
Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Green and Sustainable Chemistry
Selected hybrid photocatalytic materials for the
removal of drugs from water
M. Minella, D. Fabbri, P. Calza and C. Minero
The interest toward the development of hybrid photocatalytic
materials is exponentially grown in the last decade. In this
review, we summarize the current research progresses in the
production of hybrid materials, with a particular focus on
carbon based material coupled with titanium dioxide, photo-
biocatalysts, and their application in the removal of emerging
contaminants from water, i.e. pharmaceutical products. We
give some highlights on the key properties and features of
these advanced composites, the involved mechanisms and on
the potential hazards posed by these nanomaterials.
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Introduction
Since the discovery of the heterogeneous photocatalysis
the scientists focused their attention on innovative
strategies for increasing the overall process efficiency.

The most prominent drawback of the photocatalytic
process is the scarce efficiency, due to the imbalance
between the low kinetic of separation and transfer of the
photogenerated charge carriers (hole in the valence

band, hþvb, and electron in the conduction band, e�cb) and
the high kinetic of recombination in the bulk of the
semiconductor and/or mediated by surface species or
adsorbed molecules [1]. Unfortunately, for the main
stable and photoactive semiconductors, the scarce effi-
ciency is not compensated by high Visible absorption, as
the main semiconductors used in photocatalysis (TiO2,
WO3, ZnO.) absorb the UV fraction of the solar
spectrum only.

The synthesis of hybrid structures coupling semi-

conductors with one or more organic/inorganic phases
www.sciencedirect.com
have been proposed not only to increase the overall ef-
ficiency of the process, but also to visible-sensitized the
process itself [2e4].

With the term hybrid material we usually denote a ma-
terial formed by coupling two or more phases (inorganic
or carbon based) with features that are not the sum of
the properties of the single phases, but the result of the
synergistic interaction among them. The hybrid shows
properties specifically related to the close interaction
among the phases and to the peculiar features of the
interface properties.

In the last 10 years, the attention has been strongly

focused on the new possibilities that the photocatalytic
hybrid materials give to overcome the main drawbacks of
the photocatalytic process based on traditional materials
(see Figure 1 and its inset). It is manifest that the
studies on hybrid structures have reached a prominent
role in the field of photocatalysis, e.g. in the first months
of 2017 more than 50% of the publications related to
photocatalysis is directly or indirectly connected to
hybrid materials. Restricting the analysis to the use of
hybrid materials for the photo-assisted abatement of
pollutants (and limiting the analysis to the period from

2015 to present) it emerges that in more than 75% of the
articles in which the photocatalytic activity of an hybrid
materials has been tested, this evaluation was carried
out by using a single dye as standard substrate. Of the
remaining 25%, only a minimal fraction (2e3%) is
focused on the abatement of pharmaceutical products.

The main advantages of hybrid materials for photo-
catalytic applications are the following: 1) the presence
of a gradient of potential at the interface can in some
cases assist the separation of the photogenerated

charges in the proximity of the interface; 2) one of the
phases is usually able to absorb visible light; 3) some of
the most promising hybrid photocatalysts have high
adsorption properties due to their high surface area; 4)
the coupling of a second phase with a traditional semi-
conductor can promote an increment of the selectivity
of the process.

On the basis of the most general definition for hybrid
materials the principal types of hybrids proposed for
photocatalytic applications are:

1) homo- or hetero-materials composed by two or more
inorganic phases [5e7];
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Figure 1

Number of publications from 1978 to 2015 indexed with the key words
Photocatalysis and TiO2 (A) and with Hybrid materials and Photo-
catalysis and TiO2 (B). Insert: ratio B/A as a function of the publication
years. Source: Scopus, March 2017.
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2) inorganic semiconductors coupled with carbon-based
materials (CBMs) such as graphene (GR) [8e10],
graphene oxide (GO) [11,12], reduced graphene
oxide (rGO) [13e15], single or multiwalls carbon
nanotubes (CNTs) [16e18], carbon quantum dots
[19], carbon nano-horns [20] and fullerenes [21,22];

3) inorganic semiconductors hybridized with innovative
2D materials such as graphitic-carbon nitride (g-
C3N4) [23e25] or boron nitride (BN) [26];

4) photocatalysts composed by inorganic semi-
conductor/polymer nano-hybrids [2];

