View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Institutional Research Information System University of Turin

26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

ParallNormal: an efficient variant calling pipeline for unmatched
sequencing data

Laura Follial»?3, Fabio Tordini!, Simone Pernice!,
Greta Romano', Giulia Beatrice Piaggeschi

Abstract—Nowadays, next generation sequencing is closer to
clinical application in the field of oncology. Indeed, it allows the
identification of tumor-specific mutations acquired during cancer
development, progression and resistance to therapy. In parallel
with an evolving sequencing technology, novel computational
approaches are needed to cope with the requirement of a rapid
processing of sequencing data into a list of clinically-relevant
genomic variants.

Since sequencing data from both tumeors and their matched
normal samples are not always available (unmatched data), there
is a need of a computational pipeline leading to variants calling
in unmatched data. Despite the presence of many accurate and
precise variant calling algorithms, an efficient approach is still
lacking. Here, we propose a parallel pipeline (ParallNormal)
designed to efficiently identify genomic variants from whole-
exome sequencing data, in absence of their matched normal.
ParallNormal integrates well-known algorithms such as BWA
and GATK, a novel tool for duplicate removal (DuplicateRemove),
and the FreeBayes variant calling algorithm. A re-engineered
implementation of FreeBayes, optimized for execution on modern
multi-core architectures is also proposed.

ParallNormal was applied on whole-exome sequencing data
of pancreatic cancer samples without considering their matched
normal. The robustness of ParallNormal was tested using results
of the same dataset analyzed using matched normal samples
and considering genes involved in pancreatic carcinogenesis. Our
pipeline was able to confirm most of the variants identified using
matched normal data.

[. INTRODUCTION

Next Generation Sequencing (NGS) is extensively used
in the field of oncology to identify genetic variants that
leads to differences in an individual’s phenotype, trait or
risk of developing a disease [1]. Indeed, NGS is applied
to identify genetic variants in cancer, in research settings
and increasingly in clinical settings for molecular diagnostics
and therapy decision. Genetic variants can include Single
Nucleotide Polymorphisms (SNPs), difference in a single base
pair from a reference, insertions and deletions (indels) of
multiple nucleotides, and/or structural variants including, copy
number variants, inversions and translocations.

In parallel with an evolving sequencing technology, novel
computational approaches are needed to cope with the re-
quirement of a rapid processing of sequencing data into a
list of clinically-relevant genomic variants (variant calling).

IComputer Science Department, University of Turin, Italy

2Center for Experimental Research and Medical Studies (CeRMS), Italy

3Molecular Biotechnology and Health Sciences Department, University of
Turin Italy

4Jtalian Institute for Genomic Medicine (IIGM), Italy

5Clinical and Biological Sciences Department, University of Turin, Italy

0-7695-6380-5/18/$31.00 ©2018 IEEE
DOI 10.1109/PDP2018.2018.00074

423

1

1,4 1,5

and Giulio Ferrero

Variant calling tools are widely used with the aim of iden-
tifying genetic variants using NGS data [2]. The most used
class of variant calling tools is called probabilistic methods.
These methods use a genotype likelihood framework based on
Bayesian probability approach.

Bayes’ Theorem describes the probability of each genotype
being the correct genotype considering the analyzed data (NGS
reads), in terms of the prior probabilities of each possible
genotype, and the probability distribution of the data taking
into account each possible genotype. Prior information, such as
patterns of linkage disequilibrium (i.e. a measure of how often
two alleles or specific sequences are inherited together), are
joined with other information such as errors in base calling and
alignment score, to provide a statistical measure of uncertainty.

Some probabilistic variant calling tools are defined as
haplotype-based approaches, since the genotype likelihood is
estimated by considering different genomic variants mapped
in a specific genomic region of interest as not independent
from each other.

To properly identify tumor-specific variants most of these
tools rely on a matched analysis between tumor and normal
samples. However, sequencing data from both tumors and their
matched normal samples are not always available (unmatched
data), usually due to the lack of biological samples. To
cope with this problem, biologists relied on public mutation
databases or alternatively they used in-house normal genomes
to filter the set of variants which are specific of a tumor
sample. Currently, mutation databases have been updated and
they contains a huge amount of mutation data giving rise to
the necessity of tools and software that support researchers
in filtering mutations [3]. For this reason there is a need of
a computational pipeline which is not only efficient in the
analysis of data but also leading to variants calling user tumor
data without associated normal tissue.

