under Picard S-2-stacks which resides on
the categorical side, and we compute the homological interpretation of such torsors (see 0.1)
which resides on the algebro-geometric side. This result on torsors under Picard S-2-stacks
allows us to obtain the two categorical dimensions higher generalization of Grothendieck’s
study of extensions via torsors done in [12]. In this setting of translating between algebro-
geometric information and categorical information, we can cite also the paper [18, p. 64]
where Mumford introduced the notion of invertible sheaves on a S-stack (categorical side)
and the paper [9, Prop. 2.1.2] where Brochard computed the homological interpretation of
such invertible sheaves (algebro-geometric side).

Before to describe more in detail the results of this paper, we recall the notion of gr-
S-2-stack and of Picard S-2-stack. A gr-S-2-stack G = (G, ®, a, ) is an S-2-stack in
2-groupoids G equipped with a morphism of S-2-stacks ® : G x G — G, called the group
law of G, with a natural 2-transformation of S-2-stacks a, called the associativity, which
expresses the associativity constraint of the group law ® of G, and with a modification of
S-2-stacks 7w which expresses the obstruction to the coherence of the associativity a (i.e., the
obstruction to the pentagonal axiom) and which satisfies the coherence axiom of Stasheff’s
polytope (see (1.5) or [6, §4] for more details). Moreover, we require that for any object
X of G(U) with U an object of S, the morphisms of S-2-stacks X ® — : G — G and
—® X : G - G, called, respectively, the left and the right multiplications by X, are
equivalences of S-2-stack.

A strict Picard S-2-stack (just called Picard S-2-stack) P = (P, ®, a, w, C, ¢, b1, ha, 1)
is a gr-S-2-stack (P, ®, a, 7) equipped with a natural 2-transformation of S-2-stacks C,
called the braiding, which expresses the commutativity constraint for the group law ® of
P, with a modification of S-2-stacks ¢ which expresses the obstruction to the coherence of
the braiding ¢, with two modifications of S-2-stacks b, > which express the obstruction to
the compatibility between a and c (i.e., the obstruction to the hexagonal axiom), and finally
with a modification of S-2-stacks 1 which expresses the obstruction to the strictness of the
braiding c. We require also that the modifications ¢, §, h, and 5 satisfy some compatibility
conditions. Picard 2-stacks form a 3-category 2PICARD(S) whose hom-2-groupoid consists
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of additive 2-functors, morphisms of additive 2-functors, and modifications of morphisms of
additive 2-functors.

Picard S-2-stacks are the categorical analogue of length 3 complexes of abelian sheaves
over S. In fact in [20], it is proven the existence of an equivalence of categories

25t : DI=201(§)— = 2P1cARD” (S) 0.1)

where DI~201(8) is the full subcategory of the derived category D(S) of complexes of abelian
sheaves over S such that H™ (A) #0fori =0,1,2, and ZfPICARDbb(S) is the category of
Picard 2-stacks whose objects are Picard 2-stacks and whose arrows are equivalence classes
of additive 2-functors. We denote by [ ]** the inverse equivalence of 2st”.

Let G be a gr-S-2-stack. A right G-torsor P = (P, m, 1, ®) is an S-2-stack in 2-groupoids
P equipped with a morphism of S-2-stacks m : P x G — P, called the action of G on P,
with a natural 2-transformation of S-2-stacks u which expresses the compatibility between
the action m and the group law of G, with a modification of S-2-stacks ® which expresses
the obstruction to the compatibility between p and the associativity a underlying G (i.e.,
the obstruction to the pentagonal axiom) and which satisfies the coherence axiom of Stash-
eff’s polytope. Moreover, we require that [P is locally equivalent to G and also that P is
locally not empty. If G acts on the left side, we get the notion of left G-torsor. A G-torsor
P = (P, m!,m", /,Ll, u, 0,0k Q, Ql) is an S-2-stack in 2-groupoids P endowed with a
structure of left G-torsor (P, m!, /L[ , ®), with a structure of right G-torsor (P, m", u”, ®"),
with a natural 2-transformation «, which expresses the compatibility between the left and the
right action of G on P, and finally with two modifications of S-2-stacks ! and ", which
express the obstruction to the compatibility between the natural 2-transformation « and the
natural 2-transformations u! and p”, respectively. We require also that the two modifications
Q! and Q" satisfy some compatibility conditions. G-torsors build a 3-category TORS(G)
whose objects are G-torsors and whose hom-2-groupoid Homrogs(g) (P, Q) of morphisms
of G-torsors between two G-torsors is defined in Definitions 2.6, 2.8, 2.9, and 2.10.

Using regular morphisms of length 3 complexes of abelian sheaves, it is not possible to
obtain all additive 2-functors between Picard 2-stacks. In order to get all of them, in [20] the
second author introduces the tricategory T1=2:91(S) of length 3 complexes of abelian sheaves
over S, in which arrows between length 3 complexes are fractions, and he shows that there
is a tri-equivalence

2st: T1201(§)—=2PicArRD(S), (0.2)

between the tricategory T1=29(S) and the 3-category 2PICARD(S) of Picard 2-stacks. At
the end of section 3, we sketch the definition of G-torsor with G a length 3 complex of the
tricategory T1=2:91(S) (Def. 2.16). These G-torsors build a tricategory TORS(G) which is the
pure algebraic analogue of the 3-category TORS(G) of G-torsors (Prop. 2.17).

From now on, we assume G to be a Picard S-2-stack. The hom-2-groupoid Homrtors(c) (P,
P) of morphisms of G-torsors from a G-torsor PP to itself is endowed with a Picard S-2-stack
structure (Lem. 3.1) and so its homotopy groups 77; (HomTors(c) (P, P)) (fori =0, 1, 2) are
abelian groups. We define

e TORS'(G) is the group of equivalence classes of G-torsors: its abelian group law is
furnished by the contracted product of G-torsors (Def. 2.11).

e TORS (G) (fori = 0, —1, —2) is the homotopy group 7_; (HomTors(g) (P, P)) for any
G-torsor P.

If K is a complex of abelian sheaves over S, we denote by H!(K) the i-th cohomology
group H* (RF (K )) of the derived functor of the functor of global sections applied to K. With
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these notations, we can finally state our first Theorem, which furnishes a parametrization
of the elements of TORS (G) by the i-th cohomology group H([G]*), and a categorical
description of the elements of H (K), with K a length 3 complex of abelian sheaves, via
torsors under Picard S-2-stacks.

Theorem 0.1 Let G be a Picard S-2-stack. Then we have the following isomorphisms
Tors' (G) = H ([G]”)  fori=1,0,—1,-2.

Gr-S-3-stacks are not defined yet. Assuming their existence, the contracted product of G-
torsors, which equips the set TORs! (G) of equivalence classes of G-torsors with an abelian
group law, should define a structure of gr-S-3-stack on the 3-category TORS(G). In this
setting, our Theorem 0.1 says that the 3-category TORS(G) of G-torsors should be actually
the gr-S-3-stack associated with the object of DI=3:01(S)

T<oRT([G]”’[1])

via the generalization of the equivalence 2st” (0.1) to gr-S-3-stacks and to length 4 complexes
of sheaves of sets on S (here 7< is the good truncation in degree 0). Moreover, in order to
define the groups TORS!(G), we could use the homotopy groups 7; of the gr-S-3-stack
ToRrS(G): in fact TORS' (G) = 7_;4{ (TORS(G)) fori = 1,0, —1, —2.

If P and G are two Picard S-2-stacks, an extension (E, I, J, ¢) of P by G consists of a
Picard S-2-stack E, two additive 2-functors I : G— E and J : E — P, and a morphism of
additive 2-functors ¢ : J o I = 0, such that the following equivalent conditions are satisfied:

e 719(J) : mo(E) — 7o (P) is surjective and / induces an equivalence of Picard S-2-stacks
between G and Ker(J),

e (1) : m2(G) — m,(E) is injective and J induces an equivalence of Picard S-2-stacks
between Coker(7) and PP.

In [3], we have proved that extensions of P by G form a 3-category Ext(P, G) and we have
computed the homotopy groups 7; (Ext(P, G)) for i = 0, 1, 2, 3. In this paper, we describe
extensions of Picard S-2-stacks in terms of torsors under Picard S-2-stacks. We start with
a special case of extensions, which involve a Picard S-2-stack generated by an S-2-stack in
2-groupoids (see Def. 3.4), and whose description in terms of torsors is a direct consequence
of Theorem 0.1:

Corollary 0.2 Let G be a Picard S-2-stacks. Consider a gr-S-2-stack P, associated with a
length 3 complex of sheaves of groups on S, and the Picard S-2-stack Z[P] generated it. We
have the following tri-equivalence of 3-categories

Ext(Z[P], G) = Tors(Gp)
where TORS(Gp) denotes the 3-category of Gp-torsors over P (see Def. 2.15).

Now, for the general case, if P and G are two Picard S-2-stacks, we find an explicit descrip-
tion of extensions of P by G in terms of Gp-torsors over IP which are endowed with an abelian
group law on the fibers. More precisely, it exists a tri-equivalence of 3-categories between
the 3-category Ext(IP, G) and the 3-category consisting of the data (E, M, «, a, x, 5, c1, ¢2),
where [E is a Gp-torsors over P, M : pi EA p5 E— ®* Eis a morphism of Gpa-torsors over
P x P defining a group law on the fibers of E (here ® is the group law of Pand p; : PxP — P
are the projections), « is a 2-morphism of Gps3-torsors expressing the associativity constraint
of this group law defined by M, yx is a 2-morphism of Gpo-torsors expressing the braid-
ing constraint of this group law defined by M, and finally a, s, ¢y, ¢ are 3-morphisms of

@ Springer



Higher-dimensional study of extensions via torsors

Gpi-torsors (with i = 4, 2, 3, 3, respectively) expressing, respectively, the obstruction to the
coherence of «, the obstruction to the coherence of x, and the obstruction to the compati-
bility between « and . We require also that these 3-morphisms of Gp: -torsors satisfy some
coherence and compatibility conditions. Summarizing, we have

Theorem 0.3 Let P and G be two Picard S-2-stacks. Then we have the following tri-
equivalence of 3-categories

Ext(P, G) ~ (E,M,a,a, x,s,c1,¢2) | E=Gp — torsor over PP, }

M:ptEApP; E—Q®*E,a,a,yx,s, i, ¢ described in Prop. 4.1

This Theorem generalizes to Picard S-2-stacks the following result of Grothendieck in [12,
Exposé VII 1.1.6 and 1.2]: if P and G are two abelian sheaves, to have an extension of P by G
is the same thing as to have a G p-torsor E over P, and an isomorphism pr{E pry E — +*E
of G p2-torsors over P x P satisfying some associativity and commutativity constraints.

As a consequence of the description of extensions of Picard S-2-stacks in terms of torsors
(Cor. 0.2 and Thm. 0.3), we have

Corollary 0.4 Any Picard S-2-stack P admits as canonical free partial left resolution in the
category 2PICARD” (S) the following complex of Picard S-2-stack:

L@P): 0—L® L@ 25 1@ 2 12e) 2 L@ —o
with

L'(P) = Z[P];

L*(P) = Z[P];

L*(P) = Z[P*] & Z[P];

L*(P) = Z[P*] @ Z[P*] @ Z[P] & Z[P?] ® Z[P];

L(P) = Z[P°] & Z[P*] & Z[P*] & Z[P*] & Z[P*] & Z[P*] & Z[P*] & Z[P?]
® Z[P] & Z[P*;

in degrees 1,2,3,4, and 5, respectively, and with the differential operators defined by

Dalpligl =p+4q]1—[p]l — lgl; (0.3)
D3lplagl = [pliq] — gl pl;
Di[phighrl=1[p+qhrl—I[phg+rl+Iphql—Iqlrl;
Dalphqhirlis]=[phighrl+Iplig +rlisl +[ghriis] = [p +qlhirlis] = [phglir + s];
Dalplaghirl = [qhirlipl + [pl2g + r1+ [pliglhir]l = [gliplir] — [pl2g]l = [pl2r];
Dalphiqlar] =[plirligl +[p + qlarl = [plighir]l = [rliplhig]l — [plar] = [ql2r];
D4[pl3g)l = —[plagq]l — [ql2p];
Dalpl = —Iplpl;
Dslphiglirlislitl = [ghrhishit]l + [plig + rlishitl + [plighirlis + 1 — [plighr + sht]
—Iphighrlis] —[p+qlirlishtl;
Dslphglirlisl = [phighrihisl+ [plaghr + s+ [plarhis] = Igliphirhis] = [plag +rlis]
—lglirlishipl + [ghirliplis] = [plaglir];
Dslpliglirlas] = —[phiglirhisl+ [p +qlirlas] + [plhiglislirl+ [pligl2s] + [slipliglir]
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—[plhig +rlasl—[phisliglir] — [glirl2s];