5) inorganic semiconductors surface-functionalized
with species able to visible-sensitizing the photo-
catalyst [27], increase the photocatalytic process
selectivity (e.g. TiO2/enzymes [28]) or increment
the adsorption of the materials toward selected
classes of molecules [29].
Focusing on the class of hybrids coupling TiO2 and
graphene (or graphene-like structures), it is possible to
divide the materials in two classes (here defined as A
and B). Class A includes all the materials in which the
semiconductor is synthesized in situ on graphene (e.g.

graphene nanoplatelets, eventually functionalized with
eCOOH or eNH2 moieties, can be used as nucleation
sites for TiO2 particles), while Class B contains the
hybrids in which graphene is typically synthesized on
pre-existing semiconductor particles by reduction of
adsorbed GO (e.g. by thermal annealing, photocatalyti-
cally, chemically with hydrazine.).

In the light of the impressive number of studies
regarding the photocatalytic properties of hybrid
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systems, this short review is focused on a restricted
subgroup of materials. The attention is devoted to TiO2-
based hybrids avoiding the analysis of alternative inor-
ganic semiconductor-based materials which usually have
lower efficiency than TiO2-based hybrids. Furthermore,
we did not consider the fully inorganic hybrid systems
focusing the attention on the organic/inorganic materials
only. Finally, we restricted our analysis to the use of

these for the abatement of organic bio-recalcitrant pol-
lutants reporting some case studies about drugs removal,
excluding the impressive amount of articles focused on
the decoloration of dyes because the too widespread
practice of testing the photocatalytic materials toward a
dye only creates problems of interpretation. It is true
that the organic dyes are among the largest group of
pollutants discharges from the industries, but their
operational transformation mechanism under irradiated
hybrid systems (primarily a visible sensitized photo-
bleaching promoted by the injection of electrons from

dye excited states towards delocalized and empty states
of the hybrid) can be quite different with respect to a
pure photocatalytic process. Consequently, as recently
demonstrated in Ref. [30], this approach cannot give
informative indications about the real photocatalytic
efficiency of the material.
TiO2/CBM hybrid materials applied to drugs
removal
Different processes occur during the photo-activated
degradation of a pollutant in the presence of nano-
photocatalysts coupling TiO2 and a narrower band gap
CBM. CBM is easily excited under visible light despite
of TiO2 that requests hn � 360 nm. Electrons and holes
generated (in CMB and/or TiO2 as a function of the
irradiation) can migrate through the interface and react
at the surface and/or recombine (in the bulk, at the

interface or at the surface). The direction of transfer of
the photogenerated charges as well as the place in which
the transformation of the pollutant mainly occurs cannot
be easily generalized and primarily depends on the
band-edge energy position, the charge carriers mobility
and the features of the TiO2/CBM interface. A complete
agreement on the role of the carbonaceous phase during
the photocatalytic process has not been reached.
Different mechanisms can be operational as a function
of the specific properties of the hybrid systems. The
carbonaceous phase (i.e. rGO) can operate in three

different ways: 1) rGO acts as a good electron acceptor
and promotes the electron transfer from TiO2 to rGO
(e�CBðTiO2Þ/rGO) as a consequence of the relatively high
work function of graphene (4.42 eV) [31], furthermore
hþVBðTiO2Þ can move toward rGO promoting the oxidation
of here adsorbed substrates; 2) rGO absorbs visible (and
UV photons) promoting the delocalization of electrons
located in high-energy rGO states onto TiO2

(rGO/e�CBðTiO2Þ), acting more as a macromolecular
sensitizing instead of electron reservoir [32]; 3) the rGO
www.sciencedirect.com
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Figure 2

Mechanism describing the possibility to exploit the photocatalytic pro-
duction of H2O2 under an irradiated semiconductor (i.e. TiO2) to activate
enzymes.
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has a detrimental effect on the overall photocatalytic
efficiency as a consequence of either the absence of
electron/hole transfer between TiO2 and rGO and vice-
versa (rGO is a competitive light absorber and can often
compartmentalize the substrate on a non-reactive
phase) or the ability of rGO to capture both holes and
electrons generated into TiO2, acting as a macromolec-
ular recombination center. For a more detailed descrip-

tion of the possible reactive schemes please refer to
[15].

The degradation rate of standard pollutants is usually
used to compare the efficiency of different materials,
taking into account that many experimental parameters
affect the process, including the concentration and kind
of molecules, the amount of photocatalyst, the type and
intensity of irradiation.