Nowadays, several variant calling tools are available to
analyze tumor samples without the corresponding normal
samples. Genome Analysis Toolkit (GATK) [4], SAMtools [5]
and FreeBayes [6], for example, are based on a probabilistic
approach and they are able to analyze NGS-data to derive
genetic variants from the sample under analysis (e.g. tumor
sample) without the healthy counterpart.

Several studies have been conducted in order to evaluate
tool performance w.r.t. their ability to call SNPs and short
indels with allelic frequencies as low as 1% in matched or
non-matched NGS data [7], [8]. However they reported several
disagreements among variant calls made by different pipelines,
suggesting a need for more careful interpretation of called

https://core.ac.uk/display/302168425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

variants.

Moreover, sequencing raw data need to be pre-processed
and corrected before variant calling analysis [9]. In particular
it is necessary to remove duplicates from the raw reads, map
the reads to the reference genome through mapping algorithm
and correct read alignments with specific tool. Technically,
variant calling is the last and more critical step that needs to
be more precise and accurate as possible. For these reasons,
the output of a variant calling tool is strictly dependent from
the pre-processed input data.

Despite different algorithms having been proposed to iden-
tify variants in absence of normal control [3], [10], at the
best of our knowledge none of these tools is integrated in a
complete analysis pipeline with pre- and post-processing steps
of the raw data.

In this paper we present a novel computational pipeline
called ParallNormal, designed for the first time to efficiently
identify a set of genomic variants in unmatched samples.
In Section II we describe the main computational modules
composing the pipeline. In Section III we highlight the key
features required to derive an easy porting of the variant calling
module on a multi-core platform. In Section IV we discuss
the application of ParallNormal on Whole-Exome Sequencing
(WES) data of pancreatic cancer samples, without considering
their matched normal. Section V presents the results of the
whole pipeline while Section VI provides an evaluation of
our pipeline, discusses the obtained results and concludes this
work.

II. METHODS

Haplotype-based variant detection methods identify
germline variations in and individual’s genome. Germline
variants are DNA variations coming from germ cells (ovum
and sperm) and they could be inherited by the offspring.
Very often, these variants occur with a certain frequency
throughout the population — as it is the case for SNPs — and
require determining the individual’s genotype at each genomic
region. This process normally involves a number of steps,
among which: 1) pre-processing NGS reads; 2) aligning reads
to a reference genome; 3) likelihood of variation estimation at
each genomic region; 4) filtering results and SNP annotation.

As reported in Figure 1, ParallNormal adheres to this
schema, and is composed of four main analysis modules:

1)

2)

3)

4)

reads pre-processing;

reads alignment and alignment correction;
variant calling;

variant filtering.

A. Reads preprocessing module

Sequencing reads are quality controlled using FastQC' and
de-duplicated using an in-house algorithm called DuplicateR-
emove. Read de-duplication is required to avoid biases, which
are caused by the non-uniform rate of sequence amplification
by PCR reaction, performed during NGS library preparation.

Uhttp://www.bioinformatics.babraham.ac.uk/projects/fastqc

424

PRE-PROCESSING Raw Reads

FastQC, DuplicateRemove l

De-duplicated Reads

<

/" ALIGNMENT BWA |
Read alignments

IndelRealigner, BaseRecaIibratori

Corrected alignments/

\

VARIANT CALLING

T

FreeBayes l

Called variants

T

SnpEff |

<

/VARIANT FILTERING

Annotated variants

Filtering scriptsl

Candidate variants

\

Fig. 1. Flow chart representing the ParallNormal analysis pipeline with a
detail on its analysis modules. On each arrow, the algorithms applied in each
analysis step are reported.