Ds[pliglaorlis] = [p + qlarlis] — [plorlis] = [glarlis] — [pliglar + s1+ [pliglar] + [pligl2s]
+IphighrhisI+phrhishiql + Irlisliphgl + [rlipliglis] — [plirliglis]
—[rliplishql;

Ds[plzqhirl = [plag +rl1+[plghirl +[ghirlapl — [pl3r] — [pl3ql;
Ds[pliqlsr] = [p +ql3r]1 + [phiglar] + [rl2plig] — [pl3r] — [ql3r];
Ds[plaqlar] = [plaglir]l = [plarligl + [pliglar] — [qliplar];
Ds[plagl = [pl3q] — [ql3p];
Ds[p] = [pl +[p] = [pl3p];
Ds[pl*q) = —[pliglirhal + [pliglap + g1+ [plaphiq] + [gl2p114] — [g13p]
+Ip+4q1-I[pl-Iql

The augmentation map is given by the additive 2-functor € : Z[P]— P, e([p]) = p, for any
p el

In the above Corollary, adopting Eilenberg—MacLane’s bar notation, we give an explicit
definition of the differential operators D; in terms of objects. Their definitions on 1- and
2-arrows are formally identical to the ones on the objects because of the peculiar nature
of the free Picard S-2-stacks involved in IL.(IP). We find the explicit definitions of the dif-
ferentials by translating the data underlying the notion of Picard S-2-stack and also the
constraints that those data have to satisfy: D, corresponds to the group law ® underlying
P, D3[pl2q] corresponds to the braiding C, D3[p|1q|17r] corresponds to the associativity
a, D4[pligqlir|1s] corresponds to the modification of S-2-stacks 7 (1.1) which expresses
the obstruction to the coherence of the associativity a (i.e., the obstruction to the pentag-
onal axiom), D4[p|2q|17r] and Da[p|1¢q|2r] correspond, respectively, to the modifications
b1 and b7 (1.3) which expresses the obstruction to the compatibility between a and c (i.e.,
the obstruction to the hexagonal axiom), D4[p|3¢] corresponds to the modification ¢ (1.2)
which expresses the obstruction to the coherence of the braiding €, D4[ p] corresponds to the
modification 1 (1.4) which expresses the obstruction to the strictness of ¢, Ds[p|1g/|17|15|1¢]
corresponds to the Stasheff’s polytope (1.5) which expresses the coherence of the modifi-
cation 7w, Ds[plaqlir|is] and Ds[p|igq|ir|2s] correspond, respectively, to diagrams (1.7),
(1.8) which express the compatibility of the modifications f; and fh, with the modification
1, Ds[pli1gl2r|1s] corresponds to the equality of diagrams (1.9) and (1.10) which expresses
the comparability of the modifications b and by, Ds[p|3g|i1r] and Ds[p|1q|3r] correspond,
respectively, to diagrams (1.11) and (1.12) which express the compatibility between h; and
b2 under the above comparison, Ds[p|aq|2r] corresponds to diagram (1.13) which expresses
the compatibility of Z-systems, Ds[ p|4g] corresponds to the equation of 2-arrow (1.6) which
expresses the coherence of ¢, Ds[p] corresponds to the relation n % n = ¢, and finally
Ds| p|4q] corresponds to diagram (1.14) which expresses the additive nature of 5.

Remark that the differential Dy corresponds to a morphism of S-2-stacks, the group law, the
differentials D3 correspond to natural 2-transformations, the associativity a and the braiding
C, the differentials D4 correspond to modifications, which express the obstructions to the
coherence axioms or the compatibility conditions for natural 2-transformations, and finally
the differentials D5 correspond to the coherence axioms or the compatibility conditions for
modifications.

In [12, Exposé VII, Remark 3.5.4], Grothendieck pointed out that it would be interesting
to have for any abelian sheaf P a resolution L.(P), which depends functorially on P, and
whose entries are sums of free Z-modules generated by Cartesian products of P. The same
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issue is addressed in Illusie’s book [15], see in particular Chapter VI page 132 line 13 and
Section 11.4. Working with abelian sheaves, in [12, Exposé VII, (3.5.2)] Grothendieck got
the first two differential operators D> and D3 of the resolution L.(P). Working with Picard
stacks, in [4] and [8] Breen has computed the differential operator D4 of this resolution.
Corollary 0.4 is the authors’ contribution to Grothendieck’s remark: Working with Picard
2-stacks, in this paper we have computed the differential operator Ds.

If we denote by 3P1cARD”™” (S) the category of Picard 3-stacks whose objects are Picard 3-
stacks and whose arrows are equivalence classes of additive 3-functors, another consequence
of the description of extensions of Picard S-2-stacks in terms of torsors (Cor. 0.2 and Thm. 0.3)
is

Corollary 0.5 Let P and G be two Picard S-2-stacks. The complex
D; D} D;
0 — TORS(Gp) — TORS(Gp2) — TORS(Gp3) x TORS(Gp2) — ...
D* D*
.. = TORS(Gps) x TORS(Gp3)? x TORS(Gpz) x TORS(Gp) = ...

D*
... = TORS(Gps) x TORS(Gps)> x TORS(Gps)? x TORS(Gp2)x
TORS(Gp) x TORS(Gp2) — 0

is a right resolution of the 3-category Ext(P, G) of extensions of P by G in the category
3CPICARDbbb(S). Here D} denotes the pullback via the differential operator D; (0.3) (for
i=2,3,4,5).

This last result can be rewritten in the derived category D(S) of abelian sheaves on S,
using the homological interpretation of extensions of Picard S-2-stacks [3, Thm. 1.1] and of
torsors under Picard S-2-stacks (Thm. 0.1):

Corollary 0.6 Let P and G be length 3 complexes of abelian sheaves on S. The complex
0— t<oRT(Gp[1]) B <RI (G p2[1]) B 10RT(G p3[1]) x 7=oRT(G pa[1]) % ...
L4 RI(G ps[1]) x T<oRIT(G p3[1])? x 7<oRT(G p2[1]) x T<oRT (G p[1]) i

o B LRI (G ps[1]) X T<0RT(G pa[11)> X T<0RT(G p3[1])? x T<oRT(G pa[1])x
1-0RT(G p[1]) x T<oRI'(G p2[1]) > 0

is a right resolution of the object t<o)RHom (P, G[1]) 0f®[_3’0] (S).

In [1] the first author describes explicitly extensions of Picard S-stacks in terms of torsors
under Picard S-stacks which are endowed with an abelian group law on the fibers (see in
particular [1, Thm. 4.1]). In order to generalize from S-stacks to S-2-stacks the notions of [1]
that we need in this paper (as, for example, the definition of torsor) we proceed as follows:
the data involving 1-arrows and 2-arrows remain the same, but the coherence axioms or the
compatibility conditions, that 2-arrows have to satisfy and that are given via equations of
1-arrows, are replaced by 3-arrows which express the obstruction to the above coherence
axioms or compatibility conditions for 2-arrows, and we require that these 3-arrows satisfy
some coherence axioms or compatibility conditions that are given via equations of 2-arrows.

‘We hope that this work will shed some light on the notions of “torsor” for higher categories
with group-like operation. In particular, as in [3], we pay a lot of attention to write down the
proofs in such a way that they can be easily generalized to Picard S-n-stacks and to length
n+1 complexes of abelian sheaves on S.
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Theorem 0.1 plays an important role in the proof of Theorem 0.1 of [2] which states that
the Picard 2-stack of F-gerbes Gerbeg(F), with F an abelian sheaf on a site S, is equivalent
(as Picard 2-stack) to the Picard 2-stack associated with the complex t<oRI'(S, F[2]), where
F[2] = [F — 0 — 0] with F in degree -2. In particular, our Theorem 0.1 allows the first
author to obtain a purely categorical proof of the classical fact that F-equivalence classes of
F-gerbes, which are the elements of the Oth-homotopy group of Gerbeg (F), are parametrized
by the elements of the cohomological group H>(S, F).

The study of torsors under Picard S-2-stacks is a first step toward the theory of biexten-
sions of Picard S-2-stacks: In fact, if P, Q and G are Picard S-2-stacks, a biextension of
(P, Q) by G is a Gpx-torsor over P x Q endowed with two compatible group laws on the
fibers. Using the canonical free partial resolution LL.(PP) of P (Cor. 0.4) and the 3-category
VL. )eL.@) (G) introduced in Definition 5.1, we get easily the homological interpretation of
biextensions of (P, Q) by G: 7_; 41 (Biext(P, Q; G)) = Homqps) ([PI”®[Q]”", [G]”[i]) for
i=1,0,—1, -2, where m_; 4+ (Biext(P, Q; G)) are the homotopy groups of the 3-category
of biextensions of (P, Q) by G. The theory of biextensions has important applications in the
theory of motives since biextensions define bilinear morphisms between motives.

Notation

In this paper, S will be any site whose topology is precanonical so that the representable
pre-sheaves are sheaves.

We denote by K(S) the category of (cochain) complexes of abelian sheaves on the site
S. Let K[=2.91(S) be the subcategory of K (S) consisting of complexes K = (K');cz such
that K/ = 0 fori # —2, —1 or 0. The good truncation 7<, K of a complex K of K(S) is
the following complex: (rsnK)i =K' fori < n, (t<n K)" = ker(d"), and (tan)i = 0 for
i > n.Forany i € Z, the shift functor [i] : K(S) — K(S) acts on a complex K = (K"),ez
as (K[i])" = K" and dy ;= (= 1)'dj".

Denote by D(S) the derived category of abelian sheaves on S, and let DI=2.0(S) be the full
subcategory of D(S) consisting of complexes K such that H' (K) = 0 fori # —2, —1 or 0.
If K and L are complexes of D(S), the group Ext! (K, L) is by definition Homps) (K, L[i])
foranyi € Z.Let RHom(—, —) be the derived functor of the bifunctor Hom(—, —). The i-th
cohomology group H' (RHom(K , L)) of RHom(K, L) is isomorphic to Homps) (K, L[i]).
The functor I'(—) of global sections is isomorphic to the functor Hom(e, —), where e is the
final object of the category of abelian sheaves on S. Let RI'(—) be the derived functor of
the functor I'(—) of global sections. The i-th cohomology group H! (RF(K )) of R['(K) is
denoted by H (K).

In this paper, by an S-2-(pre)stack we will always mean an S-2-(pre)stack in 2-groupoids.

1 Recollections on Picard 2-stacks

The notion of Picard 2-stacks is well known [7, Def. 8.4]. In simplest words, it is a 2-stack
over a site equipped with a commutative group-like structure. In the literature, there are no
references that the authors are aware of where the details of the commutative group-like
structure of a 2-stack is stated explicitly. Although we believe that it is known by the experts,
since it will be needed in the paper, in this section we unravel the details of this structure. In
the following definitions, U will denote an object of the site S. Moreover, in the diagrams
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involving 2-arrows, we will put the symbol = in the cells which commute up to a modification
of S-2-stacks coming from the Picard structure.