The absence of papers related to TiO2-non defective

graphene nanoplatelets (GNP) used toward drugs
abatement has to be ascribed to the difficulty to couple
the two phases with opposite solvophilic properties: the
hydrophobic GNP and the hydrophilic TiO2. The
absence of helpful interfacial phenomena implies that
GNPonly acts as competitive light absorber. Conversely,
the amphiphilic nature of GO/rGO surface allows the
occurrence of a strong interaction between the organic
and inorganic phases with the establishment of the
series of reactions/mechanisms briefly described above.

TiO2-rGO materials, synthetized through different ap-
proaches, were successful applied to the degradation of
acetaminophen [33], diphenhydramine [34,35], carba-
mazepine [36e39], atenolol [40], diclofenac [41],
ibuprofen [38], sulfamethoxazole [38] and risperidone
[42]. There is an overall agreement about the possibility
to obtain a positive role of GO/rGO on the analyte
degradation rate and about the requirement of low
carbon loadings, due to the shielding effect on light,
while it is under scrutiny if GO/rGO phase could act as
sensitizer toward visible light [15,42].

TiO2-CNT composite materials exhibit controversial
efficiency. TiO2-single wall CNTs were tested on the
degradation of a mixture of 22 pharmaceuticals [43],
showing that the performance of composite materials is
strongly dependent on the kind of molecule. TiO2-
multiwalls CNT under UV irradiation could have a
positive effect (ketoprofen [44] and bisphenol A [45]),
negative effect (salicylic acid [46] and diclofenac
[45,47]) or controversial (carbamazepine [48,49]), but
data are not enough to conclude if this phenomenon is
linked to the kind of molecule, CNT diameter or the

presence of oxidized moieties on the CNT structure.

Other and less common carbonaceous phases were used
into TiO2 composite in the drugs removal, such as
www.sciencedirect.com
fullerenes [50,51], carbon dots [52] and organic shell
layer [53].
TiO2- and CNP-based photobiocatalysts
A photobiocatalyst is a semiconductor with or without a
light harvester that activates an enzyme. Usually, it is a
four component system, comprising a photocatalyst, an
enzyme and two chemical compounds acting as sacrifi-
cial electron donor (e.g. water, alcohol or tertiary
amines) and an electron relay between photocatalyst
and enzyme. Different systems could be prepared, all
inspired to natural photosynthesis [28].

A great interest is associated to the development of
photocarbocatalysts [54e56] that could be employed to
promote enzymatic reductions mediated by NADþ/
NADH. GO and CNTs form strong association com-
plexes with many aromatic organic molecules and can
promote the assembly of organic chromophores to
introduce light-harvester centers on the carbon.

Another promising application is to exploit the H2O2

produced by a semiconductor (i.e. TiO2) to activate
enzymes, as depicted in Figure 2. Virtually all photo-

catalytic systems in the presence of oxygen generate
ROS as a consequence of the efficient trapping of con-
duction band electrons by oxygen. The primary species
is superoxide O2

��, easily protonated by water to form
�OOH that can end up in H2O2 by a second electron and
Current Opinion in Green and Sustainable Chemistry 2017, 6:11–17
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a protonation step. Even if the generated stationary
concentration of H2O2 is generally low, it should be
sufficiently high and compatible with enzyme activation
as most of the peroxidase and catalase enzymes can
operate with low H2O2 concentration. This approach
was successfully applied to the degradation of chlor-
ophenols and carbamazepine combining peroxidase and
TiO2 [57,58]. TiO2 and peroxidase act synergistically,

leading to an increase in the removal rate of model
molecules. Furthermore, this system exhibits a certain
selectivity on the intermediates products, i.e. in the case
of dichloro and trichlorophenols the formation of chlor-
oderivatives is hindered [57]. As for carbamazepine,
photocatalytic treatment prevails on the enzymatic
degradation, but the synergistic effect of two catalysts
leads to a more efficient carbamazepine degradation
[58].
Toxicity related to TiO2, CBM and composite
materials
The toxicity of photoactive nanomaterials depends on the
intrinsic physicochemical properties of the primary par-
ticle (particle size, morphology, crystal structure, surface
area, band gap energy, and charge), nanoparticle behaviors

in the environmental media (aggregation, agglomeration,
and sedimentation) and on the organism surface [59].
Owing to their unique physicochemical properties, the
risk assessment is complex and challenging and current
available data, collected inTable 1, are inadequate to draw
conclusions about their potential hazard.