DuplicateRemove applies a filtering step by comparing the
k-mer sub-sequences composing each input read, and reads
composed of the same k-mer composition are removed. The
effect of DuplicateRemove on read alignment rates was ver-
ified by comparing the fraction of reads aligned before and
after the filtering step (Figure 2). As reported in the box plot
depicted in the Figure 2, using the non-parametric Wilcoxon
signed-rank test no statistically significant differences were
found between the number of reads before and after removing
duplicates with a p — value = 0.4287 for mapped reads and
a p — value = 0.5145 for properly paired reads.

B. Reads alignment module

In this module pre-processed reads are aligned against
the reference genome using BWA [11]. BWA is a Burrows-
Wheeler Transform (BWT) based method that uses a string
matching approach to create a space-efficient index of the
reference genome to facilitate rapid searching. BWA was
selected since it outperformed similar algorithms in variant
calling pipeline [8]. Each read alignment is converted in BAM
(Binary Alignment/Map) format, sorted, and indexed using
SAMtools [5].

Before the variant calling phase, read alignments are pro-
cessed to avoid biases and false positive variant calls. Initially,
reads groups and sample information were added using Picard
AddOrReplaceReadGroups with standard parameters. Picard is
a set of command line tools designed to manipulate sequencing
data and formats (i.e. BAM files). This step is performed to

Duplicate Remove

00—

S o8 — —

& 9 : — ==

8 o4 :

= | ? i
o o o o
pos 3 = =3
=] h=) - o
['¥] [@ [
] [m]] [m]
o o
= =

Fig. 2. Box plots illustrating the comparison between mapped and properly
paired reads before and after removing duplicates.

know if certain reads were sequenced together on a specific
lane, in order to compensate for technical variability among
sequencing runs. In this way, all reads within a read group
are assumed to come from the same NGS run and share the
same error model. Then, read alignments are corrected using
three different tools implemented in GATK [4]: RealignerTar-
getCreator, IndelRealigner, and BaseRecalibrator.

RealignerTargetCreator and IndelRealigner are applied
since misalignment in proximity of indels is a source of error
during variant calling. Despite reads may be aligned during
the alignment step, their position may be shifted due to the
presence of an indel. This shift can introduce false-positive
calls in the region close to the variant. For this reason Re-
alignerTargetCreator is used to create a subset of reads which
are mapped in this context and then a local realignment is
performed by IndelRealigner in order to minimize the number
of mismatching bases. The base quality score recalibration is
performed because the estimation provided by the sequencing
machines are often inaccurate and it may not reflect the true
base-calling error rate. Then, BaseRecalibrator implemented
in GATK is applied to assign an empirically accurate error
model to each bases of the aligned reads. The output of this
second correction step is a BAM file ready for the variant
calling phase.

C. Variant calling module: FreeBayes

FreeBayes [7] is a Bayesian genetic variant detector de-
signed to find SNPs, indels, and complex events. It is a
haplotype-based variant detector, and uses the actual sequences
of reads aligned to a target genomic region to call variants.
FreeBayes uses short-read alignments for any number of
individuals from a population, and a reference genome to
determine the most-likely combination of genotypes for the
population at each position in the reference. It then reports
resulting variants in Variant Call File (VCF) format.

From a mathematical point of view, FreeBayes is based
on a Bayesian model that estimates the probability to find
variants at a given genomic region. Specifically, Bayesian
inference methods produce probabilistic classifications that
combine new information derived from the observations with
preexisting models (priors) that are derived from knowledge.
When Bayesian models are applied to genomics, the genome

425

that we are interested in is modeled to derive allele frequencies
and prior estimates of the distribution of genotype, and then
incorporate read evidence from the observations by estimating
how likely it is that a given set of reads is derived from each
one of our potential genotypes, for each sample.

The basic idea follows directly from the Bayes theorem:

P(Data|Genotype)P(Genotype)
P(Data)

P(Genotype|Data) =

ey

Where:

o P(Genotype|Data) is the probability to obtain a geno-
type given a set of observations;
P(Data|Genotype) explains how likely it would be
to see a given set of observations given a particular
underlying genotype;
P(Genotype) represents the prior likelihood of observ-
ing a specific genotype combination;
P(Data) is the probability to see a given set of obser-
vations.

In this section we will briefly show the mathematical
foundations behind this algorithm. We refer to [6] for a more
detailed study on how these probabilities are calculated.