A strict Picard S-2-stack (just called Picard S-2-stack) P = (P, ®, a, 7, C, ¢, b1, b2, 1)
is an S-2-stack P equipped with

M
2

3

“4)

&)

(6)

a morphism of S-2-stacks ® : P x P— P, called the group law of P. For simplicity
instead of X ® Y, we write just XY for all X, Y € P(U);

two natural 2-transformations of S-2-stacks @ : ® o (® x idp) = ® o (idp x ®), called
the associativity, and ¢ : ® o S= ® with sS(X,Y) = (¥, X) for all X,Y € P(U),
called the braiding, which express, respectively, the associativity and the commutativity
constraints of the group law ® of IP;

a modification 7 of S-2-stacks whose component at (X, Y, Z, W) € P*(U) is the 2-
arrow

(XYy2))w
a(xy,z,w) YY,Z)W
xVzw)  _  XF)W (1.1)
T(X,Y,Z,W)
aA(X,Y,ZW) aAX,YZ,W)

and which expresses the obstruction to the coherence of the associativity a (i.e., the
obstruction to the pentagonal axiom);
a modification ¢ of S-2-stacks whose component at (X, Y) € P2(U) is the 2-arrow

{x,y) 1 1dxy = Cv,x) © C(x,Y) (1.2)

and which expresses the obstruction to the coherence of the braiding ¢. The modification
¢ implies the weak invertibility of the braiding C;
two modifications by, b, of S-2-stacks whose components at (X, Y, Z) € P3(U) are the
2-arrows
C(x.vz) C(xv,z)
X(Yz) 2L (yz2)x (XY)Z 22 7(xv)

—1

-1
ax.v.z) awy,z.x) ax.v.z) iz x.v)

I
e
N
Ve

(XY) bixr.) Y(ZX) X(YZ) bax v.2) ZX)y
¥X)Z ——=Y(XZ) X(ZY) ——= (X2)Y
a(v,X,7) a(x,z,y)

(1.3)
and which express the obstruction to the compatibility between the associativity a and
the braiding C (i.e., the obstruction to the hexagonal axiom);

a modification 1 of S-2-stacks whose component at X € P(U) is the 2-arrow

nx :idxx = C(x,x) (1.4)

and which expresses the obstruction to the strictness of the braiding c.
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These data satisfy the following compatibility conditions:

(i) forany X € P(U), the morphism of S-2-stacks X ® — : P — P, called the left multipli-
cation by X, is an equivalence of S-2-stacks;

(ii) the modification r is coherent, i.e., it satisfies the coherence axiom of Stasheff’s polytope
(see [17,§ 4]):forall X, Y, Z, W, T € P(U), the following equation of 2-arrows holds

X(Y(Z(WT))) X(Y(Z(WT)))
(XY)(Z(WT)) XY ((ZW)T)) (XY)(Z(WT)) = XY ((ZW)T))
<= = (XY)(ZW)T)
T(X.Y.ZWT) X7y, z.w.1) = =
(XY, Z.W.T) (XY, ZW.T)
(XN Z)(WT) X((YZ)(WT)) X((Y(Zzw)T) (XN Z)(WT) (XY)(ZW)T X((Y(zwW)T)

T

(XVHZ)WT = (XYZ)(WT) X(((YZ)W)T) (((XY)Z)W)T XY @ZwW))T = XW((YZ)W)T)
T(X,YZ,W,T) 7x.v.z.wT
(XFIYINT — XY DW)T (X(xzywr &zwr
(1.5)

(iii) the modification ¢ is coherent, i.e., for all X, Y, Z € P(U), the following equation of

2-arrows holds

L, x) *Cx,y) = C(x,v) * {(X.,Y), (1.6)

(iv) the modification b is compatible with 7, i.e., forall X, Y, Z, W € P(U), the following

equation of 2-arrows is satisfied
(X(YZ)Y)W ———— X(YZ)W)

(XY Z)Y)W ——— X(YZ)W)

T(X,Y,Z,W)
(X)W (XY)(ZW) XY (ZW)) ((XNDHW (¥ 2)X)W ((YO)W)X = XY (ZW))
. v 4
hixyzW bix.yz.w
((YX)Z)W ——— (YX)(ZW) U wawpx (YxHzHw ¥Zwyx
bix,v.zw) <=
A Y@zxnw Ty.ZWX)
T(Y.X.Z,W)
(Y (XZ)W Y(X(ZW)) ———— Y(ZW)X) Y(XZ)W YZ)(Xw) Y((Zw)X)
= YZ)(WX)
>~
y =
(XZ)W) Yoz Y(Z(WX)) Y((XZ)W) = Y(Z(WX))
\ TY,Z,X,W)
Y((ZX)W) ———— Y(Z(XW)) Y((ZX)W) Y(Z(XW))
(1.7)

and the modification b, is compatible with =, ie., for all X,Y,Z, W € P(U) the

following equation of 2-arrows is satisfied

X(YZ)W) ———— (X(YZ)W

X(YZ)W) ———— (X(YZ)W

U vz
X(Y(ZW) ——— (XY)(ZW) ——— (XV)Z)W X(Y(ZW)  X(W(YZ) W(X(YZ) = (XV)Z2)W
- Xbay.z.w, bax.yz.w)
X(YW2) ——— XnWwz) | Wnz X(r(wzy W((XY)Z)
bacxv.z.w) 1 8
o X(wn2) o (1.8)
TX.Y.W.2) - (W.X.¥.2)
X(Yw)z) (XV)W)Z ——— (W(XY))Z X(YW)Z) (XW)(YZ) (W(XY)Z
~
= WX)(Y2)
>~
(X(Ywyz U vaxrwz WXz Xywyz L= = WXz
TXW.Y.2)

XWYNZ ——— (XW)Y)Z
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Higher-dimensional study of extensions via torsors

where the modification * is obtained from 7 by inverting some or all a’s. The modi-
fications b1 and b, are comparable in the sense that the pasting of the 2-arrows in the
diagram

X(YZ2)W) —— X((ZY)W) —— X(Z(YW))

N t
- ﬂ*(i)(]AZ,Y,W)

XYZOW —— XZYOY)WW —— (X)W ——————— (XZ)(YW)

AV

(X)W —— (Z(XY)O)W —— (ZX) Y)W ———— > (ZX)(YW) (XZ)(WY) (19)

= N/

XY)(ZW) = Z(XVW) ¢ Z(X(YW)) —— Z(X(WY)) «—— (ZX)(WY) = (XZ2)W)Y
bixy,z,w)

= 4
-1
Zhyx.y,w) T ZXWY)

EZW)(XY) —— Z(W(XY)) —— Z(WX)Y) ¢« Z((XW)Y) «—— (Z(XW))Y «—— (ZX)W)Y

is equal to the pasting of the 2-arrows in the diagram

XYW «—— X(YO)W) — X(ZY)W) —— X(Z(YW)) ——— (XZ)(YW)

= T ~
™ Rovzw Xbiy,zw) -
(XV)Z)W X(Y(ZW)) ——— X((ZW)Y) —— X(Z(WY)) ——— (XZ)(WY)
=
—1
”*(X,ZJV.Y)
=
(XY)(ZW) X(EZW)Y ¢—— (XDOHW)Y (110)
Xbox.y,zw)
=
: hix.zwY
(ZW)(XY) ——— (ZW)X)Y ——— (Z(WX))Y ZxXywyy
T
-1 ~
”*(z.w.x,y) =

ZW(XY) ————— S Z(WX)Y) ——— Z(XW)Y) ——— (Z(XW))Y

Moreover, the modifications b and h, are compatible with each other under the above
comparison, i.e., the pasting of the 2-arrows in the diagram below, denoted by h1h»,
is the identity
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4
§X,YZ2)

X(YZ) — YDX —— o (YD)X — X(YZ)

7N N

(XY)z hl(xy7) b2(v7x; Xz (111)

N e

YX)Z —Y(XZ) —— S Y(XZ) — (YX)Z

Sx.n?

and an analogous pasting of 2-arrows, denoted by h,h, is the identity

4
{(XY.2)

(XY)Z — Z(XY) —— 5 Z(XY) — (XYV)Z

7N N

X(YZz) ‘72(xyz) Zxyy hl([XY)

N e S

X(ZY) — (XZ)Y —— o (XZ)Y — X(ZY)

—1
Xv,2)

X(YZ) (1.12)

Finally using the terminology of Kapranov and Voevodsky in [17], we require that the
2-arrows defining the Z-systems coincide, i.e., for all X, Y, Z € P(U), the following
equation of 2-arrows holds
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(X2)y

/N

X(zY) zx)yy

/ bzi(lX,Y‘Z) \
X(YZ) Xy Z(XY)
(XY)Z = XVZz =~ Z(YX) (1-13)

Xz har.x.2)  (zv)x

(v) the modification 5 satisfies the following two compatibility conditions: the first one is
that n x n = ¢, the second one is that for all X, Y € P(U) there is an additive relation
between nx,ny and nxy,i.e., nxy is equal to the pasting of the 2-arrows in the following

diagram
X((XV)Y) X(XY)Y X(XY)Y) —————— (X(XV)Y
/ \ XX / \ / = %((Y.XN
X(YX)Y) XXxY) ff ((xxny (X(YX)Y X(YX)y) (X(YX)Y X(YX)Y
7 (3= anan =T & - XX
v nx
Xbirxn 7 bixxnY =
N
X(Y(XY)) XXY) ff xxny ((XN)X)Y X(Y(XY)) — (XV)(XY) —— (XY)(XY) — (XV)X)Y
—1
XX byl
2(X.X,XY)
X((XY)Y) (X(XY)Y X(XY)Y) —————— > (X(XY)Y

(1.14)

Picard S-2-stacks over S form a 3-category 2PICARD(S) whose objects are Picard S-2-
stacks and whose hom-2-groupoid consists of additive 2-functors, morphisms of additive
2-functors, and modifications of morphisms of additive 2-functors (see [3, § 3]).

The automorphisms «ut(e) of the neutral object of a Picard S-2-stack form a Picard
S-stack. The homotopy groups 7; (P) of a Picard S-2-stack PP are

e 7o(IP) which is the sheafification of the pre-sheaf which associates with each object U
of S, the group of equivalence classes of objects of P(U);

o 711 (P) = mo(ut(e)), with mo(ut(e)) the sheafification of the pre-sheaf which associates
with each object U of S, the group of isomorphism classes of objects of .out(e)(U);

o 1 (P) = my(ut(e)), with y (ut(e)) the sheaf of automorphisms of the neutral object
of ut(e).

We will denote by 0 the Picard S-2-stack whose only object is the neutral object and whose
only 1- and 2-arrows are the identities. The complex [0]" of DI=291(S) corresponding to the

Picard S-2-stack 0 via the equivalence of categories 25t (0.1)isE = [e ﬁ e & e] with e
the final object of the category of abelian sheaves on S.

2 The 3-category TORS(G) of G-torsors

In this section, we categorify the notion of ¢-torsors where ¢ is a gr-S-stack (see [5]). We
define in detail the 3-category of G-torsors where G is a gr-S-2-stack. At the end of the
section, using the tri-equivalence (0.2), we give without details a description of how to define
the notion of torsor in terms of length 3-complexes of abelian sheaves.

@ Springer



C. Bertolin, A. E. Tatar

2.1 Geometric case

As in Section 1, in the following definitions U will denote an object of the site S, and in the
diagrams involving 2-arrows, we will put the symbol = in the cells which commute up to a
modification of S-2-stacks coming from the group-like structure.

Let G = (G, ®, a, ) be a gr-S-2-stack. For simplicity instead of g; ® g2, we will write
just g1g2 for all g1, g2 € G(U). The equivalences of S-2-stacks g ® — : G — G and
— ® g : G > G imply that any gr-S-2-stack admits a global neutral object 1g (denoted
simply by 1) endowed with two natural 2-transformations of S-2-stacks [ : ¢ ® — = id and
t: — ® e = id, which express the left and the right unit constraints, and which satisfy some
higher compatibility conditions (see [16]).

Definition 2.1 A right G-torsor is given by a collection P = (P, m, u, ®) where

e [P is an S-2-stack;

e m : P x G — P is a morphism of S-2-stacks, called the action of G on P. For simplicity
instead of m(p, g), we write just p.g for any (p, g) € P x G(U);

e i:mo (idp X ® = m o (m x idg) is a natural 2-transformation of S-2-stacks whose
component at (p, g1, g2) € P x G*>(U) is the 1-arrow Wp.g1.g2) - P-(8182) —~(p.81)-82
of P(U) and which expresses the compatibility between the group law ® of G and the
action m of G on IP;

e 0 is a modification of S-2-stacks whose component at (p, g1, g2, g3) € P x G3(U) is
the 2-arrow

p-((8182)83)

H(p, slgzy Yim 182:83)

(p-(g182))-83 p-(81(2283))
O(P 21,82.83)

/L(P-g1-g2)83l l“(/ﬁglvgz&)

((p.g1).82).83 < (p.81).(8283)

H(p.g1.82.83)

and which expresses the obstruction to the compatibility between the natural 2-
transformation p and the associativity a underlying G (i.e., the obstruction to the
pentagonal axiom);

such that the following conditions are satisfied:

e Pislocally equivalentto G, i.e., (m, prp) : Px G — P x Pis an equivalence of S-2-stacks
(here prp : P x G — P denotes the projection to IP);

e P is locally not empty, i.e., it exists a covering sieve R of the site S such that for any
object V of R the 2-category P(V) is not empty;

¢ the modification ® is coherent, i.e., it satisfies the coherence axiom of Stasheff’s polytope
(1.5);

e the restriction of m to P x 1g is equivalent to the identity, i.e., there exists a natural
2-transformation of S-2-stacks 0 : mpx 1) = idp whose component at (p, 1g) € PP x
Ig(U) is the l-arrow 0, : p.lg — p of P(U). We require also the existence of two
modifications of S-2-stacks PR and £, which express the obstruction to the compatibility
between the restriction of m to P x 1g and the restrictions of u to P x G x Ig and
P x 1g x G, respectively, and which satisfy three compatibility conditions: the first one
is between £ and ‘R, the second one is between ® and ‘R, and the third one is between
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® and £. We left to the reader the explicit description of the modifications R and £ with
their compatibility conditions.

