
Geographical Load Balancing across Green Datacenters:
a Mean Field Analysis

Giovanni Neglia
Inria Sophia Antipolis Méditerranée,

Sophia Antipolis, FR
giovanni.neglia@inria.fr

Matteo Sereno
Dip. di Informatica,
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ABSTRACT

“Geographic Load Balancing” is a strategy for reducing the
energy cost of data centers spreading across different ter-
restrial locations. In this paper, we focus on load balanc-
ing among micro-datacenters powered by renewable energy
sources. We model via a Markov Chain the problem of
scheduling jobs by prioritizing datacenters where renewable
energy is currently available. Not finding a convenient closed
form solution for the resulting chain, we use mean field tech-
niques to derive an asymptotic approximate model which
instead is shown to have an extremely simple and intuitive
steady state solution. After proving, using both theoretical
and discrete event simulation results, that the system perfor-
mance converges to the asymptotic model for an increasing
number of datacenters, we exploit the simple closed form
model’s solution to investigate relationships and trade-offs
among the various system parameters.
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1. INTRODUCTION
Providers such as Amazon, Google, Facebook, etc., are

making a considerable effort to offer efficient, scalable, and
reliable services. To achieve these goals such services need
to be supported by massive datacenters and relevant infras-
tructures to distribute power and provide cooling. Power
management is becoming a crucial issue. Not only power
consumption is ever increasing with an increasing user base
and service expansion, but, as pointed out by several studies,
the power consumption of datacenters is largely wasted.

In this paper we consider a set of micro-datacenters which
are additionally powered by renewable energy sources, e.g.,
photovoltaic (PV) panels. Due to the current high costs
for storing energy, the best use of renewable energy is to
consume it when it is produced. Hence, we would ideally
wish to adapt each micro-datacenter’s load to the instanta-
neous energy production. One way to address such goal is
to federate several micro-datacenters each other, and use a
central controller to dispatch jobs where renewable energy
is available, so as to minimize the (non-renewable) energy
cost. The possibility to manage more jobs obviously offers
a higher flexibility. The law of large numbers guarantees
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indeed that the aggregated load will be more regular and
then easier to exploit for smart load scheduling as it is the
case in a big datacenter. But when local renewable sources
are available, a micro-datacenters’ federation offers an addi-
tional advantage in comparison to a large datacenter: renew-
able energy production at different locations can be loosely
correlated and then the aggregated energy production ex-
hibits less variability.

Consider the following ideal case: a set of N identical dat-
acenters, each with independent job arrival processes with
rate λ and a single server with computing rate µ, and PV
panels able to feed the datacenter a fraction s of the time.
Compare it with a single datacenter which aggregates locally
all the jobs as well as the computing and energy production
infrastructure. The total normalized load for the federation
of datacenter is ρ = (Nλ)/(Nµ) = λ/µ with a normalized
variability (standard deviation of the number of working
servers divided by the average number of working server)

equal to
√

(1− ρ)/(ρN). Similarly the federation can power
through renewables a fraction s of its computing resources
with a normalized variability equal to

√

(1− s)/(sN), if the
amounts of renewable energy produced at different datacen-
ters can be considered independent. The single datacenter
manages the same aggregate load with the same normalized
variability, but the situation is different energywise. The sin-
gle datacenter can be powered by renewables a fraction s of
the time, but now the normalized variability is

√

(1− s)/s,
if, as it is reasonable to assume in first approximation, all
the PV panels at a given location produce (/do not produce)
at the same time.

The example above is clearly over-simplified, it ignores
the costs of job dispatchment among the micro-datacenters,
the effect of fixed energy costs that are easier to optimize
at a single datacenter, the possibility that renewable energy
dynamics are too fast to be exploited by smart scheduling
strategies, how revenues should be split among the datacen-
ters, etc. Nevertheless, this example highlights a potential
benefit from federating micro-datacenters, that is interest-
ing to quantify. As we are going to show below, even simple
models for job traffic and energy production lead soon to sce-
narios for which it is difficult to provide closed-form expres-
sions for the energy cost of a federation of micro-datacenters.
One may then need to rely on expensive simulations that
hide the role played by the different parameters. For this
reason, in this paper we propose a mean field (fluid) model
that is asymptotically correct and allows us to derive simple
formulas for the main performance metrics, like the expected
energy costs of the system.
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The paper is organized as follows. After a brief discus-
sion of related work, we introduce the system model in sec-
tion III, and we provide and justify with both theoretical
and simulation results a mean field approximation in sec-
tion IV. In section V, we exploit the resulting simple model
to quantify performance and trade-offs emerging in scenar-
ios characterized by variable renewable energy production
across micro datacenters.