At a given genomic region, we have n samples drawn from
a population, each of which has a genotype GG; comprised
of k; distinct alleles b;,,...,by,. Considering a set of s;
sequencing observations 7, ..., 1, = R; for each sample
i =1,...,n, then to genotype the samples we could apply
a Bayesian statistic relating P(G;|R;) to the likelihood of
sequencing errors in analized reads, and the prior likelihood
of specific genotypes. So the equation 1 becomes

_ P(R;|Gy)P(G)
B P(R;)

This means that given a set of sequencing observations and
data likelihoods P(R;|G;), for each sample 7, and the possible
genotype derived from the putative alleles, we are able to
determine the probability of variants at the considered genomic
region. Specifically, a gradient ascent method is employed to
determine the maximum a posteriori estimate of a genotyping
over all samples under analysis, and to establish an estimate of
the probability that there exist variants in the genomic region.

This process begins at the genotyping across all sam-
ples G1,...,G, = {G}, where each sample genotype is
the maximum likelihood genotype given the data likelihood
P(R;|G;). Then the algorithm starts to iterate starting from the
genotyping {G} estimated in the previous step, and attempts
to find a genotyping G4, ..., Gl = {G’'} such that:

P(G;|R;) 2)

P{G'}|R1,...,Ry) > P{G} Ry,...,Ry),

and this search iterates until the convergence is reached.

In the end, provided a maximum a posteriori estimate of
the genotyping of all samples, it is established an estimate of
the quality of the genotyping. To do that, it is estimated the

Genomic

Sequence Candidate

variants
Haplotypes,

Read
alignments
Bayesian
model
Find the
genotype

Output record

1 91dWYS

Genotype
likelihoods
position

position

position

Fig. 3. For each position in the reference genome, FreeBayes detects candidate
variants and determines genotypes over a set of samples

probability that the number of distinct alleles at the genomic
region K is greater than 1, that is:

P(K > 1|Ry,...,Rp).

As exemplified in Figure 3, for each position in the reference
genome FreeBayes looks for target read alignments, detects
candidate variants and determines all possible genotype alleles
for a set of samples. Then, using the Bayesian inference
method described above, it derives prior estimates of the
distribution of genotypes and allele frequencies, and then
incorporate read evidence by estimating how likely a given set
of reads is derived from each one of our potential genotypes.

Benchmark analysis showed that FreeBayes performs well
in a variant calling process, in absence of paired controls [7],
but the algorithm is strongly affected by an overall poor
performance, in terms of computational costs and analysis
time.

FreeBayes is written as a C++ sequential application, which
does not take advantage of the computational power of modern
multi-core architectures. It uses genome indexes for direct
access to genomic regions, and properly handles aligned
reads using external libraries, which helps maintaining a low
memory footprint. This is a valuable feature considering the
size of the input datasets, that reach several Gigabytes in our
experiments.

Authors proposed a workaround to improve such perfor-
mance bottleneck: a wrapper that permits to run several
FreeBayes instances, in parallel, over smaller equally-sized
genome regions. This solution produces a sort of Map+Reduce
behavior, where partial results are merged into a single final
output.

While this approach helps reducing the execution time, we
found it quite cumbersome because it makes use of external
tools and hard-coded scripts to manage genome partitioning
and task execution. Nonetheless, computational time is still
considerable, the wrapping scripts are not easily portable and
require some fixings in order to be usable.

426

FreeBayes work-flow can be modeled as a pipeline pattern,
i.e. a functional partitioning of a sequential code that is divided
into multiple steps (or stages), executed concurrently onto
different consecutive items of an input stream: tasks can start,
run, and complete in overlapping time periods. In this way, the
whole process can be largely optimized by transforming the
search for candidate variants at every location into a stream
of locations.

Stream parallelism is a programming paradigm supporting
the parallel execution of a stream of tasks by using a series
of sequential or parallel stages. A stream program can be
naturally represented as a graph of independent stages (kernels
or filters) that communicate over data channels.

Given a sequence x1, ...,z of input tasks, and a simple
form of a pipeline with three stages, the computation on
each single task x; is expressed as the composition of three
functions f, z and g, where the second stage (function z)
works on the results of the application of the first stage,
2(f(z;)), and the third stage applies the function g on the
output of the second stage: g(z(f(x;))).