Definition 2.2 A morphism of right G-torsors from P = (P, mp, up, Op) to Q =
(Q, mg, ng, Og) is given by the triplet (F, y, W) where

e F :P— Qis amorphism of S-2-stacks;

e y :mgo(F xidg) = Fomp is anatural 2-transformation of S-2-stacks whose component
at (p, g) € P x G(U) is the 1-arrow y(, ¢y : Fp.g — F(p.g) (for simplicity we use the
notation . for both actions of G on IP and on QQ) and which expresses the compatibility
between the morphism of S-2-stacks F' and the two actions mp and mg of G on IP and
on Q;

e W is a modification of S-2-stacks whose component at (p, g1, g2) € P x G2(U) is the
2-arrow

Fp.(8182)

Yip. s1y \(j(Fp 181,82)

F(p.(g182) (Fp.g1)-82

“’(p 81:82)
F(M]P’(p,gl,gz)) Y(p.g1)-82

F((p.g1).82) <———— F(p.g1).&2

Y(p-81.82)

and which expresses the obstruction to the compatibility between the natural 2-transformation
y and the natural 2-transformations up and j.g underlying PP and Q. Moreover, we require
that the modification W is compatible with the modifications ®p and O, i.e., we have the
following equation of 2-arrows

-1
F(OP,(p.g1.52.89) * W(p.g1.92.83) * R ipoeprg2.83) * VY(p.g1.8283) * Y(p.agg, gr.65)
= Yp.0192.83) * V(tt(pg 0083 * Y(p.g1.92)-83 * OQFp.g1.82.83)-
Let (F, yr, VF) and (G, yG, Y¢) be two morphisms of right G-torsors from P to Q.
p g

Definition 2.3 A 2-morphism of right G-torsors from (F, yr, V) to (G, yg, ¥¢) is given
by the pair (o, ®) where

e « : F'= G is a natural 2-transformation of S-2-stacks,

e @ is amodification of S-2-stacks whose components at (p, g) € P x G(U) is the 2-arrow

Fip.g)

Fpg*>F(pg)

e “’i},g) ore

Gp.g —=G(p.g)

YG(p.g)

and which expresses the obstruction to the compatibility between the natural 2-transformation
a and the natural 2-transformations yr and yg underlying F and G. We require that the
modification ® is compatible with the modifications W and W, i.e., we have the following
equation of 2-arrows

_ -1
Cp.g1g0) * X(pgy.e0) * \IJF(PJZng) - "I’G<p<g1‘gz) * Dp.g1,00) * Pip,g1)-82 * Hap.g1.82)°
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Let (a, ) and (B, $g) be two 2-morphisms of right G-torsors from (F, yr, Vr) :
P—Qto (G, ys, ¥Yg) : P— Q.

Definition 2.4 A 3-morphism of right G-torsors from (o, ®y) to (B8, ®g) is given by a
modification of S-2-stacks A : « = 8 which is compatible with the modifications &, and
dg, ie., DPppg) ¥ Apg = Ap.g * Py(pg)-

If the gr-S-2-stack G acts on the left side instead of the right side, we get the definitions
of left G-torsor, morphism of left G-torsors, 2-morphism of left G-torsors and 3-morphism
of left G-torsors.

Definition 2.5 A G-torsor P = (P, m!, m", ,ul, uw, e, 0"k, Q", Q) consists of an S-2-
stack P endowed with a structure of left G-torsor (P, m’, /ﬂ, ©') and with a structure of ri ght
G-torsor (P, m", u”, ®") which are compatible with each other. This compatibility is given
by a natural 2-transformation of S-2-stacks « : m! o (idg x m") = m" o (m! x idg) whose
component at (g1, p, g2) € G x P x G(U) is the 1-arrow k(g p.¢y) : &1-(p-82) —(g1.P).&2.
We require also the existence of two modifications of S-2-stacks, Q2! whose component at
(g1, 82, P, 83) € G? x P x G(U) is the 2-arrow

K(g182.p.83)

(8182).-(p.g3) ———— ((g182)-p)-&3
“](g1-g2,p-g3>l l“l(gpgz.p)“g3

81-(82.(p.g3)) (g1-(82-p)).&3

ol
(81-82:P:83)

81-K(gy,p.g3) K(g1.82-r.83)

81-((g2.p).83)
and Q" whose component at (g1, p, g2, 83) € G x P x G2(U) is the 2-arrow

K(g1.p.8283)

81.(p.(g283)) ——————— (81.p)-(8283)
81 ‘M(I’-S}KS) l \L”’?@q .P.82,83)

=
81.((p-82)-83) %y poren  ((81:1).82).83

K(g1.p-82:83) K(g1.p.82)-83

(g1-(p-g2)).83

which express the obstruction to the compatibility between the natural 2-transformation «
and the natural 2-transformations ! and ", respectively. Moreover, 2" and €' satisfy three
compatibility conditions: the first one is between Q" and ©”, the second one is between 2/
and ©', and the third one is between Q" and €.

Any gr-S-2-stack G = (G, ®, a, ) is a left G-torsor and a right G-torsor: the action of
G on G is just the group law ® of G, the natural 2-transformation p is the associativity a
and the modification ® is 7. Any Picard S-2-stack G is a G-torsor: In fact, the gr-structure
underlying G furnishes the structures of left and right G-torsor and the braiding implies that
these two structures are compatible.

LetP = (P, mfp,, mp, ufp, Ups @fp, Op, kp, Qp, pr,) and Q = (Q, mf@, mb, uf@, ub, Ql@’
@b, KQ, Qb, Qf@) be two G-torsors.

@ Springer



Higher-dimensional study of extensions via torsors

Definition 2.6 A morphism of G-torsors from P to QQ consists of the collection (F, yl, ',
vl g 3)) where
o (F.y!, W) (P, mp, uip, ©p) — (Q, my, uy, Op) and (F, ", W") : (B, mp, up, Op)
— (Q, mf, uh, ®F) are morphisms of left and right G-torsors, respectively;
e X is a modification of S-2-stacks whose component at (g1, p, g82) € G x P x G(U) is
the 2-arrow

. l r r l
1.8 P FKPg1p.g2) © V(p.grg1) © 81-¥(p.ga) = Vigr.poga) © Yip.g1)-82 © KQUg1.Fp.g2)
and which expresses the obstruction to the compatibility between the natural 2-
transformations yl, y", kp and kg. Moreover, we require that the modification X is
compatible with the modifications W/, W” Q! and Q". We leave the explicit description
of these compatibilities to the reader.

Any morphism of G-torsors F : P— Q is an equivalence of S-2-stacks. Therefore,

Definition 2.7 Two G-torsors P and Q are equivalent as G-torsors if there exists a morphism
of G-torsors from P and Q.

Let (F, y}p, Ve lllfg, Vi, ZF) and (G, yé, Ve ll—'é;, V¢, X¢) be two parallel morphisms
of G-torsors from P to Q.

Definition 2.8 A 2-morphism of G-torsors from (F, ylF, Vi ‘Jlf,, Vi, Xrp) to (G, y(l;, Y
\IllG, Vi, Eg) is given by the triplet (a, @, ®") where (a, le) . (F, y},, \Ilﬁp) =
(G, yé, \IJIG) and (o, ®") : (F, yp, Y}) = (G, v, Yg;) are 2-morphisms of left and right
G-torsors, respectively. Moreover, we require that the modifications &' and ®” are compat-
ible with the modifications X and X, i.e., we have the following equation of 2-arrows

r 1
gl'q)(P,gz) * q)(gl,P-gz) * e pgp ¥ EF(gl’l’ﬁé’Z)

_ r 1 -1
= X6(1.p.80 * Plgp.en) * Piorp)82 * Kigy a0
Let (o, <I>fx, ®!) and (B, o, <1>/’3) be two 2-morphisms of G-torsors from F to G.

Definition 2.9 A 3-morphism of G-torsors from («, Cl>f1, Pl) to (B, oL, cb%) is given
by a modification of S-2-stacks A : a«= B such that A : («, <I>fx) =(8, @%) and A :
(a, @) = (B, ) are 3-morphisms of left and right G-torsors, respectively.

Definition-Proposition 2.10 Let P and Q be G-torsors. Then the 2-category HomTors(G) (P,
Q) whose

e objects are morphisms of G-torsors from P to Q ,
e [-arrows are 2-morphisms of G-torsors,
e 2-arrows are 3-morphisms of G-torsors,

is a 2-groupoid, called the 2-groupoid of morphisms of G-torsors from P to Q.

In Lemma 3.1, we show that HomTors() (P, IP) is a Picard S-2-stack. In general, we expect
to have at least an S-2-stack structure on Homrors(c) (P, Q).

G-torsors over S form a 3-category TORS(G) where the objects are G-torsors and the
hom-2-groupoid of two G-torsors P and Q is Homrors(c) (P, Q).

We define the sum of two G-torsors P and Q as the fibered sum (or the pushdown) of P
and Q under G. In the context of torsors, the fibered sum is called the contracted product:
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Definition 2.11 The contracted product P ACQ (or Just P A Q) of P and Q is the G-torsor
whose underlying S-2-stack is obtained by 2-stackifying the following fibered 2-category in
2-groupoids ID: for any object U of S,

(1) the objects of D(U) are the objects of the product P x Q(U), i.e., pairs (p, g) with p
an object of P(U) and ¢ an object of Q(U);

(2) al-arrow (p1, q1) = (p2, g2) between two objects of D(U) is given by a triplet (m, g, n)
where g is an object of G(U), m : p1.g — pzis a l-arrow in P(U) and n : g1 — g.q2
is a l-arrow in Q(U);

(3) a2-arrow between two parallel 1-arrows (m, g, n), (m’, g, n’) : (p1, q1) = (p2, q2) of
D(U) is given by an equivalence class of triplets (¢, [, §) with [ : g — g’ a 1-arrow of
G(U), ¢ : m' o p1.l = m a2-arrow of P(U) and 0 : 1.2 o n = n' a 2-arrow of Q(U).

Two such triplets (‘72 ,1,0)and (¢,1,0) are eqNuivalent if there exists a 2-arrow y : [ =1
of G(U) such that¢ * p;.y = ¢ and y.qa x 60 = 6.

The contracted product of G-torsors is endowed with a universal property similar to the
one stated explicitly in [3, Prop 10.1].

Proposition 2.12 Let G be a Picard S-2-stacks. The contracted product equips the set
Tors! (G) of equivalence classes of G-torsors with an abelian group law, where the neutral
element is the equivalence class of the G-torsor G, and the inverse of the equivalence class of
a G-torsor P is the equivalence class of the ad(IP)-torsor P, with ad(P) = Homrors) (P, IP)
(recall that G and ad(P) are equivalent via g —(p + g.p)).

Definition 2.13 A G-torsor P is trivial if P is globally equivalent as G-torsor to G (recall
that G is considered as a G-torsor via its group law ® : G x G — G).

In order to define the notion of G-torsor over an S-2-stack, we need the definition of fibered
product (or pullback) for S-2-stacks. Let P, QQ, and R be three S-2-stacks and consider two
morphisms of S-2-stacks F : P — Rand G : Q — R.

Definition 2.14 The fibered product of P and QQ over R is the S-2-stack P xg Q defined as
follows: for any object U of S,

e an object of the 2-groupoid (P xg Q)(U) is a triple (p, [, g) where p is an object of
P(U), q is an object of Q(U) and [ : Fp — Gq is a l-arrow in R(U);

e al-arrow (p1, 11, q1) = (p2, I2, ¢2) between two objects of (P xg Q)(U) is given by the
triplet (m, «, n) where m : p; — pp and n : g — ¢» are l-arrows in P(U) and Q(U),
respectively, and «: [ o Fm = Gn ol is a 2-arrow in R(U);

e a 2-arrow between two parallel 1-arrows (m, a, n), (m’, o', n’) : (p1, 11, q1) = (p2, b2,
q2) of (P xg Q)(U) is given by the pair (0, ¢) where 0 : m=m’ and ¢ : n=n’
are 2-arrows in P(U) and Q(U), respectively, satisfying the equation o’ o (I * FO) =
(G¢ * 1) o o of 2-arrows.

The fibered product P xr Q is also called the pullback F*Q of Q via F : P— R or the
pullback G*P of P via G : Q — R. It satisfies a universal property similar to the one stated
explicitly in [3, §4].

If J : E— P is a morphism of S-2-stacks, the homotopy fiber ), of E over an object
p € P(U) (with U an object of S) is the S/ U -2-stack obtained as fibered productof J : E — P
and of the inclusion p — P.

Let G be a gr-S-2-stack and let P be an S-2-stacks. Our next definition is inspired by the
similar ones given in [12, Exposé VII 1.1.2.1] and [19, Def. 9.1].
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Definition 2.15 A Gp-torsor over P (or just G-torsor over P) is an S-2-stack E endowed
with a morphism of S-2-stacks J : [E — IP so that for any object U of S and for any p € P(U),
the homotopy fiber [, over p is a G(U)-torsor (see Definition 2.5).

Gp-torsors over P form a 3-category, denoted TORS(Gp).

