
ParallNormal: an efficient variant calling pipeline for unmatched
sequencing data

Laura Follia1,2,3, Fabio Tordini1, Simone Pernice1,

Greta Romano1, Giulia Beatrice Piaggeschi1,4 and Giulio Ferrero1,5

Abstract—Nowadays, next generation sequencing is closer to
clinical application in the field of oncology. Indeed, it allows the
identification of tumor-specific mutations acquired during cancer
development, progression and resistance to therapy. In parallel
with an evolving sequencing technology, novel computational
approaches are needed to cope with the requirement of a rapid
processing of sequencing data into a list of clinically-relevant
genomic variants.

Since sequencing data from both tumors and their matched
normal samples are not always available (unmatched data), there
is a need of a computational pipeline leading to variants calling
in unmatched data. Despite the presence of many accurate and
precise variant calling algorithms, an efficient approach is still
lacking. Here, we propose a parallel pipeline (ParallNormal)
designed to efficiently identify genomic variants from whole-
exome sequencing data, in absence of their matched normal.
ParallNormal integrates well-known algorithms such as BWA
and GATK, a novel tool for duplicate removal (DuplicateRemove),
and the FreeBayes variant calling algorithm. A re-engineered
implementation of FreeBayes, optimized for execution on modern
multi-core architectures is also proposed.

ParallNormal was applied on whole-exome sequencing data
of pancreatic cancer samples without considering their matched
normal. The robustness of ParallNormal was tested using results
of the same dataset analyzed using matched normal samples
and considering genes involved in pancreatic carcinogenesis. Our
pipeline was able to confirm most of the variants identified using
matched normal data.

I. INTRODUCTION

Next Generation Sequencing (NGS) is extensively used

in the field of oncology to identify genetic variants that

leads to differences in an individual’s phenotype, trait or

risk of developing a disease [1]. Indeed, NGS is applied

to identify genetic variants in cancer, in research settings

and increasingly in clinical settings for molecular diagnostics

and therapy decision. Genetic variants can include Single

Nucleotide Polymorphisms (SNPs), difference in a single base

pair from a reference, insertions and deletions (indels) of

multiple nucleotides, and/or structural variants including, copy

number variants, inversions and translocations.

In parallel with an evolving sequencing technology, novel

computational approaches are needed to cope with the re-

quirement of a rapid processing of sequencing data into a

list of clinically-relevant genomic variants (variant calling).

1Computer Science Department, University of Turin, Italy
2Center for Experimental Research and Medical Studies (CeRMS), Italy
3Molecular Biotechnology and Health Sciences Department, University of

Turin Italy
4Italian Institute for Genomic Medicine (IIGM), Italy
5Clinical and Biological Sciences Department, University of Turin, Italy

Variant calling tools are widely used with the aim of iden-

tifying genetic variants using NGS data [2]. The most used

class of variant calling tools is called probabilistic methods.

These methods use a genotype likelihood framework based on

Bayesian probability approach.

Bayes’ Theorem describes the probability of each genotype

being the correct genotype considering the analyzed data (NGS

reads), in terms of the prior probabilities of each possible

genotype, and the probability distribution of the data taking

into account each possible genotype. Prior information, such as

patterns of linkage disequilibrium (i.e. a measure of how often

two alleles or specific sequences are inherited together), are

joined with other information such as errors in base calling and

alignment score, to provide a statistical measure of uncertainty.

Some probabilistic variant calling tools are defined as

haplotype-based approaches, since the genotype likelihood is

estimated by considering different genomic variants mapped

in a specific genomic region of interest as not independent

from each other.

To properly identify tumor-specific variants most of these

tools rely on a matched analysis between tumor and normal

samples. However, sequencing data from both tumors and their

matched normal samples are not always available (unmatched

data), usually due to the lack of biological samples. To

cope with this problem, biologists relied on public mutation

databases or alternatively they used in-house normal genomes

to filter the set of variants which are specific of a tumor

sample. Currently, mutation databases have been updated and

they contains a huge amount of mutation data giving rise to

the necessity of tools and software that support researchers

in filtering mutations [3]. For this reason there is a need of

a computational pipeline which is not only efficient in the

analysis of data but also leading to variants calling user tumor

data without associated normal tissue.