In the general form, a pipeline with stages si,...
computes the output stream:

75m

Sm(Sm—1(...s2(s1(x))...)),
coy Sm(Sm—1(. .. s2(s1(21)) . ..))

Once a pipeline pattern is set up, more complex and interest-
ing behaviors (such as data parallel patterns or tasks farming)
can be nested as pipeline stages, which could lead to better
exploitation of the computing resources, maximizing efficiency
and drastically improving performance. For instance, the steps
that compose FreeBayes’ procedure express both sequential
and SIMD (Single Instruction Multiple Data) behaviors, which
can be modeled by nesting the proper patterns into the pipeline
stages. In Section III we describe our idea to tackle the
speeding up of the whole application.

D. Variant filtering module

The variant filtering step was performed as reported in [7].
Since the variants identified by the variant calling phase are
not annotated with respect to genes annotations, SNPeff [12]
is applied to annotate each variant. This algorithm provides to
each variant different useful information about their position
within a gene, discriminating by each protein-coding or non-
coding. Furthermore, for variants mapped in protein-coding se-
quences, this tool provides information about the variant effect
on the protein sequence and classifies each variant accordingly.
In the filtering module, annotated variants mapped in non-
coding regions (UTR, intergenic, intronic, or gene up/down
stream regions) were excluded. Mutation not affecting the
protein sequence (synonymous mutations) were also excluded.
Furthermore, all variants with reads supporting the alternate
allele < 5 or reads coverage < 30 were removed.

III. REFACTORING FREEBAYES

After profiling the application, we realized that most of the
execution time is devoted to the search of alleles on genomic

Genome .BAM

2 B

Candidate Alleles

Filter

targets

Genotype prob

Bayesian model

Output
record

.VCF file

Fig. 4. FreeBayes modeled as a pipeline, whose stages may be task farms or sequential filters. Farms benefit from an emitter function that applies an
on-demand scheduling strategy to reduce the load unbalance, due to the high rate of discarded tasks at each step.

positions where target reads alignments are found. This stage
becomes more critical when no actual target is given, because
the whole genome has to be scanned in chunks in order to
find candidate variants.

FreeBayes is characterized by a considerable number of
branchings and nested loops, that repeatedly browse and
update data structures, and perform frequent I/O operations
on input datasets, namely genomic reference files and aligned
reads: this design limits the benefits that could derive from
compiler optimizations, thus hindering branch predictions and
loop nest optimizations that would help to take advantage of
data locality and hardware parallelism, provided by internal
hardware accelerators such as SSE/MMX.

In order to overcome this problem, we advocate a paral-
lelization schema that supports the concurrent processing of
different genomic regions, exploiting the computational power
of modern multi-core architectures for improving the overall
application performance. We deploy our solution using the
FastFlow framework [13], [14], that natively supports high-
level parallel programming patterns for working both on data
streams and static datasets, and exhibits an efficient lock-free
run-time support.

In order to achieve our goal, a deep re-engineering of the
code is required: we identified those phases that express a
data parallel behavior (such as loops where no data depen-
dency exists among processed items), and used FastFlow’s
ParallelFor to introduce loop-level parallelism when pos-
sible. This was possible by creating temporary thread-local
data structures, that help avoiding dangerous race conditions
that may happen when processing shared data structures in
parallel.

A pipeline pattern can be employed to model the consec-
utive steps of candidate alleles identification on each target
found in the aligned sequencing reads. Figure 4 illustrates
this behavior: chunks of genomic regions of fixed size are
dispatched to the very first stage of the pipeline, where they
are processed in order to find target aligned reads. Successful
targets are forwarded to the next stage, which is responsible
for finding candidate alleles on the given targets. The elected
tasks advance to the following stages: candidate genotype are
processed through the Bayesian model, and their result is
written to the output file.

The pipeline is designed so that each stage is composed
by a farm pattern, that permits to process in parallel different

427

items from the input stream. For instance, a farm stage is
equipped with an emitter function that builds “windows” of
items — stores items in a buffer up to a defined amount
— and dispatches them to the workers, where each worker
processes them in batch. The output of the farm passes through
a collector, which may further decorate the results of the
workers and forwards the results to the following stage of
the pipeline.