LetPand R be two S-2-stacks and consider a morphism of S-2-stacks F : R — P.If Qisa
Gp-torsor over P, then the pullback F*Q of Q via F : R — P is a Gg-torsor over R. In other
words, the pullback via F' : R — P defines a 3-functor F* : TORS(Gp) —> TORS(GR).

2.2 Algebraic case

Let G = [G~2 — G~' — G°] be alength 3 complex of sheaves of groups over S. We denote
by 4+ : G x G — G the morphism of complexes whose components are the operations on
the groups G' fori = -2, —1,0.

Definition 2.16 A right G-torsor is given by a collection P = (P, (¢, M, p), (r, N, s),1t)
where

e P =[P 2 P~ P%isalength 3 complex of sheaves of sets;

e (g M,p): PxG L pis a fraction, which we representby m : P x G — G;

e (r, N, s)is a l-arrow from the composition of fractions (g, M, p) o(idpxGgxG, P X G X
G,idp x +) to the composition of the fractions (g, M, p) ¢(q x idg, M x G, p x idg)
which can be depicted by the following commutative diagram

(P x G?) xpxg M
(idpxGxG)opL T popr,

r s

PxGxG=<———————— K————-=-—-- =P

(gxidg)opr] l %

(M x G) xpxg M
A more legible presentation of the 1-arrow (r, N, s) would be the square

id
PxGc2 L pyG

;nxidgl (r%s) \Lm

PxG—P
m

where each arrow is a fraction.
e 1 is a 2-arrow of fractions which is the morphism of complexes from the vertical com-
position of the 1-arrow of fractions
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(P x G?) xpyg2 (P x G?) xpxg M)

A
| uy
\
(P x G xpyq2 K
r1 ‘ Sl
In
v

P x G <———((P xG*) xpyg> (M X G)) xpxg M ————= P

A
- | u) -
L | S
(K X G) XPxG M
\
| 1]
\

(M x G?) xpyg2 (M x G)) xpxg M

to the vertical composition of the 1-arrow of fractions

(P x G®) Xpyg2 (P x G?) Xpxg M)

A
| uz
\
(P x G xpyq2 K
n ‘ 52
(R}
v

PxG'<———((PXG) xpyg2(MxG) xpxg M ———Z=P
A
| u3
ry | 5
(K X G) XPxG M
\
I
v
(M x G?) xpyg2 (M x G)) xpxg M

J

The 2-arrow ¢ might be better understood if we represent it as a 3-morphism between the
pasting of the 2-morphisms between the left and right diagrams below:

3 id p x (+xidg) 2 3 idp x(+xidg) 2
PxG’ ———> PxG PxG’ ———> PxG
. ./idphid x+) O }pXJr mxidGéG O mxicé }pXJr
mX‘C}/GdeG \ s / \
2 - 2 idp x+ P 2 idpxF =
PxG (r.N,s) PxG P><G3P><G — > PxG (r.N,s) PxG
>xidG mxicé 4 >xidc .
\ / (r,.N.s) m \ (r,N.s) m m
PxXG ——> P PxG —F———> P
m m

In order to define a right G-torsor using length 3 complexes, we have substituted, in Defini-
tion 2.1, additive 2-functors by fractions, morphisms of additive 2-functors by 1-arrows of
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fractions, and modifications of morphisms of additive 2-functors by 2-arrows of fractions.
One can find out the compatibility conditions, that the data underlying a right G-torsor have
to satisfy, by applying the same arguments. Moreover, these arguments allow us to define
1-,2-, and 3-morphisms of right G-torsors. Hence, right G-torsors over S form a 3-category.
In a similar way, we can define also left G-torsors.

If G is a length 3 complex of abelian sheaves, we can define the notion of G-torsor: It is
a length 3 complex of sheaves of sets endowed with a structure of left G-torsor and with a
structure of right G-torsor which are compatible with each other. G-torsors over S form a
3-category that we denote by TORS(G).

Proposition 2.17 The tri-equivalence 2st (0.2) induces a tri-equivalence between TORS(G)
and TORS(G).

3 Homological interpretation of G-torsors

Let G be a Picard S-2-stack. As observed at the end of Section 1, [0]” is the complex
E=|e ﬂ e ff e] of DI=2:01(S) where e the final object of the category of abelian sheaves
onS.

Lemma 3.1 Forany G-torsor P, the Picard S-2-stack G is equivalent to Homtors(G) (P, P).
In particular, Homtorsc) (P, P) is endowed with a Picard S-2-stack structure.

Proof The additive 2-functor G — Homrors) (P, P), g — (p = g. p) furnishes the
required equivalence. O

By the above Lemma, the homotopy groups m; (Homrogrs(G) (P, P)) are abelian groups.
Since by definition TORS™ (G) = 7; (HomTors(c) (P, P)), we have

Corollary 3.2 The sets TORS' (G), fori = 0, —1, =2, are abelian groups.

Proof of Theorem 0.1 for i=0,-1,-2 The Picard S-2-stack G is equivalent to the hom-2-
groupoid Homg_>_stacks(0, G) of morphisms of S-2-stacks from 0 to G via the additive
2-functor G — Homg_7_gacks(0, G), g — (e — g). In particular, Homg_»_stacks (0, G) is
endowed with a Picard S-2-stack structure and [Homg_>_stacks (0, G)]” = 7<oRHom(E,
[G]*). By Lemma 3.1, we have TOrRS (G) = 7_;(Homrors)(P,P)) = 7_;(G) =
70— (Homs_>_sucks (0, G)) = H' (zzoRHom(E, [G]")) = H' (z<RI'([G]™)) = H'(IG]™).

Before the proof of Theorem 0.1 for i = 1, we record the following:

Lemma 3.3 Let P be an S-2-stack. Then there exists a Picard S-2-stack Z[IP] whose fibers
over any object U of S are the following 2-groupoids:

e an object of Z[P](U) consists of a finite formal sum Zie[ nilpil withn; € Z and p; an
object of P(U);

o there exists a 1-morphism between any two objects Y, ; ni[pi] and Zje] mjlq;] if
I = J,n; =m; foralli € I, and there exists a morphism f; : pi — q; in P(U) for all
i € I. In this case, a I-morphism Y_;_; ni[pil— Y_;c; nilgil is the finite formal sum
dicrmilfil;

e a 2-morphism between any two parallel 1-morphisms ), ; ni[ fil and Y, ni[gi] from
> i nilpilto ", nilqgil is the finite formal sum’y_; ., ni[o;] where a; is a 2-morphism
inP(U) from f; to g foralli € I.
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Proof To verify that Z[P] is a fibered 2-category in 2-groupoids over S is straightforward.

Let
(Z"i[‘ﬂi]szni[ai]) 3.1

iel iel
be a 2-descent datum for the object ), <1 1ilpil of Z[P](Vy) relative to the hypercover
8 : Vo = U where ¢; : djp; — df p; is a 1-morphism in P(V}) and o; : d{ @i = d5 ¢; o djje;
is a 2-morphism in P(V,). Since the collection (3.1) satisfies the 2-cocycle condition

((d2d3)* > nilgil = dj Zni[ai]) ody Y nilai] = (d;‘ > nilei] * (dodh)*

iel iel iel iel
Zni[%‘]) odf Zni[ai]
iel iel
so do the collections (¢;, «;) forall i € I. This shows that foralli € I, (¢;, «;) is a 2-descent
datum for the object p; of P(Vp). Then for every i € I the 2-descent datum is effective, i.e.,
for every i € I it exists an object ¢; € P(U), a 1-morphism ¥; : §*(¢;) — p; in P(Vp), and
a 2-morphism B; : ¢; o djvy; = d; in P(V1) so that the condition

(dypi * dy Bi) o (dy Bi * digi) o (dydy i * ;) = di Bi

is satisfied. We observe that the formal sum of these effective data, i.e., the collection
O icrnilgil, Xoier nilil, Xy milBi]), is the effective data for the 2-descent datum (3.1).
We show using similar arguments that the finite formal sums of morphisms of P form an S-
stack. Hence, Z[P] is an S-2-stack. The Picard structure on Z[P] is defined by concatenation.

[m}

Definition 3.4 If IP is an S-2-stack, the Picard S-2-stack generated by P is the Picard S-2-
stack Z[[P] constructed in Lemma 3.3.

The Picard S-2-stack Z[IP] does not satisfy the universal property of a free object. Maybe
the definition can be improved so that it works in the expected way, but this would be beyond
the scope of the current paper.

Lemma3.5 If P = 2st([P~%— P! — P°]), then Z[P] = 2st([Z[P~*] > Z[P~']—
Z[PO]]), where Z[ P'] is the abelian sheaf generated by Pi according to [13, Exposé IV 11].

Proof An object of P(U) (with U an object of S) is a collection (V, — U, X, ¢, o) where
(X, ¢, @) is an effective 2-descent datum relative to the hypercover Vo — U. Then an object
of Z[P](U) is the formal sum Ziel ni[(V{ = U, X;, ¢i, a;)]. The claim follows from the
equality

D omil(Vis U, Xiy g el = (Vo> U, Y milXil, Y nilgil, Y niley]),

iel iel iel iel
where V, — U is the refinement of the hypercovers Vi — U. O
Proof of Theorem 0.1 for i=1 The idea of the proof is to construct two morphisms
®: Tors'(G) — H'([G]"™),
W: H'([G]”) — Tors!' (G),
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and to check that ® o ¥ = id = W o ® and that ® is an homomorphism of groups. We
will just construct ® and W, since the remains of the proof are very similar to [3, Thm 1.1
proof i =1].

We fix the following notation: if A is a complex of DI=2.01(S), we set A = 2st”(A), and
if f: A— B is a morphism in DI=29(S), we denote by F : A — B a representative of the
equivalence class of additive 2-functors 25t (f).

Construction of ®: Let P be a G-torsor and let Z[P] be the Picard S-2-stack generated by
P. Consider the additive 2-functor

H : Z[P] — Z[0]

which associates with an object D, n;[p;] of Z[P](U) the object Y, n; of Z[0](U), for U
an object of S. The homotopy kernel Ker(H) of H is the Picard S-2-stack whose objects are
sums of the form [p]—[p’], with p, p’ objects of P(U). Clearly, Z[P] is an extension of Picard
S-2-stacks of Z[0] by Ker(H). Consider now the additive 2-functor L : Ker(H) — G which
associates with an object [ p] — [p’] of Ker(H)(U) the object g of G(U) such that g.p = p'.
According to [3, Def 7.3], the pushdown of the extension Z[P] via L : Ker(H) — G is
an extension L,Z[P] of Z[0] by G. By [3, Prop 6.7, Rem 6.6], to this extension L,Z[P] of
Picard S-2-stacks is associated with the distinguished triangle [G)® > [L.Z[P]]”®’ > E— +
in D(S) which furnishes the long exact sequence

- —=H(IG]") —=H (L. Z[P]]")—=H (B) " ~H' (|G]")— -

We set ©(P) = (1), where the element 1 of H’(E) corresponds to the global neutral object
e € T'(0) of the Picard S-2-stack 0.

Construction of W: Let G be the complex [G]? of DI-2.01(8) corresponding to the Picard
S-2-stack G. Choose a complex I = [I72 — I~ — 9] of DI=2%(S) such that 12,
I~!, 19 are injective and such that there exists an injective morphism of complexes s: G — 1.

We complete s into a distinguished triangle G LG BN MC(s) — + in D(S). Setting
K = 1=_,MC(s), the above distinguished triangle furnishes an extension of Picard S-2-

s - T
stacks G — I — K and the long exact sequence

o= HY(G)—=H (1)~ HO (K )~ ~H (G)—=0.

Given an element x of H!'(G), choose an element « of HY(K) such that 3(x) = x. Remark
that via the equivalence of categories 2st™ (0.1), the element u € H(K) corresponds to a
global section U € I'(K) of K, i.e., to a morphism of S-2-stacks U : 0 — K. Using the
notion of pullback (or fibered product) of S-2-stacks in 2-groupoids given in Definition 2.14,
consider the pullback U*T of T via U : 0 — K. This pullback U*I, which is an S-2-stack in
2-groupoids not necessarily endowed with a Picard S-2-stack structure, is a G-torsor: In fact,
the action G x U*I — U*I of G on U*1is given by (g, i) — S(g).i, where g is an object of
G, i is an object of I such that 7 () = U(e), and ”.” is the group law of the Picard S-2-stack
I. We set W(x) = U™, i.e., to be precise W(x) is the equivalence class of the G-torsor
U*l. o

Proof of Corollary 0.2 Let G = [G]”® and P = [P]”. From Lemma 3.5, [Z[P]]”> = Z[P].
By definition of Z[P], the functor G — Homgz(Z[P], G) is isomorphic to the functor
G — G(P) = HY(P, Gp), with Gp = [Gp]*. Taking the derived functors and using the
homological interpretation of torsors (Thm 0.1) and of extensions of Picard S-2-stacks [3,
Thm 1.1], we can conclude.
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4 Description of extensions of Picard 2-stacks in terms of torsors

Let P and G be two Picard S-2-stacks. If K is a subset of a finite set E, pg : PE _ Pk
is the projection to the factors belonging to K, and ®x : PE — PE~K+1 is the group law
® : P x P— P on the factors belonging to K. If ¢ is a permutation of the set E, Perm(¢) :
PE — P is the permutation of the factors according to . Moreover, lets : P x P — P x P
be the morphism of S-2-stacks that exchanges the factors and let D : P— P x P be the
diagonal morphism of S-2-stacks.