Nowadays, several variant calling tools are available to

analyze tumor samples without the corresponding normal

samples. Genome Analysis Toolkit (GATK) [4], SAMtools [5]

and FreeBayes [6], for example, are based on a probabilistic

approach and they are able to analyze NGS-data to derive

genetic variants from the sample under analysis (e.g. tumor

sample) without the healthy counterpart.

Several studies have been conducted in order to evaluate

tool performance w.r.t. their ability to call SNPs and short

indels with allelic frequencies as low as 1% in matched or

non-matched NGS data [7], [8]. However they reported several

disagreements among variant calls made by different pipelines,

suggesting a need for more careful interpretation of called

423

26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

0-7695-6380-5/18/$31.00 ©2018 IEEE
DOI 10.1109/PDP2018.2018.00074

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302168425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

variants.

Moreover, sequencing raw data need to be pre-processed

and corrected before variant calling analysis [9]. In particular

it is necessary to remove duplicates from the raw reads, map

the reads to the reference genome through mapping algorithm

and correct read alignments with specific tool. Technically,

variant calling is the last and more critical step that needs to

be more precise and accurate as possible. For these reasons,

the output of a variant calling tool is strictly dependent from

the pre-processed input data.

Despite different algorithms having been proposed to iden-

tify variants in absence of normal control [3], [10], at the

best of our knowledge none of these tools is integrated in a

complete analysis pipeline with pre- and post-processing steps

of the raw data.

In this paper we present a novel computational pipeline

called ParallNormal, designed for the first time to efficiently

identify a set of genomic variants in unmatched samples.

In Section II we describe the main computational modules

composing the pipeline. In Section III we highlight the key

features required to derive an easy porting of the variant calling

module on a multi-core platform. In Section IV we discuss

the application of ParallNormal on Whole-Exome Sequencing

(WES) data of pancreatic cancer samples, without considering

their matched normal. Section V presents the results of the

whole pipeline while Section VI provides an evaluation of

our pipeline, discusses the obtained results and concludes this

work.

II. METHODS

Haplotype-based variant detection methods identify

germline variations in and individual’s genome. Germline

variants are DNA variations coming from germ cells (ovum

and sperm) and they could be inherited by the offspring.

Very often, these variants occur with a certain frequency

throughout the population — as it is the case for SNPs — and

require determining the individual’s genotype at each genomic

region. This process normally involves a number of steps,

among which: 1) pre-processing NGS reads; 2) aligning reads

to a reference genome; 3) likelihood of variation estimation at

each genomic region; 4) filtering results and SNP annotation.

As reported in Figure 1, ParallNormal adheres to this

schema, and is composed of four main analysis modules:

1) reads pre-processing;

2) reads alignment and alignment correction;

3) variant calling;

4) variant filtering.

A. Reads preprocessing module

Sequencing reads are quality controlled using FastQC1 and

de-duplicated using an in-house algorithm called DuplicateR-
emove. Read de-duplication is required to avoid biases, which

are caused by the non-uniform rate of sequence amplification

by PCR reaction, performed during NGS library preparation.

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Raw Reads

FastQC, DuplicateRemove

Read alignments

Corrected alignments

Called variants

Annotated variants

De-duplicated Reads

BWA

IndelRealigner, BaseRecalibrator

FreeBayes

Candidate variants

SnpEff

Filtering scripts

PRE-PROCESSING

ALIGNMENT

VARIANT CALLING

VARIANT FILTERING

Fig. 1. Flow chart representing the ParallNormal analysis pipeline with a
detail on its analysis modules. On each arrow, the algorithms applied in each
analysis step are reported.

DuplicateRemove applies a filtering step by comparing the

k-mer sub-sequences composing each input read, and reads

composed of the same k-mer composition are removed. The

effect of DuplicateRemove on read alignment rates was ver-

ified by comparing the fraction of reads aligned before and

after the filtering step (Figure 2). As reported in the box plot

depicted in the Figure 2, using the non-parametric Wilcoxon

signed-rank test no statistically significant differences were

found between the number of reads before and after removing

duplicates with a p − value = 0.4287 for mapped reads and

a p− value = 0.5145 for properly paired reads.