Since the ratio of the actually processed sites over the
total number of sites is generally rather small, load unbal-
ance among the workers is a concrete risk: the application
exhibits an irregular behavior in space and time, because for
each position there can be a different number of candidate
alleles and selected genotypes, that require different number
of iterations. Follows that the parallelization should support the
dynamic and active balancing of workload across the involved
cores. The emitters of the farms attempt to reduce the load
unbalance issue by applying an on-demand scheduling policy.

An important factor here is the appropriate concurrency
degree for the farm stages, which determines the number of
worker threads in each farm, and affects the overall concur-
rency degree. In general the sum of all the threads concurrently
active (pipeline stages + farms’ workers) should not exceed
the number of available cores. We took care of this requirement
by automatically adjusting the worker threads according to the

Positions Tasks per stage
Genome
DD [Filter
22 (@) DDRDD

.BAM

DODD

DD
DD
DD

Time

Candidate
alleles
Genotgpe
prol
Bayesian
model
Output
record

.VCF file L
F

Fig. 5. Concurrent processing of multiple chunks of genomic regions: while
tasks advance through the pipeline stages, upcoming items from the input
streams are processed.

actual physical CPUs available in the underlying machine.

The execution time of every single phase involved in Free-
Bayes’ pipeline is far from being computationally expensive:
the whole application is prevalently an I/O bound problem, due
to frequent accesses to datasets and the continuous updates of
data structures, and the overall execution time grows linearly
with the size of the inputs. The pipeline pattern does not
explicitly solve this problem, but permits to efficiently exploit
the full computation capabilities of the underlying platform
by working concurrently on several genomic regions. This
solution concretely helps in reducing the execution time.

In Figure 5, while tasks advance through the pipeline stages,
upcoming genome positions (i.e., fixed size chunks) from the
genomic reference are dispatched to the first stage of the
pipeline and processed, overlapping the execution of other
stages: while the first stage filters the input items until it finds
target aligned reads, the second stage buffers successful targets
and dispatches them to workers for finding candidate alleles
on the given targets. Likewise, the subsequent stages operate
over previous stages output, until it writes positions putatively
polymorphic in Variant Call File (VCF) format.

IV. VARIANT DETECTION ON WES DATA

ParallNormal was applied on 10 Whole-Exome Sequencing
(WES) from PRINA289550. These data were generated from
experiments performed on Pancreatic Ductal AdenoCarcinoma
(PDAC) samples, lacking of matched normal tissue sam-
ples. Fastq files were downloaded from European Nucleotide
Archive (ENA), study accession PRINA289550.

A. Analysis control

As positive control for the analysis, we considered the
mutations of three genes well-known to be altered in PDAC:
KRAS, TP53, and SMAD4. For each gene the two most
common mutations associated to PDAC were used by selecting
the annotations of COSMIC v83 database [15].

The set of variants identified by analyzing the same datasets
using the matched normal samples were retrieved from CBio-
Portal [16] and used for the comparison of our results.

ID Gene name | Protein mutation | Genomic mutation Genomic Position

KRAS_I KRAS p.G12D c.35G>A 12:25245350..25245350
KRAS_2 KRAS p.GI2V ¢35G>T 12:25245350..25245350
TP53_1 TP53 p-R175H c.524G>A 17:7675088..7675088
TP53_2 TP53 p-R273H c.818G>A 17:7673802..7673802
SMAD4_1 SMAD4 p-R361H c.1082G>A 18:51065549..51065549
SMAD4_2 SMAD4 p-R361C c.1081C>T 18:51065548..51065548
TABLE I

LIST OF THE GENOMIC VARIANTS ANALYZED

V. RESULTS

To test the efficiency of our pipeline in the variant calling in
unmatched samples, were run it on 10 WES datasets of pan-
creatic cancers. The detection of six true positive variants was
evaluated by comparing the results obtained using matched
samples.