Proposition 4.1 To have an extension E = (E, I, J) of P by G is equivalent to have

(1) a Gp-torsor E over P;

(2) a morphism of Gp2-torsors M : p{ E A p5 E— ®* E. Here ®* E is the pullback of
E via the group law ® : P x P— P of P and for i = 1,2, p} E is the pullback of E
via the i-th projection p; : P x P— P (these pullbacks are pullbacks of S-2-stacks in
2-groupoids according to Definition 2.14);

(3) a 2-morphism of Gps-torsorsa : M o (M Aid) = M o (id A M);

(4) a 3-morphism of Gps-torsors a : pia, o 0 ®3;3 & 0 piry & = ®%, o 0 ®F, o whose
pullback over P7 satisfies the equality

®js5 00 ®53 40 Pryys 0 = @] A0 Py A0 @] a. 4.1

(5) a 2-morphism of Gpa2-torsors x : M = M o S;

(6) a3-morphism of Gpz-torsorss : xox = id satisfying the equation of 2-arrows obtained
from (1.6) by replacing ¢ with x and ¢ with s;

(7) two 3-morphisms of Gps-torsors

¢1 : Perm(132)*a o ®%3 x o = pi3 x o Perm(12)*a o pf; x

1 1

¢ Perm(123)*a ' o ®5,8" x loa™! = piys* x 7o Perm(23)* a7 o piys* x~

which satisfy the compatibility conditions obtained from (1.9), (1.10), (1.11), (1.12),
(1.13) by replacing ¢ with s, b; with ¢; fori = 1, 2, and whose pullbacks over P* satisfy

Perm(12)*ao pi3sc1o®3,cioa

= piy; ¢1 0 Perm(132)*a o Perm(1432)*a o ®%; cj. 4.2)
Perm(34)*ao piyy 20 ®, 200
= p;34 ¢ 0 Perm(234)*a o Perm(1234)*a o ®§3 0. 4.3)

(8) a 3-morphism of Gp-torsors p : D* x = id satisfying p x p = s and the compatibility
condition obtained from (1.14) by replacing  with a, { with s, b; with ¢; fori =1, 2,
n with p.

Proof ()LetE = (E, I, J) be an extension of P by G. Via the additive 2-functor I : G — E,
the Picard S-2-stack G acts on the left side and on the right side of [E inducing an action on the
homotopy fiber E,, for any object p € PP. Since the additive 2-functor J : E — PP induces a
surjection 7o (J) : 7o () — 79 (PP) on the 7, E,, and E_ , are non empty. Choose an object y
inE_,. Theny®— : E, — Ker(J)(U) is abiequivalence. Hence, Eis a Gp-torsor over P (1).
The group law ® : E xE — [E of E furnishes a morphism of S-2-stacks pj Ex p5 E— ®* E
over P x P. The existence forany g € G and a, b € E of the associativity constraint 8, g p) :
(ag)b — a(gb) implies that this morphism of S-2-stacks pj E x p5 E — ®* E factorizes via
the contracted product M : pj EA p5 E— ®* . The existence forany g € Ganda,b € E
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of the associativity constraints @ 4,5 : (g§a)b — g(ab) and a4 pq) : (ab)g — a(bg)
implies that the morphism of S-2-stacks M : p} E A p5 E— ®* E is in fact a morphism
of Gp2-torsors once we consider on pj E A p; E the following structure of Gpa-torsors: the
left (resp. right) action of Gp2 on pj E A p; E comes from the left (resp. right) action of
Gp2 on pf E (resp. p; E) (2). Now the associativity @ : ® o (® x idg) = ® o (idg X ®)
implies the 2-morphism of Gps-torsors o : M o (M Aid)= M o id A M) over P x P x PP
(3). The modification 7 (1.1), satisfying the coherence axiom of Stasheft’s polytope (1.5), is
equivalent to the 3-morphism of Gp4-torsors a satisfying the equality (4.1) (4). The braiding
C : ® o = @ furnishes the 2-morphism of Gpz-torsors x : M = M o s over P x P (5).
The modification ¢ (1.2), satisfying the coherence condition (1.6), is equivalent to the 3-
morphism of Gp2-torsors s with its coherence condition (6). The modifications b and b
(1.3), satisfying the compatibility conditions (1.7), (1.8), (1.9), (1.10), (1.11), (1.12), (1.13),
are equivalent to the 3-morphisms of Gps-torsors ¢; and ¢, with their compatibility conditions
(7) (remark that condition (1.7) corresponds to (4.2) and condition (1.8) corresponds to
(4.3)). Finally, the modification n (1.4), satisfying n * n = ¢ and the compatibility condition
(1.14), is equivalent to the 3-morphism of Gp-torsors p with its compatibility conditions
(8).

(II) Now suppose we have the data (E, M, «, a, x, s, ¢1, ¢2) given in (1)—~(8). The mor-
phism of Gpz-torsors M : pj E A pj E— ®* E over P x P defines a group law
® : E x E—E on the S-2-stack of 2-groupoids E. The data o and x furnish the
associativity @ : ® o (® X idg) = ® o (idg X ®) and the braiding ¢ : ® 0 S=>®
which express, respectively, the associativity and the commutativity constraints of the
group law ® of E. As already observed in (I), the data a, s, ¢, o, p give, respectively,
the modifications of S-2-stacks 7 (1.1), ¢ (1.2), by, ho (1.3), n (1.4), with their coher-
ence and compatibility conditions. Since any morphism of G-torsors is an equivalence
of S-2-stacks, the morphism of Gpz-torsors M : pi E A p; E— ®* E implies that
for any object a € E, the left multiplication by a, a ® — : E—E, is an equiva-
lence of S-2-stacks. By [16] this property of the left multiplication to be an equivalence
implies that E admits a global neutral object e and that any object of E admits an
inverse.

If J : E — P denotes the morphism of S-2-stacks underlying the structure of Gp-torsor
over P, J must be a surjection on the equivalence classes of objects, i.e., 7o(J) : mp(E) —
o(P) is surjective. Moreover, the compatibility of J with the morphism of Gpa-torsors
M : pf EAps E— ®* EoverPxPimplies that J is an additive 2-functor. There is a global
equivalence of G-torsors between G and the pullback 0*IE of E via 0 : 0 — P which is given
by sending the global neutral object O of G to the global neutral object (Op, £, Og) of 0*E,
where ¢ is the 1-arrow Op — J(Og) in P. Let I be the composite G = 0*E = Ker(J) — E.
Clearly [ is an additive 2-functor. We can conclude that (I, I, J) is an extension of P by
G. O

As a consequence of this Proposition, we get Theorem 0.3.

5 Right resolution of Ext(P, G)

. . DTV Dl .
A cochain complex of Picard S-2-stacks ... — Li-1'—> LI5S it ..., consists of

Picard S-2-stacks I! for i € Z, additive 2-functors D’ : L' — Li*!, morphisms of additive
2-functors 9' : D! o D' = 0, and modifications of morphisms of additive 2-functors

1 pitl
—
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(DI+2pi+1) pi a__ pit2(pi+lpi) D2 pit2g

ai“*D'ﬂ A “l . H G-
(i+2,i+1,i)
0D! 0

which satisfy the following equation of modifications: the pasting of the modifications

(D3 (D2 DI+ ) Dl ———=> DI} (D2 D)D) ———=>> DI*3(DI*3(DI*1 D))

— 1 =« 1 |

(D3 piF2) pith) pi ¢ (DH30) DT —————> D' D) ) D3 (DIF20)
s ]

i it

D+ Dl ()24 0 Dit30

is equal to the pasting of the modifications in the diagram below

(D3 D) DI+ DI === (DI*} (D2 Di+1)) DI =—=—=> DI*3(DI*2DI*1)D)

(ODI+)Di ywelil} (D3 DIH+2)(DI* Dy ———=> DI+ (DI2(Di+! i)
H/ H’ =
@i
(228 = oD+ Dy p(f’,) (DI D)) ——————> DI (D*20)

~J—

0 D30,

pT DS __ DR _ DU
Let G be a Picard S-2-stack and let: : 0 > T - S - R - Q — P — 0 be a complex
of Picard S-2-stacks with P, Q, R, S, and T in degrees 0,-1, -2, -3, and -4, respectively. To the
complex L and to G, we associate a 3-category V.. (G) which we can see as the 3-category
of extensions of complexes of Picard S-2-stacks of .- by G, considering G as a complex
concentrated in degree 0. This 3-category is a generalization to Picard S-2-stacks of the one
introduced by Grothendieck in [12] for abelian sheaves.

Definition 5.1 Let V1. (G) be the 3-category

e whose objects are pairs (E, T) where E= (I : G—>E, E, J : E— P, ¢) is an extension
of Pby Gand T = (T, u, Y) is a trivialization of the extension (DY*E of Q by G
obtained as pullback of E via D? : Q — P. We require that the trivialization T is
compatible with the complex I+, i.e., it satisfies the following conditions:

(1) the trivialization (D®)*T of (D®)*(DQ)*E is the trivialization arising from the
equivalence of transitivity (D®)*(DQ*E = (DY o DR)*E and from the morphism
of additive 2-functors 9% : DQ o DR = 0;

(2) the morphism of additive 2-functor (DS)*(DR)*T = 0 arises from the 2-
isomorphism of transitivity (DS*(DRY*T = (DR 0 DS)*T and from the morphism
of additive 2-functors 85 : DR o DS = 0;

(3) the morphism of additive 2-functor (DT)*(DS)*(D®)*T = 0 is compatible with
the modification of morphisms of additive 2-functors A(r s r) (5.1) underlying the
complex L.
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e whose l-arrows are given by triplets (F, 0, %) : (E,T) —(E,T') where F : E— FE’
is a morphism of extensions of Picard S-2-stacks (inducing the identity on G and P),
o0 : FoT = T’ is a morphism of additive 2-functors, and ¥ is a modification of
morphisms of additive 2-functors

(J'F)T == J/(FT) == J'T’

| ]

JT idp.

e whose 2-arrows are pairs (o, Q) : (F,0,X) = (F',0/,Z') wherea : F= F'is a
2-morphism of extensions of Picard S-2-stacks, 2 : ¢’ o @ = o is a modification of
morphisms of additive 2-functors which is compatible with the modifications ¥ and ¥'.

e whose 3-arrows A : (a, Q) =(a/, Q') are 3-morphisms of extensions of Picard S-2-
stacks A : o = o’ which are compatible with the modifications 2 and Q’.

For the notion of i-morphism of extensions of Picard S-2-stacks (i = 1, 2, 3), we refer to
(3, §5].

Let \If]i_ (G) be the abelian group of equivalence classes of objects of Wy, (G) (its abelian
group law is furnished by the sum of extensions of Picard S-2-stack [3, Def 7.4]). For
i =0,—1,-2let ¥; (G) be the abelian homotopy group 7—; (Homy; () ((E, T), (E, T)))
of the hom-2-groupoid Homy, . (c)((E, T'), (E, T)) of morphisms of an object (IE, T') of
W, (G) to itself (since Homy, . c)((E, T), (E, T)) is equivalent to the homotopy kernel
Ker(DQ : Hom(PP, G) - Hom(Q, G)), it is endowed with a Picard S-2-stack structure and
its homotopy groups are abelian groups). Generalizing [1, Thm 8.2] to Picard S-2-stacks, we
have the following homological description of ¥} (G):

W] (G) = Ext'(Tot([L']), [G]) = Homp s (Tot((L']), [GIli]) i =—2,-1,0, 1.

(5.2)
In general, additive 2-functors do not correspond to morphisms of complexes. To simplify
the computation of the isomorphisms (5.2), we assume that the additive 2-functors of the
complex L arise from morphisms of length 3 complexes (we have proceeded in this way
also in [1]). This is not restrictive since if P is a Picard S-2-stack, Lemma 3.5 furnishes
an explicit description of the length 3 complex associated with Z[P], and this allows us to
define degree-wise the differentials D; underlying the complex L.(IP) of Corollary 0.4, i.e.,
the differentials D; (0.3) are in fact morphisms of complexes.