B. Reads alignment module

In this module pre-processed reads are aligned against

the reference genome using BWA [11]. BWA is a Burrows-

Wheeler Transform (BWT) based method that uses a string

matching approach to create a space-efficient index of the

reference genome to facilitate rapid searching. BWA was

selected since it outperformed similar algorithms in variant

calling pipeline [8]. Each read alignment is converted in BAM

(Binary Alignment/Map) format, sorted, and indexed using

SAMtools [5].

Before the variant calling phase, read alignments are pro-

cessed to avoid biases and false positive variant calls. Initially,

reads groups and sample information were added using Picard

AddOrReplaceReadGroups with standard parameters. Picard is

a set of command line tools designed to manipulate sequencing

data and formats (i.e. BAM files). This step is performed to

424

Fig. 2. Box plots illustrating the comparison between mapped and properly
paired reads before and after removing duplicates.

know if certain reads were sequenced together on a specific

lane, in order to compensate for technical variability among

sequencing runs. In this way, all reads within a read group

are assumed to come from the same NGS run and share the

same error model. Then, read alignments are corrected using

three different tools implemented in GATK [4]: RealignerTar-
getCreator, IndelRealigner, and BaseRecalibrator.

RealignerTargetCreator and IndelRealigner are applied

since misalignment in proximity of indels is a source of error

during variant calling. Despite reads may be aligned during

the alignment step, their position may be shifted due to the

presence of an indel. This shift can introduce false-positive

calls in the region close to the variant. For this reason Re-
alignerTargetCreator is used to create a subset of reads which

are mapped in this context and then a local realignment is

performed by IndelRealigner in order to minimize the number

of mismatching bases. The base quality score recalibration is

performed because the estimation provided by the sequencing

machines are often inaccurate and it may not reflect the true

base-calling error rate. Then, BaseRecalibrator implemented

in GATK is applied to assign an empirically accurate error

model to each bases of the aligned reads. The output of this

second correction step is a BAM file ready for the variant

calling phase.

C. Variant calling module: FreeBayes

FreeBayes [7] is a Bayesian genetic variant detector de-

signed to find SNPs, indels, and complex events. It is a

haplotype-based variant detector, and uses the actual sequences

of reads aligned to a target genomic region to call variants.

FreeBayes uses short-read alignments for any number of

individuals from a population, and a reference genome to

determine the most-likely combination of genotypes for the

population at each position in the reference. It then reports

resulting variants in Variant Call File (VCF) format.

From a mathematical point of view, FreeBayes is based

on a Bayesian model that estimates the probability to find

variants at a given genomic region. Specifically, Bayesian
inference methods produce probabilistic classifications that

combine new information derived from the observations with

preexisting models (priors) that are derived from knowledge.

When Bayesian models are applied to genomics, the genome

that we are interested in is modeled to derive allele frequencies

and prior estimates of the distribution of genotype, and then

incorporate read evidence from the observations by estimating

how likely it is that a given set of reads is derived from each

one of our potential genotypes, for each sample.

The basic idea follows directly from the Bayes theorem:

P(Genotype|Data) =
P(Data|Genotype)P(Genotype)

P(Data)
.

(1)

Where:

• P(Genotype|Data) is the probability to obtain a geno-

type given a set of observations;

• P(Data|Genotype) explains how likely it would be

to see a given set of observations given a particular

underlying genotype;

• P(Genotype) represents the prior likelihood of observ-

ing a specific genotype combination;

• P(Data) is the probability to see a given set of obser-

vations.

In this section we will briefly show the mathematical

foundations behind this algorithm. We refer to [6] for a more

detailed study on how these probabilities are calculated.