However, numerous materials cause oxidative stress,
such as Graphene, CNTs, and TiO2; for TiO2 a
Table 1

Toxicity performed on TiO2, carbon-based materials and composite m

Toxicity test

TiO2 CNT G

Cytotoxicity Significant
cytotoxicity [65]

Oxidative stress [67] More
GO [6

Daphnia
magna

LC50 118 ppm (dark),
60 ppm (SSR) [66];
EC50 1.1 (25 nm) [69]

–

Oryzias
latipes

LC50 > 500 ppm
(dark), 8.5 ppm
(SSR) [66]

–

Zebrafish – Death [63] reduced
heart rate [70]

Reduc
length

Hyalella
Azteca

LC50 24 ppm (low conc),
44 ppm high conc [71]

–

Animals – Increase embryonic death,
decrease embryonic
growth (Chicken [70])

Lung
(mice,
Decre
surviv

Cells – Decrease cell viability [72] Induce
(rat [6
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phototoxic effect was shown toward numerous organ-
isms and cell lines [60,61]. Toxicity is depended on
nanoparticles concentration as well as irradiation in-
tensity and duration; particle size plays a key role as well
and the highest phototoxicity toward Daphnia magna was
exerted by intermediate sized particles [61].

Concerning CBM, studies are controversial and range

from considering graphene materials as biocompatible to
pose adverse biological responses and cytotoxicity [62].
Though, the available data suggest that placenta does
not constitute an impermeable barrier for the nano-
materials and they possess a potential toxicity; oxidized
graphene forms seem less toxic than graphene sheets or
multiwall carbon CNTs [63]. Furthermore, graphene
poses toxic effects on different biological models, while
GO exhibits a low cytotoxicity [64].

Few toxicity studies are available on composite mate-

rials. TiO2-GO composites exhibit significant cytotox-
icity with a decrease of cell viability as well as TiO2,
while GO could enter A549 cells without causing any
cell damage [65]. The cytotoxicity of composite mate-
rial has been attributed to oxidative stress related to
TiO2 nanoparticles. As a confirm, TiO2-GO composite
was separated into TiO2 and GO after entering into
A549 cells, so assessing that the composite material
exerts the combined toxicity of the two separate mate-
rials, without any additional effect. Similar conclusions
arose from tests performed using Daphnia magna and

Oryzias latipes on TiO2 and grapheneeTiO2 nano-
composite as the combined system does not exhibit a
higher toxicity [66].
aterials.

Materials

NP/rGO GO TiO2/GNP TiO2/GO

toxic than
8]

No cell damage
[65,69]

– Significant
cytotoxicity [65]

– – LC50 138
ppm (dark),
90 ppm (SSR) [66]

–

– – LC50 > 500
ppm (dark),
11 ppm (SSR) [66]

–

ed larva
[70]

Malformations [63]
Reduced heart
rate [70]

– –

– – – –

inflammation
[62]);
ased
al rate [71]

Controversial
effect (mice [62])

– –

d apoptosis
2])

Oxidative stress
(human lung [62])

– –
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Perspectives and conclusive remarks
Even if some of the proposed innovative hybrid mate-

rials showed quite interesting features, their overall
photocatalytic performances are not so impressive to
foresee a large use of these materials in the industry of
photocatalytic materials in a near future. Furthermore,
despite the enormous efforts spent, a real comprehen-
sion of the mechanism active on these materials under
irradiation and their ability to remove classes of pollut-
ants different from the dyes has not been reached yet. In
our opinion, in the field of the photocatalytic hybrid
materials it is essential: 1) to test the new systems with
substrates that do not absorb visible light and of more

environmental concern (e.g. pharmaceutical and drugs)
and in conditions closer to real applications; 2) to design
the photocatalytic experiments with the aim to clarify
the operational mechanisms comparing the results ob-
tained with different substrates and under different
irradiation systems; 3) to evaluate the real possibility of
a wide-scale application of the hybrid materials in term
of cost of production, environmental-sustainability of
the synthesis; as an example, the production of GO
through the exfoliation of graphite oxide obtained by the
Hummers’ method (oxidation of graphite by strong ox-

idants in mineral acids) must be carefully evaluated
from the point of view of the environmental implica-
tions, and 4) to analyze thoroughly the toxicity effects of
both the materials itself and the by-products obtained
from the photocatalytic transformation of the consid-
ered pollutants.
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