T S R Q , T s/ R o
LetL 0> T2 sERE 05 Posoandl 05T g5 RS 0%

P — 0 be two complexes of Picard S-2-stacks with P, P’ in degree 0, Q, Q' in degree -1,
R, R’ in degree -2, S, §' in degree -3, and T, T’ in degree -4. For any Picard S-2-stack G, a
morphism F* = (F_4, F3, F2 F L FO) ‘L — L of complexes of Picard S-2-stacks
induces a canonical 3-functor (F*)* : WL.(G) — W,/ (G) : if (E, T) is object of WL (G),
we set (F)*(E, T) = (FO)*E, (F~1)*T) with (F®)*E the extension of ' by G obtained
as pullback of E via FO : P — P, and (F~')*T the trivialization of (D@ )*(F?)*E induced
by the trivialization T’ of (DQ)*E.

Lemma 5.2 The 3-functor (F*)* : WL.(G) — W;/(G) is a tri-equivalence if and only if
Hi (Tot(F-)) : Hi (Tot([L"]?")) — Hi (Tot([L-1"")) is an isomorphism for any i.
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Proof Fori = —2,—1,0, 1, we have the following commutative diagram

¥ (G) - Ext'(Tot([L]), [G])
1
!, (G) — Ext' (Tot([L"]), [G]),

where the vertical arrow on the left side is induced by the 3-functor (F-)* : V. (G) —
Wp,.(G), the vertical arrow on the right side is induced by the morphism of complexes
F-: L'- — L, and the horizontal arrows are isomorphisms (5.2). The 3-functor (F-)* :
V. (G) — . (G) is a tri-equivalence if and only if the vertical arrow on the left side
is an isomorphism for i = —2, —1, 0, 1. Hence we are reduced to prove that the vertical
arrow on the right side is an isomorphism for i = —2, —1, 0, 1 if and only if H’ (Tot(F-)) :
H' (Tot([L"])) — H'(Tot([L'])) are isomorphisms for each i. This last assertion is clearly
true. ]

Now we switch from cohomological to homological notation. To any Picard S-2-stack P,
we associate the complex L.(P) of Picard S-2-stacks which is defined in Corollary 0.4. Let
G be a Picard S-2-stack. We have the following geometrical description of the 3-category
Y. (G):

Proposition 5.3 The 3-category Ext(P, G) of extensions of P by G is tri-equivalent to the
3-category W, p)(G).

Proof By Corollary 0.2, an object (E, T') of W, p)(G) consists of a Gp-torsor E and a
trivialization T" of the Gp2 -torsor D5 obtained as pullback of IE via D,. This trivialization can
be interpreted as a morphism of Gpz-torsors M : pi EAp; E— ®* E, where p; : PxP — P
is the i-th projection of P x Pon P and ® : P x P — P is the group law of P.

Concerning the compatibility between the trivialization 7 and the complex L.(IP), we
have:

(1) through the two torsors over P3 and P2, the compatibility of T with 91 : Dy o D3 =0
imposes on the data E and M the 2-morphism of Gps-torsors o described in Proposi-
tion 4.1 (3) and the 2-morphism of Gp2-torsors x described in Proposition 4.1 (5);

(2) through the five torsors over P4, P?, P?, P? and P, the compatibility between D} D5T = 0
and 97 : D3 o D4 = 0 imposes on the data o and x the 3-morphism of Gps-torsors a,
the two 3-morphisms of Gps-torsors ¢; and ¢ and the 3-morphism of Gp2-torsors s and
the 3-morphism of Gp-torsors p, which are described, respectively, in Proposition 4.1
4), (7), (6) and (3);

(3) through the ten torsors over P>, P* P* P* P3, P3, P3, P2, P, and P2, the compatibility
between D3 Dy D3T =0 and A(p,, p,,ps) imposes on the datum a equality (4.1), on
the data ¢y, ¢p the equalities (4.2), (4.3) and the compatibility condition obtained from
(1.13) by replacing ¢ with s, h; with ¢; (for i = 1, 2), on the datum s the equation of
2-arrows obtained from (1.6) by replacing ¢ with x and ¢ with s, and finally on the
datum p the equality p * p = s and the compatibility condition obtained from (1.14) by
replacing  with a, ¢ with s, h; with ¢; (fori = 1, 2), n with p.

Hence by Proposition 4.1 the object (E, M, «, a, x, s, ¢1, ©2) of W, p)(G) is an extension of
P by G. The remaining details are left to the reader. m}

Proof of Corollary 0.4 Consider the morphism of complexes €. : L.(IP) — PP defined by the
additive 2-functor € : Z[P]— P, e([p]) = p for any p € P (here we consider P as a
complex concentrated in degree 0). Since by definition Wp(G) is tri-equivalent to Ext(P, G),
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Proposition 5.3 implies that the 3-functor (¢.)* : Wp(G) — Wi, ) (G) is a tri-equivalence.
Hence by Lemma 5.2, H; (Tot(e.)) : H; (Tot([L.(P)1”)) — H; (Tot([P]**)) is an isomorphism
for any i.

Before to prove Corollary 0.5, let’s first state the exactness in 2PICARD(S). A 2-functor
F:A—Bis

e essentially surjective if for any object x of B, there exists an object a of A so that F(a)
is equivalent to x;
o full if for any two objects a, b of A, the functor F(, ) : Hp(a, b) — Hg(Fa, Fb) is
essentially surjective and full.
. i-1 . pi
Thus we say that a cochain complex of Picard Picard S-2-stacks ... — Li~! Ul
) i+1 . - . .
Li+l D—> ...isexact atL! if the additive 2-functor D'~ : Li~! — Ker(D') is full and essen-
tially surjective. We notice that we will work in 2PICARD” (S), so the notion of essentially
surjective and full will be more strict. Upon defining correct notions of full and essentially
surjective, one can generalize this definition to definition of exactness in 3PICARD””(S).

Sketch of the proof of Corollary 0.5 We have to show that the long sequence

U D3 D3 Dy
0— Ext(G, P) > TORS(Gp) — TORS(Gp2) — TORS(Gp3) x TORS(Gp2) — ...
D¥ D*
.. = TORS(Gps+) x TORS(Gp3)> x TORS(Gpz2) x TORS(Gp) — ..

D*
... = TORS(Gps) x TORS(Gpsa)® x TORS(Gps)? x TORS(Gp2)x
TORS(Gp) x TORS(Gp2) — 0,

where U is the forgetful functor and D} denotes the pullback via the differential operator
D;, is exact:

— Exactness in Ext(IP, G): By Theorem 0.3, an object in Ext(G, P) is an object in
Ext(Z[G], P) with some extra structure. Therefore, we can define U as the 2-functor that
sends an extension to itself and forgets the extra structure. Then the 2-functor 0 — Ker(U)
is clearly essentially surjective and full.

— Exactness in TORS(Gp): We need to show that U : Ext(G, P) — Ker(Dyg) is essentially
surjective and full. Let [E be an object in Ext(Z[G], P) whose pullback via D, becomes
trivial, i.e., D;E is endowed with a trivialization 7'. Then (E, T) is an objectin W p) (G).
By Proposition 5.3, there exists an object E' in Ext(G, IP) so that U (E") = E. This shows
that U is essentially surjective.

— Exactness at the other terms follows from the free resolution of the Picard 2-stack com-
puted in Corollary 0.4.

6 Example: higher extensions of abelian sheaves
6.1 The canonical free resolution LL.(—) in the case of an abelian sheaf

Here we take a closer look at the resolution L.(PP) given in Corollary 0.4 when the Picard
S-2-stack P is an abelian sheaf P. In this case, we denote L.(IP) by L.(P).
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In [10], Eilenberg and MacLane attach to any abelian group G a complex of free abelian
groups A(G). As explained in [8], Eilenberg and MacLane’s construction extends by functo-
riality to abelian sheaves. If P is an abelian sheaf, the entries of the Eilenberg and MacLane’s
complex A(P) in lower degrees are

A(P); =0, fori <0;

A(P)1 = Z[P;

A(P)y = Z[P?);

A(P)3 = Z[P*) & Z[ P*];

A(P)4 = Z[P*| ® Z[ P’ ® Z[ P*) & Z[ P*];

A(P)s = Z[P°]1 ® Z[P*] © Z[P*] ® Z[P*] @ Z[P?] ® Z[P*] & Z[ P*] ® Z[P?]
where the differentials d; : A(P); — A(P);—; defined on the generators are

9 =0; 6.1)
a2lpligl =[p +q] —[p] —[q];
33lplagl = [pligl — [ql1p);
aslplighrl =1[p +qhrl —I[phg +rl1+Iphgl —[ghr];
aalphiglirlisl = [plighrl+[phq +rhisl+[ghrlis] = [p + qlirlis] — [plighr + s1;
aalplaghirl = [ghrlipl + [plag + r1+ [phighr] = [qlhiplir] — [pl2g] — [plar];
dalphglorl =[phirligl + [p + qlor]l = [phghir]l = [rliplig] = [plar] = [qlor];
04lpl3ql = —[pl2q] — [gl2p];
Os[pliglirlishel = [ghrlishit] + [plig + rlishie] + [plhighrlis + 61 = [plighr + slit]
—I[phghrhisl=Ip+qlirhishtl;
ds[plaglirlis] = [plighrhisl + [plaghr + sl + [plarlis] = [ghplirlis] — [plag + rlis]
—lglirlislipl +[glirliplis] — [pl2ghir];
Oslpliglirlasl = —Iplighrhisl+ [p + qhirlas] + [phighshrl + [pliglas] + [slipliglhr]
—[plhig +rlasl = [plishglir] —[glirlas];
Oslpliglarlis] = [p + qlorlis] — [plarlis] = [glaorlis] = [pliglar + s1+ [pliglor] + [pligl2s]
+Iphqlirlisl+[plirlishql + [rlishpligl + [rliphglis] = [phirliglis]
—[rliplishql;
Os[plaglir] = [plsg +r1+ [plaghir]l + [qlirl2p] — [pl3r] — [pl3q];
oslphiglarl =[p +qlsr1 +[phqlor] + [rl2plhigl — [pl3r] — [ql3r];
ds[plaglorl = [plaglir] = [plarligl + [pliglar] — [gliplor];
d5[plagql = [plag]l — [gl3p];

While they are not exactly the same, the complex L.(P) and the complex A(P) posses
similarities. In fact, we observe that the entries of the complex L.(P) and the entries of the
complex A(P) are the same in degrees 1, 2, and 3, as well as the differentials D», D3 and 9,
a3, respectively. However, the entries in degrees 4 and 5 of the complex L.(P) contain some
extra terms in addition to the terms of A(P)’s entries in degrees 4 and 5. To be more precise,
there is one extra generator [ p] in degree 4 and a differential Dy4[ p] associated with it and in
degree 5 there are two extra generators [p] and [p|*¢] and two differential operators, Ds[ p]

and Ds[p|*q]. These extra generators and differentials arise from the strictness of the Picard
condition.
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6.2 Computation of Ext3(P, G) using the canonical free resolution L.(P) of P

To understand better the complex L.(P), we examine Ext3(P, G) with P and G abelian
sheaves. From [14], it is known that Ext3 (P, G) classifies Yoneda extensions of the form

i 5 A J

0 G A B C P 0. (6.2)

Moreover, from [3, Theorem 0.1], it is also known that Ext! (P, G) & Ext! ([P]**, [G]°[1]) =
H 1 (RHom ([P]”, [G]")). In case, P is the abelian sheaf P and G is the shifted abelian sheaf
G[2],

Ext’(P, G) = H*(RHom(P, G)). (6.3)

To calculate the element of H*(RHom(P, G)) which corresponds to extension (6.2)
via isomorphism (6.3), we choose a hypercover V. of the complex L.(P) as follows: let
U..— L.(P) be a cover of L.(P) given by the simplicial object U.. in the topos of sheaves
on S (see [11]). The pullback along U.. — L.(P) is performed by refining the cover as we
move along the complex L.(P). Moving to the next degree on L.(P) corresponds to a hori-
zontal movement on U.. and therefore increases the first index of U.. by 1, whereas refining
the cover corresponds to a vertical movement on U.. and therefore increases the second index
of U.. by 1. That is, the pullback along U.. — L.(P) follows the diagonal of U.. which is
also a simplicial object in the topos of sheaves on S. Thus, we let V. to be the diagonal of
U... We denote by p; the pullback of p along the face map d; of V., i.e., d}p := p;, by p;j
the pullback of p first along d; then along d;, i.e., di* d;‘ p = pij, and so on for the further
pullbacks.

We choose a set-theoretic cross section s : P — C of the surjective sheaf morphism
j:C—P,ie, jos =idp. Forany p € P(Vyp), s(po + p1) and s(po) + s(p1) are not
necessarily equal in C(V}) as the sheaf map s is not a homomorphism. The obstruction to
s being a sheaf homomorphism is measured by a sheaf map f~! : P x P — B so that the
relation

s(po + p1) = s(po) +s(p1) +2(f " (po. p1),

is satisfied in P (Vy).