At a given genomic region, we have n samples drawn from

a population, each of which has a genotype Gi comprised

of ki distinct alleles bi1 , . . . , bki . Considering a set of si
sequencing observations ri1 , . . . , risi = Ri for each sample

i = 1, . . . , n, then to genotype the samples we could apply

a Bayesian statistic relating P(Gi|Ri) to the likelihood of

sequencing errors in analized reads, and the prior likelihood

of specific genotypes. So the equation 1 becomes

P(Gi|Ri) =
P(Ri|Gi)P(Gi)

P (Ri)
. (2)

This means that given a set of sequencing observations and

data likelihoods P(Ri|Gi), for each sample i, and the possible

genotype derived from the putative alleles, we are able to

determine the probability of variants at the considered genomic

region. Specifically, a gradient ascent method is employed to

determine the maximum a posteriori estimate of a genotyping

over all samples under analysis, and to establish an estimate of

the probability that there exist variants in the genomic region.

This process begins at the genotyping across all sam-

ples G1, . . . , Gn = {G}, where each sample genotype is

the maximum likelihood genotype given the data likelihood

P(Ri|Gi). Then the algorithm starts to iterate starting from the

genotyping {G} estimated in the previous step, and attempts

to find a genotyping G′1, . . . , G
′
n = {G′} such that:

P({G′}|R1, . . . , Rn) > P({G}|R1, . . . , Rn),

and this search iterates until the convergence is reached.

In the end, provided a maximum a posteriori estimate of

the genotyping of all samples, it is established an estimate of

the quality of the genotyping. To do that, it is estimated the

425

Fig. 3. For each position in the reference genome, FreeBayes detects candidate
variants and determines genotypes over a set of samples

probability that the number of distinct alleles at the genomic

region K is greater than 1, that is:

P(K > 1|R1, . . . , Rn).

As exemplified in Figure 3, for each position in the reference

genome FreeBayes looks for target read alignments, detects

candidate variants and determines all possible genotype alleles

for a set of samples. Then, using the Bayesian inference

method described above, it derives prior estimates of the

distribution of genotypes and allele frequencies, and then

incorporate read evidence by estimating how likely a given set

of reads is derived from each one of our potential genotypes.

Benchmark analysis showed that FreeBayes performs well

in a variant calling process, in absence of paired controls [7],

but the algorithm is strongly affected by an overall poor

performance, in terms of computational costs and analysis

time.

FreeBayes is written as a C++ sequential application, which

does not take advantage of the computational power of modern

multi-core architectures. It uses genome indexes for direct

access to genomic regions, and properly handles aligned

reads using external libraries, which helps maintaining a low

memory footprint. This is a valuable feature considering the

size of the input datasets, that reach several Gigabytes in our

experiments.

Authors proposed a workaround to improve such perfor-

mance bottleneck: a wrapper that permits to run several

FreeBayes instances, in parallel, over smaller equally-sized

genome regions. This solution produces a sort of Map+Reduce
behavior, where partial results are merged into a single final

output.

While this approach helps reducing the execution time, we

found it quite cumbersome because it makes use of external

tools and hard-coded scripts to manage genome partitioning

and task execution. Nonetheless, computational time is still

considerable, the wrapping scripts are not easily portable and

require some fixings in order to be usable.

FreeBayes work-flow can be modeled as a pipeline pattern,

i.e. a functional partitioning of a sequential code that is divided

into multiple steps (or stages), executed concurrently onto

different consecutive items of an input stream: tasks can start,

run, and complete in overlapping time periods. In this way, the

whole process can be largely optimized by transforming the

search for candidate variants at every location into a stream

of locations.
Stream parallelism is a programming paradigm supporting

the parallel execution of a stream of tasks by using a series

of sequential or parallel stages. A stream program can be

naturally represented as a graph of independent stages (kernels

or filters) that communicate over data channels.
Given a sequence x1, . . . , xk of input tasks, and a simple

form of a pipeline with three stages, the computation on

each single task xi is expressed as the composition of three

functions f , z and g, where the second stage (function z)

works on the results of the application of the first stage,

z(f(xi)), and the third stage applies the function g on the

output of the second stage: g(z(f(xi))).
In the general form, a pipeline with stages s1, . . . , sm

computes the output stream:

sm(sm−1(. . . s2(s1(xk)) . . .)),

. . . , sm(sm−1(. . . s2(s1(x1)) . . .))