Zhttp://www.ebi.ac.uk/ena/data/view/PRINA289550

428

ParallNormal analyses were run on a Linux server equipped
with 2 12-core AMD Opteron 6176 SE (48 Hyper-Threads)
2.3GHz, with 12 MiB L3 cache and 512 GiB of main memory,
running Linux x86_64. We used ten threads for the preprocess-
ing, reads alignment and correction steps. The average dataset
sizes was of 6.06 GiB. As reported in [7], the computing time
of the FreeBayes analysis was high, with an average of 14.46
hours per sample analyzed.

As reported in Table II, with our pipeline, we were able
to detect most of the true positive variants identified in the
matched analysis. In only one sample, one KRAS mutation
was not identified. Furthermore, none false positive calls of
the six analyzed variants was observed.

Matched analysis | ParallNormal (TP) | ParallNormal (FP) | ParallNormal (FN)
3/3
475
0
1/1
1/1
0

c——cuw
cococococo
cococo~o

SMAD4_2

TABLE IT
NUMBER OF SAMPLES POSITIVE TO A SPECIFIC VARIANTS AS DEFINED BY
THE MATCHED ANALYSIS, AND THE UNMATCHED ANALY SIS PERFORMED
WITH PARALLNORMAL. FOR THE UNMATCHED ANALYSES THE NUMBER
OF TRUE POSITIVE (TP), FALSE POSITIVE (FP), AND FALSE NEGATIVE
(FN) VARIANT CALLS ARE REPORTED

VI. CONCLUSION

Despite the use of NGS data in clinic studies is more and
more diffuse, different challenges have yet to be address [17].
Efficient computational pipelines are nowadays pivotal to fill
the gap between NGS data generation and their summarization
in information relevant to the clinic. In the definition of an
analysis pipeline, the optimization of its accuracy and its
efficiency is mandatory to rapidly extract precise NGS-based
information about a patient genome.

For clinical purposes, a NGS data-analysis pipeline must
be designed based on the biological problem investigated,
and it must be accurate and efficient [9]. The ParallNormal
pipeline presented in this work was designed to address these
characteristics, in the context of unmatched variant discovery
analysis of WES data of cancer samples. A limited number
of computational approaches exist to identify variants from
tumor-only WES data [3], [10]: to the best of our knowledge,
none of them is integrated within an analysis pipeline.

By comparing the variants identified with ParallNormal with
those from a matched analysis we observed a quite complete
overlap with only one false negative call. Conversely, for a
subset of patients, the same gene identified as not mutated
in the matched analysis was identified as harboring different
variants in our analysis. Indeed, despite our filtering strategy
allowed us to narrow down the number of candidate tumor
variants, further effort is needed to discriminate germline from
somatic variants using our pipeline. For this purpose, we
aim to implement a fourth integration module to exploit the
information about population frequency of a variant that is
collected in public genomic databases like dbSNP [18]. Using

these data, we will improve the discriminatory power in the
identification of tumor-specific variants.

In conclusion, in this work we presented a novel pipeline for
variant calling in unmatched samples, showing its efficiency
on a set of pancreatic cancer WES data. Our analysis was
able to accurately identify cancer-related variants, but it was
characterized by poor performances in term of computational
costs and execution time. One bottleneck of the analysis was
represented by the variant calling step performed with Free-
Bayes. After a deep study of the FreeBayes source code, we
studied a basic refactoring of its algorithm: by streamlining the
detection of candidate alleles, we can concurrently calculate
the probability of variants at several genomic regions.

The novel version of FreeBayes is a work in progress: the
original sequential application needs to be deeply re-designed
in light of the studies presented in Section III. While we
have some promising preliminary results, the refactoring still
requires tunings and further evaluations, which leaves room
for further improvements.

Beside this, we are currently implementing a novel filter-
ing method based on integrative analysis of public genomic
databases. We plan to test ParallNormal on a largest cohort of
samples, and to provide the whole pipeline as a Docker image,
that would facilitate its distribution and installation.

ACKNOWLEDGEMENT

This work has been supported by Lega Italiana per La Lotta
contro i Tumori (LILT).

REFERENCES

S. Chakravorty and M. Hegde, “Gene and variant annotation for
mendelian disorders in the era of advanced sequencing technologies,”
Annual Review of Genomics and Human Genetics, no. 0, 2017.