The pullback of the elements py and pj in P(V}) to V are the elements pgo, po1, and
p11. Using the associativity of the addition of P(V3) and s((poo + po1) + p11) = s(poo +
(po1 + p11)), we find that

£ por, p11) = £ (poo + pots p11) + £ (poo, por + p11) — £~ (poos por),

is in ker(1)(V»), which implies the existence of a sheaf map f~2 : P3 — A satisfying the
relation

8(f2(poos pot, p11)) = £ (pot. p11) — £~ (poo + por. p11) + £~ (poo, por + pi1)
— (P00, por),

in B(V,). As a consequence, f 2 should be interpreted as an obstruction to the associativity.
To find a coherence on f~2, we pull f~2 back to V3 and observe that the expression

F2(poot, poit, piit) — £2(pooo + poots poits pi11) + £ 2(Pooos Poot + poit, piin)
— £72(pooo» Poots por1 + pi11) + £ 2(pooos Poots poin),
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is in ker(8)(V3), hence it exists a sheaf map ¢ : P* — G satisfying the relation

i(c(pooo, poots Poits P111)) = f~2(pooo, poot. po11) + f~2(poco. poot + pott, piit)
+ £~ %(poor. poit. P111) — £ 2(Pooo + poot. Poit. pii1)
— f72(pooo. poot, poit + piin)
over V3. When pulled back to V4, the map c, seen as an obstruction to the coherence of the

associativity, satisfies the relation

c(Pooo1» Poot1» Potits P1111) — ¢(Poooo + Pooot» Pooit, Poill, P1111)
+ ¢(P0000> Pooo1 + Poot1, Poittl,> P1111) — ¢(Poooo, Pooot, Pootl + poiit, pii11)  (6.4)
=+ ¢(P0000, Pooo1» Poot1, Pot1l + pii11) — ¢(Poooo, Pooot, Poott, poti1) = 0.

After the associativity constraint, we involve the commutativity constraint in the discus-

sion. The equality s(po + p1) = s(p1 + po) in C(Vy) requires f~'(po. p1) — f~'(p1. po)
to be in ker(1)(V}) which implies the existence of a sheaf map g~ : P x P — A satisfying
the relation

8(g2(po, p1)) = £ (po, p1) — £ (1, o), (6.5)

in B(Vp) from which it follows that g_z(po, p1) + g_z(pl, po) is in ker(§) (V). Then there
is a sheaf map ¢’ : P x P — G satisfying

i(c'(po, p1)) = —(g " 2(po. P1) + & 2(p1, P0))- (6.6)

The injectivity of i gives the relation

c'(po. p1) — ¢'(p1. po) = 0. (6.7)

In case pg = pi1 over Vi, from (6.5) we find §(g~2(po, po)) = 0. Hence, there exists

" P— G so that i(c"(po)) = —g 2(po, po) in A(Vy) which implies with (6.6) the
relation

2¢"(po) = ¢'(po. po)- (6.8)

Next, we explore the compatibility between the associativity and the commutativity con-
straints. As the pullbacks poo, po1, p11 of the elements pg and p; in P(Vy) to P(V;) satisty
s((poo+po1)+p11) = s(poo+(po1+pi1)) = s((po1+pi1)+poo) = s(po1+(p11+poo)) =
s(po1 + (poo + p11)) = s((po1 + poo) + p11), we find that the expressions

8(8~2(poo. po1) — & 2(poo. po1 + p11) + & 2(poo, P11)),

8(f2(poo. po1, p11) — f2(po1, poos P11) + £ 2(Pots P11, Poo))s

are equal over V. Hence, there exists ¢’ : P> — G so that

i(c”"(poo, po1, p11)) = f2(po1, p11, poo) + & *(poo, po1 + p11) + £ 2 (poos pot, pi1)

— £72(po1, poo, p11) — & 2(Poos po1) — &2 (poo, p11)-
(6.9)

¢” can be interpreted as an obstruction to the compatibility between the associativity and the
commutativity constraints. The map ¢” can also be seen as the difference between the two
moves that send the element pgg to the end of the ordered list of elements (poo, po1, P11)
in P(V3). One of the moves sends pgp to the end of the list by moving it over po; + pi1,
whereas the other sends pog to the end of the list by moving it first over pgp, then over pp.
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To find a coherence condition to this obstruction, we pull (6.9) back to V3 and observe that
¢” satisfies the relation

c(pooo, poot, poits pii1) + ¢ (pooo, poot, poi1 + pi11) + ¢ (pooo poit, pii1)
— ¢(poo1. Pooo, poii, P1i1) — ¢ (pooo, Poo1 + poits Pi11) — c(Pools Poil, Piils Po00)

+ ¢(poot, pott, pooo, pi11) — ¢ (pooos poot» poi1) = 0.
(6.10)

We can also describe how to move the element pj; to the beginning of the ordered list
(poo, poi, p11)-Using s(poo+(po1+pi1)) = s((poo+po)+pi1) = s(p1i+(poo+por)) =

s((p11 + poo) + po1) = s((poo + p11) + po1) = s(poo + (p11 + po1)), we find that the
expressions

8(—=g2(pot, p11) + g (oo + por, 1) — € 2(Poo, P11)),
8(f2(poos po1, p11) — F 2 (oo, P11, po1) + £2(P11s Poos Po1))s

are equal over V5. Hence, there exists ¢’ : P> — G so that

i(c”" (00> po1, 1)) = £ 2(poos P11, po1) + & 2(poo + poi, p11)— £~ (poo, poi» P11)

— £72(p11, poos po1) — & 2(poos p11) — & 2 (pot, p11)-
6.11)

We interpret ¢’ as an another obstruction to the compatibility between the associativity and

the commutativity constraints. It can also be seen as the difference between the moves that
send pi; to the beginning of the list. Upon pulling (6.11) back to V3, we observe that ¢
satisfies the coherence condition

— ¢(pooo» poot» poits pii1) + ¢ (pooo + poot, pott, pit1) + ¢(pooo. poot. Piits Poi1)
+ " (pooo, poot, p111) + ¢(piit, Pooo, poots poi1) — ¢ (pooo, poot + poits Pii1)

— ¢(pooo, P11, poot» poi1) — ¢ (poot, poits pii1) = 0.
(6.12)

As both ¢””” and ¢ are obstructions to the compatibility between the associativity and
the commutativity constraints, it is expected to have compatibility between them. First of all,
on an ordered list of four elements (pooo, poo1, po11, p111) in P(V3) obtained by pulling the
elements pgg, po1,and pi; in P(V3) back to V3, to obtain the order (po11, P111, P000, P001)s
we can either move poop and poo; to the end of the list or move pg11 and p11; to the beginning
of the list. The first compatibility condition between ¢ and ¢””” says that both of these ways
are the same. That is, using s (pooo + poo1 + po11 + p111) = s(poi1 + pi11 + pooo + Poo1) =

s(po11 + pooo + poor + p111) = s(pooo + po11 + p111 + poor) with all possible groupings
we find the coherence condition

¢ (pooo + poot. pott. p111) — ¢ (pooo. poits pi11) — ¢ (poot. pott. pi11)
— " (pooo poot» pot1 + pi11) + ¢ (pooo. poot. poi1) + <" (pooo. poot» p111)
+ c(pooo, poot, poii, p1i1) + c(pooo, poit, piiis poot) + ¢(poit, Piit, Pooo, Pooi)
+ ¢(poi1, Pooos poots p111) —<c(Pooo, Poit, Pools P111) —c(poiis Pooos P1its Poo1) = 0.
(6.13)

Secondly, in an ordered list of three elements (poo, po1, p11) in P(V3), moving poo first to
the end of the list and then back to the beginning of the list should be compatible with not
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moving poop at all. Therefore the difference between various ways of moving pog to the end
of the list (i.e., ¢’ (poo, po1, p11)) and the difference between various ways of moving pog to
the beginning of the list (i.e., ¢””(po1, p11, poo)) should add up to zero. This translates into
the coherence condition

¢'(poo, por + p11) + <" (poo. por, p11) + <" (pot, pi1, Poo)

, , (6.14)
— ¢ (poo, po1) — ¢ (poo, p11) = 0.

Moreover, the compatibility between moving pi; first to the beginning of the list (i.e.,
" (poo, po1, p11)) and then to the end of the list (i.e., ¢’ (p11, poo. po1)) and not moving
p11 at all, translates into the coherence relation

' (poo + pot, p11) + <" (poo, pot, p11) + <" (p11. poo, po1)

’ / (6.15)
—c (poo, p11) — ¢ (po1, p11) = 0.
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The final coherence condition between ¢”” and ¢ is given by the relation

"' (poo, po1, p11) — ¢ (poo, pi1, po1) + ¢ (poo, poi, p11) — <" (pot, poo. p11) =0,
6.16)

and it describes how to interchange pgp and pi; in an ordered list of three elements
(poos po1s p11)-

There is one last coherence condition enjoyed by all the obstructions found so far. From
the observation that for any p, ¢ in P(Vp), 2(c"(p + q) — " (p) — ¢"(q)) is equal to
2(c(p.q,p,q) — " (p,q. p +q) — "(p, p.q) — " (q, p,q) + (g, p)), we find the
relation

" "

—c(p.q.p.q)+""(p.g.p+q) +"(p.p.g) +" (g, p.q) — (g, p)
+c"(p+q)—c"(p)—c"(9) =0. (6.17)

We can summarize the above calculations as follows: The collection of maps (c, ¢, ¢”, ¢””,
¢y is in Hom(L*[P], G). Since the maps (c, ¢/, ¢, ¢’”, ") satisfy relations (6.4), (6.7),
(6.8), (6.10), (6.12), (6.13), (6.14), (6.15), (6.16), and (6.17), they are in the kernel of (D5)* :
Hom(L*[P], G) — Hom(L’[P], G) induced by the differential Ds : L3[P]— L*[P] of
the complex L.(P). This is why the collection (c, ¢, c”, ¢, c””") can be called as a 4-
cocycle of P with values in G. Upon choosing another set-theoretic cross sectiont : P — C,
we find another collection of maps (d, d’,d”,d"”, d"”) satisfying the same relations as the
collection (c, ¢, ¢”, ¢, ¢”""). We leave it to the reader to show that these two collections are
cohomologous. In summary, these calculations show that we can use the complex L.(P) to
compute H*(RHom(P, G)), that is H*(RHom(P, G)) = H*(Hom(L.(P), G)).

In the calculations, we find a map ¢” : P — G satisfying relation (6.8) that does not
appear in the complex A(P). Therefore, we add the differentials D4[p] = —[pl>p] and
Ds[p] = 2[p] — [plap] to the fourth and the fifth entries of A(P). The calculations also
show that the collection (c, ¢, ¢”, ¢’”, ¢””’) shall satisfy relation (6.17). This corresponds to
adding another generator [ p|*g] to the fifth entry of A(P) to kill the class —[p|iq|i plig] +
(Phiglap+ql+Iplaphigl+Iql2pliq]l — [ql3p] + [p + 9] — [p] — [4], that is we shall add
another differential Ds[pl*q] = —[pliglipligl+[pliglap+4ql+[plapligl+1ql2pliq] —
[ql3p] + [p + q] — [p] — [q]. The addition of these differentials turns the complex A(P)
in to the complex L.(P). Hence, we can use L.(P) as a free resolution of P to compute
Ext*(P, G).

We finish this calculation section by pointing out that the above discussion has another
half which is not mentioned here. It is the reconstruction of extension (6.2) from the cocyclic
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description of the G[2]-torsor over P which would have required a descent type argument over
the complex L.(P). The details of such a reconstruction will be the subject of a forthcoming
paper where the Gp-torsors over [P and the extensions of IP by G will be studied in terms of
cocycles.

6.3 An algebraic point of view concerning the strict Picard condition

Algebraically, adding the differentials D4[p], Ds[p], and Ds[p|*q] arising from the strict
Picard condition to the complex A(P) can be described as follows: consider « : Z[P] &
Z[P?] — Z[ P], defined by a[p] = —2[p] and oc[p|4q] = [p]l +[g] — [p + q], as the chain
complex whose entries at degrees 3 and 4 are Z[ P] and Z[P] & Z[ P2, respectively, and all
other entries are 0. We define the morphism f

o

0 Z[P] ® Z[P%] Z[P] 0

Y

AP)s —— == A(P)g ———>= A(P)s — > A(P),

(6.18)
where f; = 0 for i # 3,4 and f3[p]l = [plapl. falp] = [plsp), and falpl*q] =

[pliglipligl = [Pligl2p + q] — [plapligl — lgl2pl1q] + [gl3p]. 1t is straightforward to
observe that the cone of (6.18) is the complex L.(P).
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