Once a pipeline pattern is set up, more complex and interest-

ing behaviors (such as data parallel patterns or tasks farming)

can be nested as pipeline stages, which could lead to better

exploitation of the computing resources, maximizing efficiency

and drastically improving performance. For instance, the steps

that compose FreeBayes’ procedure express both sequential

and SIMD (Single Instruction Multiple Data) behaviors, which

can be modeled by nesting the proper patterns into the pipeline

stages. In Section III we describe our idea to tackle the

speeding up of the whole application.

D. Variant filtering module
The variant filtering step was performed as reported in [7].

Since the variants identified by the variant calling phase are

not annotated with respect to genes annotations, SNPeff [12]

is applied to annotate each variant. This algorithm provides to

each variant different useful information about their position

within a gene, discriminating by each protein-coding or non-

coding. Furthermore, for variants mapped in protein-coding se-

quences, this tool provides information about the variant effect

on the protein sequence and classifies each variant accordingly.

In the filtering module, annotated variants mapped in non-

coding regions (UTR, intergenic, intronic, or gene up/down

stream regions) were excluded. Mutation not affecting the

protein sequence (synonymous mutations) were also excluded.

Furthermore, all variants with reads supporting the alternate

allele < 5 or reads coverage < 30 were removed.

III. REFACTORING FREEBAYES

After profiling the application, we realized that most of the

execution time is devoted to the search of alleles on genomic

426

PosPos

Candidate Alleles

E C

W

W

W

Genotype prob

E C

W

W

W

Bayesian model

E C

W

W

W

Filter
targets

Output
record

Genome .BAM

.VCF �le

Fig. 4. FreeBayes modeled as a pipeline, whose stages may be task farms or sequential filters. Farms benefit from an emitter function that applies an
on-demand scheduling strategy to reduce the load unbalance, due to the high rate of discarded tasks at each step.

positions where target reads alignments are found. This stage

becomes more critical when no actual target is given, because

the whole genome has to be scanned in chunks in order to

find candidate variants.

FreeBayes is characterized by a considerable number of

branchings and nested loops, that repeatedly browse and

update data structures, and perform frequent I/O operations

on input datasets, namely genomic reference files and aligned

reads: this design limits the benefits that could derive from

compiler optimizations, thus hindering branch predictions and

loop nest optimizations that would help to take advantage of

data locality and hardware parallelism, provided by internal

hardware accelerators such as SSE/MMX.

In order to overcome this problem, we advocate a paral-

lelization schema that supports the concurrent processing of

different genomic regions, exploiting the computational power

of modern multi-core architectures for improving the overall

application performance. We deploy our solution using the

FastFlow framework [13], [14], that natively supports high-

level parallel programming patterns for working both on data

streams and static datasets, and exhibits an efficient lock-free
run-time support.

In order to achieve our goal, a deep re-engineering of the

code is required: we identified those phases that express a

data parallel behavior (such as loops where no data depen-

dency exists among processed items), and used FastFlow’s

ParallelFor to introduce loop-level parallelism when pos-

sible. This was possible by creating temporary thread-local

data structures, that help avoiding dangerous race conditions

that may happen when processing shared data structures in

parallel.

A pipeline pattern can be employed to model the consec-

utive steps of candidate alleles identification on each target

found in the aligned sequencing reads. Figure 4 illustrates

this behavior: chunks of genomic regions of fixed size are

dispatched to the very first stage of the pipeline, where they

are processed in order to find target aligned reads. Successful

targets are forwarded to the next stage, which is responsible

for finding candidate alleles on the given targets. The elected

tasks advance to the following stages: candidate genotype are

processed through the Bayesian model, and their result is

written to the output file.

The pipeline is designed so that each stage is composed

by a farm pattern, that permits to process in parallel different

items from the input stream. For instance, a farm stage is

equipped with an emitter function that builds “windows” of

items — stores items in a buffer up to a defined amount

— and dispatches them to the workers, where each worker

processes them in batch. The output of the farm passes through

a collector, which may further decorate the results of the

workers and forwards the results to the following stage of

the pipeline.