R. Nielsen, J. S. Paul, A. Albrechtsen, and Y. S. Song, “Genotype
and snp calling from next-generation sequencing data,” Nature Reviews
Genetics, vol. 12, no. 6, pp. 443-451, 2011.

S. Hiltemann, G. Jenster, J. Trapman, P. van der Spek, and A. Stubbs,
“Discriminating somatic and germline mutations in tumor dna samples
without matching normals,” Genome research, vol. 25, no. 9, pp. 1382—
1390, 2015.

M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire,
C. Hartl, A. A. Philippakis, G. Del Angel, M. A. Rivas, M. Hanna,
et al., “A framework for variation discovery and genotyping using
next-generation dna sequencing data,” Nature genetics, vol. 43, no. 5,
pp. 491-498, 2011.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, and R. Durbin, “The sequence alignment/map
format and samtools,” Bioinformatics, vol. 25, no. 16, pp. 2078-2079,
2009.

E. Garrison and G. Marth, “Haplotype-based variant detection from
short-read sequencing,” arXiv preprint arXiv:1207.3907, 2012.

S. Sandmann, A. O. De Graaf, M. Karimi, B. A. Van Der Reijden,
E. Hellstrom-Lindberg, J. H. Jansen, and M. Dugas, “Evaluating variant
calling tools for non-matched next-generation sequencing data,” Scien-
tific Reports, vol. 7, p. 43169, 2017.

S. Hwang, E. Kim, I. Lee, and E. M. Marcotte, “Systematic comparison
of variant calling pipelines using gold standard personal exome variants,”
Scientific reports, vol. 5, 2015.

A. S. Gargis, L. Kalman, D. P. Bick, C. Da Silva, D. P. Dimmock,
B. H. Funke, S. Gowrisankar, M. R. Hegde, S. Kulkarni, C. E. Mason,
et al., “Good laboratory practice for clinical next-generation sequencing
informatics pipelines,” Nature biotechnology, vol. 33, no. 7, pp. 689—
693, 2015.

429

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

K. S. Smith, V. K. Yadav, S. Pei, D. A. Pollyea, C. T. Jordan, and
S. De, “Somvarius: somatic variant identification from unpaired tissue
samples,” Bioinformatics, vol. 32, no. 6, pp. 808-813, 2015.

H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows—wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754—
1760, 2009.

P. Cingolani, A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang,
S. J. Land, X. Lu, and D. M. Ruden, “A program for annotating and
predicting the effects of single nucleotide polymorphisms, snpeff: Snps
in the genome of drosophila melanogaster strain w1118; iso-2; iso-3,”
Fly, vol. 6, no. 2, pp. 80-92, 2012.

M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “Fastflow:
high-level and efficient streaming on multi-core,” in Programming Multi-
core and Many-core Computing Systems (S. Pllana and F. Xhafa, eds.),
Parallel and Distributed Computing, ch. 13, Wiley, 2017.

F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. Lio, 1. Merelli,
M. Torquati, and M. Aldinucci, “NuChart-1I: the road to a fast and
scalable tool for Hi-C data analysis,” International Journal of High
Performance Computing Applications, pp. 1-16, 2016.

S. A. Forbes, D. Beare, H. Boutselakis, S. Bamford, N. Bindal, J. Tate,
C. G. Cole, S. Ward, E. Dawson, L. Ponting, et al., “Cosmic: somatic
cancer genetics at high-resolution,” Nucleic acids research, vol. 45,
no. D1, pp. D777-D783, 2016.

J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S. O. Sumer,
Y. Sun, A. Jacobsen, R. Sinha, E. Larsson, et al., “Integrative analysis
of complex cancer genomics and clinical profiles using the cbioportal,”
Science signaling, vol. 6, no. 269, p. pll, 2013.

G. Bertier, M. Hétu, and Y. Joly, “Unsolved challenges of clinical whole-
exome sequencing: a systematic literature review of end-users? views,”
BMC medical genomics, vol. 9, no. 1, p. 52, 2016.

S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M.
Smigielski, and K. Sirotkin, “dbsnp: the ncbi database of genetic
variation,” Nucleic acids research, vol. 29, no. 1, pp. 308-311, 2001.