Since the ratio of the actually processed sites over the

total number of sites is generally rather small, load unbal-

ance among the workers is a concrete risk: the application

exhibits an irregular behavior in space and time, because for

each position there can be a different number of candidate

alleles and selected genotypes, that require different number

of iterations. Follows that the parallelization should support the

dynamic and active balancing of workload across the involved

cores. The emitters of the farms attempt to reduce the load

unbalance issue by applying an on-demand scheduling policy.

An important factor here is the appropriate concurrency

degree for the farm stages, which determines the number of

worker threads in each farm, and affects the overall concur-

rency degree. In general the sum of all the threads concurrently

active (pipeline stages + farms’ workers) should not exceed

the number of available cores. We took care of this requirement

by automatically adjusting the worker threads according to the

Positions

.VCF �le

Filter
targets

Candidate
alleles

Genotype
prob

model
Bayesian

Genome

record
Output

Time

.BAM

Tasks per stage

Fig. 5. Concurrent processing of multiple chunks of genomic regions: while
tasks advance through the pipeline stages, upcoming items from the input
streams are processed.

427

actual physical CPUs available in the underlying machine.

The execution time of every single phase involved in Free-

Bayes’ pipeline is far from being computationally expensive:

the whole application is prevalently an I/O bound problem, due

to frequent accesses to datasets and the continuous updates of

data structures, and the overall execution time grows linearly

with the size of the inputs. The pipeline pattern does not

explicitly solve this problem, but permits to efficiently exploit

the full computation capabilities of the underlying platform

by working concurrently on several genomic regions. This

solution concretely helps in reducing the execution time.

In Figure 5, while tasks advance through the pipeline stages,

upcoming genome positions (i.e., fixed size chunks) from the

genomic reference are dispatched to the first stage of the

pipeline and processed, overlapping the execution of other

stages: while the first stage filters the input items until it finds

target aligned reads, the second stage buffers successful targets

and dispatches them to workers for finding candidate alleles

on the given targets. Likewise, the subsequent stages operate

over previous stages output, until it writes positions putatively

polymorphic in Variant Call File (VCF) format.

IV. VARIANT DETECTION ON WES DATA

ParallNormal was applied on 10 Whole-Exome Sequencing

(WES) from PRJNA2895502. These data were generated from

experiments performed on Pancreatic Ductal AdenoCarcinoma

(PDAC) samples, lacking of matched normal tissue sam-

ples. Fastq files were downloaded from European Nucleotide

Archive (ENA), study accession PRJNA289550.

A. Analysis control

As positive control for the analysis, we considered the

mutations of three genes well-known to be altered in PDAC:

KRAS, TP53, and SMAD4. For each gene the two most

common mutations associated to PDAC were used by selecting

the annotations of COSMIC v83 database [15].

The set of variants identified by analyzing the same datasets

using the matched normal samples were retrieved from CBio-
Portal [16] and used for the comparison of our results.

ID Gene name Protein mutation Genomic mutation Genomic Position
KRAS 1 KRAS p.G12D c.35G>A 12:25245350..25245350
KRAS 2 KRAS p.G12V c.35G>T 12:25245350..25245350
TP53 1 TP53 p.R175H c.524G>A 17:7675088..7675088
TP53 2 TP53 p.R273H c.818G>A 17:7673802..7673802

SMAD4 1 SMAD4 p.R361H c.1082G>A 18:51065549..51065549
SMAD4 2 SMAD4 p.R361C c.1081C>T 18:51065548..51065548

TABLE I
LIST OF THE GENOMIC VARIANTS ANALYZED

V. RESULTS

To test the efficiency of our pipeline in the variant calling in

unmatched samples, were run it on 10 WES datasets of pan-

creatic cancers. The detection of six true positive variants was

evaluated by comparing the results obtained using matched

samples.

2http://www.ebi.ac.uk/ena/data/view/PRJNA289550

ParallNormal analyses were run on a Linux server equipped

with 2 12-core AMD Opteron 6176 SE (48 Hyper-Threads)

2.3GHz, with 12 MiB L3 cache and 512 GiB of main memory,

running Linux x86 64. We used ten threads for the preprocess-

ing, reads alignment and correction steps. The average dataset

sizes was of 6.06 GiB. As reported in [7], the computing time

of the FreeBayes analysis was high, with an average of 14.46

hours per sample analyzed.

As reported in Table II, with our pipeline, we were able

to detect most of the true positive variants identified in the

matched analysis. In only one sample, one KRAS mutation

was not identified. Furthermore, none false positive calls of

the six analyzed variants was observed.

ID Matched analysis ParallNormal (TP) ParallNormal (FP) ParallNormal (FN)
KRAS 1 3 3/3 0 0
KRAS 2 5 4/5 0 1
TP53 1 0 0 0 0
TP53 2 1 1/1 0 0

SMAD4 1 1 1/1 0 0
SMAD4 2 0 0 0 0

TABLE II
NUMBER OF SAMPLES POSITIVE TO A SPECIFIC VARIANTS AS DEFINED BY

THE MATCHED ANALYSIS, AND THE UNMATCHED ANALYSIS PERFORMED

WITH PARALLNORMAL. FOR THE UNMATCHED ANALYSES THE NUMBER

OF TRUE POSITIVE (TP), FALSE POSITIVE (FP), AND FALSE NEGATIVE

(FN) VARIANT CALLS ARE REPORTED

VI. CONCLUSION

Despite the use of NGS data in clinic studies is more and

more diffuse, different challenges have yet to be address [17].

Efficient computational pipelines are nowadays pivotal to fill

the gap between NGS data generation and their summarization

in information relevant to the clinic. In the definition of an

analysis pipeline, the optimization of its accuracy and its

efficiency is mandatory to rapidly extract precise NGS-based

information about a patient genome.

For clinical purposes, a NGS data-analysis pipeline must

be designed based on the biological problem investigated,

and it must be accurate and efficient [9]. The ParallNormal

pipeline presented in this work was designed to address these

characteristics, in the context of unmatched variant discovery

analysis of WES data of cancer samples. A limited number

of computational approaches exist to identify variants from

tumor-only WES data [3], [10]: to the best of our knowledge,

none of them is integrated within an analysis pipeline.

By comparing the variants identified with ParallNormal with

those from a matched analysis we observed a quite complete

overlap with only one false negative call. Conversely, for a

subset of patients, the same gene identified as not mutated

in the matched analysis was identified as harboring different

variants in our analysis. Indeed, despite our filtering strategy

allowed us to narrow down the number of candidate tumor

variants, further effort is needed to discriminate germline from

somatic variants using our pipeline. For this purpose, we

aim to implement a fourth integration module to exploit the

information about population frequency of a variant that is

collected in public genomic databases like dbSNP [18]. Using

428

these data, we will improve the discriminatory power in the

identification of tumor-specific variants.

In conclusion, in this work we presented a novel pipeline for

variant calling in unmatched samples, showing its efficiency

on a set of pancreatic cancer WES data. Our analysis was

able to accurately identify cancer-related variants, but it was

characterized by poor performances in term of computational

costs and execution time. One bottleneck of the analysis was

represented by the variant calling step performed with Free-

Bayes. After a deep study of the FreeBayes source code, we

studied a basic refactoring of its algorithm: by streamlining the

detection of candidate alleles, we can concurrently calculate

the probability of variants at several genomic regions.

The novel version of FreeBayes is a work in progress: the

original sequential application needs to be deeply re-designed

in light of the studies presented in Section III. While we

have some promising preliminary results, the refactoring still

requires tunings and further evaluations, which leaves room

for further improvements.

Beside this, we are currently implementing a novel filter-

ing method based on integrative analysis of public genomic

databases. We plan to test ParallNormal on a largest cohort of

samples, and to provide the whole pipeline as a Docker image,

that would facilitate its distribution and installation.

ACKNOWLEDGEMENT

This work has been supported by Lega Italiana per La Lotta

contro i Tumori (LILT).

REFERENCES

[1] S. Chakravorty and M. Hegde, “Gene and variant annotation for
mendelian disorders in the era of advanced sequencing technologies,”
Annual Review of Genomics and Human Genetics, no. 0, 2017.

[2] R. Nielsen, J. S. Paul, A. Albrechtsen, and Y. S. Song, “Genotype
and snp calling from next-generation sequencing data,” Nature Reviews
Genetics, vol. 12, no. 6, pp. 443–451, 2011.

[3] S. Hiltemann, G. Jenster, J. Trapman, P. van der Spek, and A. Stubbs,
“Discriminating somatic and germline mutations in tumor dna samples
without matching normals,” Genome research, vol. 25, no. 9, pp. 1382–
1390, 2015.

[4] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire,
C. Hartl, A. A. Philippakis, G. Del Angel, M. A. Rivas, M. Hanna,
et al., “A framework for variation discovery and genotyping using
next-generation dna sequencing data,” Nature genetics, vol. 43, no. 5,
pp. 491–498, 2011.

[5] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, and R. Durbin, “The sequence alignment/map
format and samtools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079,
2009.

[6] E. Garrison and G. Marth, “Haplotype-based variant detection from
short-read sequencing,” arXiv preprint arXiv:1207.3907, 2012.

[7] S. Sandmann, A. O. De Graaf, M. Karimi, B. A. Van Der Reijden,
E. Hellström-Lindberg, J. H. Jansen, and M. Dugas, “Evaluating variant
calling tools for non-matched next-generation sequencing data,” Scien-
tific Reports, vol. 7, p. 43169, 2017.

[8] S. Hwang, E. Kim, I. Lee, and E. M. Marcotte, “Systematic comparison
of variant calling pipelines using gold standard personal exome variants,”
Scientific reports, vol. 5, 2015.

[9] A. S. Gargis, L. Kalman, D. P. Bick, C. Da Silva, D. P. Dimmock,
B. H. Funke, S. Gowrisankar, M. R. Hegde, S. Kulkarni, C. E. Mason,
et al., “Good laboratory practice for clinical next-generation sequencing
informatics pipelines,” Nature biotechnology, vol. 33, no. 7, pp. 689–
693, 2015.

[10] K. S. Smith, V. K. Yadav, S. Pei, D. A. Pollyea, C. T. Jordan, and
S. De, “Somvarius: somatic variant identification from unpaired tissue
samples,” Bioinformatics, vol. 32, no. 6, pp. 808–813, 2015.

[11] H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows–wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–
1760, 2009.

[12] P. Cingolani, A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang,
S. J. Land, X. Lu, and D. M. Ruden, “A program for annotating and
predicting the effects of single nucleotide polymorphisms, snpeff: Snps
in the genome of drosophila melanogaster strain w1118; iso-2; iso-3,”
Fly, vol. 6, no. 2, pp. 80–92, 2012.

[13] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “Fastflow:
high-level and efficient streaming on multi-core,” in Programming Multi-
core and Many-core Computing Systems (S. Pllana and F. Xhafa, eds.),
Parallel and Distributed Computing, ch. 13, Wiley, 2017.

[14] F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. Liò, I. Merelli,
M. Torquati, and M. Aldinucci, “NuChart-II: the road to a fast and
scalable tool for Hi-C data analysis,” International Journal of High
Performance Computing Applications, pp. 1–16, 2016.

[15] S. A. Forbes, D. Beare, H. Boutselakis, S. Bamford, N. Bindal, J. Tate,
C. G. Cole, S. Ward, E. Dawson, L. Ponting, et al., “Cosmic: somatic
cancer genetics at high-resolution,” Nucleic acids research, vol. 45,
no. D1, pp. D777–D783, 2016.

[16] J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S. O. Sumer,
Y. Sun, A. Jacobsen, R. Sinha, E. Larsson, et al., “Integrative analysis
of complex cancer genomics and clinical profiles using the cbioportal,”
Science signaling, vol. 6, no. 269, p. pl1, 2013.

[17] G. Bertier, M. Hétu, and Y. Joly, “Unsolved challenges of clinical whole-
exome sequencing: a systematic literature review of end-users? views,”
BMC medical genomics, vol. 9, no. 1, p. 52, 2016.

[18] S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M.
Smigielski, and K. Sirotkin, “dbsnp: the ncbi database of genetic
variation,” Nucleic acids research, vol. 29, no. 1, pp. 308–311, 2001.

429