2. RELATED WORK
In Geographic Load Balancing (GLB) systems user re-

quests are initially accepted by front-end elements and then
redirected by a scheduler to geographically distributed dat-
acenters for processing. The scheduler’s decisions may de-
pend on several mutually interacting (and in some case con-
flicting) objectives such as minimizing the electricity cost,
the carbon-footprint and the response time. The paper [12]
is one of the first studies about GLB. In particular, it fo-
cusses the attention on the key issues fostering the use of
GLB such as different energy markets (e.g., day-ahead and
real-time markets), and temporal or geographical energy
price variations. The GLB represents the combination of
these basic ingredients with the use of energy related met-
rics in the scheduler decisions. In this manner it is possible
to account for different workload conditions, and time and
geographical variability of the electricity costs.

In the last years other studies addressed the same problem
by adding different scheduling constraints and/or by opti-
mizing different metrics (see [14], [15], [16], [6], [10], [11]).
For instance, the papers [14] and [11] introduce additional
constraints for accounting QoS guarantees; while the inter-
action between GLB and smart grids, and then the exploita-
tion of the workload demand-response capability have been
addressed in [14]. Furthermore, the interaction of energy
storage systems and GLB has been addressed in [6]. In-
deed, storage systems can be used to smooth the variability
of power supply and this is very important when the data-
centers are powered by renewable sources.

Several studies pointed out that large datacenters are ex-
tremely expensive to maintain and this has encouraged the
development of architectures that interconnects multiple
micro-datacenters [3]. This trend influenced our work be-
cause workload scheduling among a large number of inter-
connected datacenters gives rise to computational problems
(e.g., see the summary of the techniques used in geographi-
cal load balancing in [13]).

The works closest to ours are [11] and [10], where geo-
graphical load balancing is driven by time-varying energy
prices, that can be due to a significant local production
from renewable sources. While in these papers energy prices
are considered to be known in advance over some future
time-horizon, in our case renewable energy production is a
stochastic process and scheduling is decided on the basis of
the current state of the system.

3. PROBLEM
We consider a federation of N identical micro datacenters.

The aggregated job arrival process at the federation is mod-
eled as a Poisson process with rate Nλ. The service time of
each job is assumed to be exponential with expected value
1/µ.1 Each datacenter is connected to the grid but it can be

1While we need an underlying Markovian process to cor-

powered also by some renewable source. We consider here
that the renewable source can be in two states: in state S
(sunny) the energy produced by the source is able to power
the whole datacenter, in state C (cloudy) the energy pro-
duced is negligible. Renewable states evolve according to a
continuous time Markov Chain. Let νC and νS denote re-
spectively the transition rates from S to C and from C to S .
The model for the renewable source can be made arbitrarily
more realistic by adding multiple states. For the moment
we assume that the Markov chains associated to renewable
sources at different datacenters evolve independently.

When a new job arrives the scheduler dispatches it i) to
a datacenter that is available to process it and in state S
(i.e., currently powered by renewables) if any, otherwise ii)
to an available datacenter if any, and as last option iii) to a
central waiting queue from which the job will be moved to
the first available datacenter. The system is then operating
as an M/M/N queue with the characteristic that available
servers in state S get jobs with strict higher priority than
other servers. Among the work conserving disciplines this
intuitively minimizes the total expected energy cost.

The system can be described as a continuous time Markov
Chain with state (JN (t), SN (t),BN

S (t)), where JN (t) is the
number of jobs in the system, SN (t) is the number of servers
in state S , and BN

S (t) is the number of servers busy (i.e.,
serving a job) and in state S , all at time t. The Markov
chain has a very particular structure: for example JN (t) it-
self, representing the number of jobs in a M/M/N queue,
evolves as a Markov chain. SN (t) is described by a simple
Markov chain too. In particular the stationary distributions
of JN (t) and SN (t) can be derived easily in closed-form. De-
spite these properties, it is not easy to characterize BN

S (t)
and in particular we have not been able to derive in closed-
form its stationary distribution. This is less surprising if we
think about a similar problem for parallel queues where the
simple join-the-shortest-queue policy couples the status of
the different queues so that their stationary distribution can
be expressed only as an infinite mixture of geometric distri-
butions [1] (there are many works on priority queues and/or
shortest queue policies, see for instance [4] [7]). Similarly,
here our dispatching policy couples the two different states
of a server (being busy and being powered by renewables)
in a non-trivial way so that it is difficult to characterize the
process BN

S (t), as we need to quantify the energetic savings
coming from the federation.

In order to study the system (JN (t), SN (t), BN
S (t)) we

could resort to simulations or to a numerical solution of
the Markov Chain. In both cases the computational cost in-
creases with the number of datacenters N . These difficulties
are aggravated if more realistic and then more complex mod-
els for traffic arrival process or renewable energy evolution
are considered with a potential explosion of the state space.
Moreover, the effect of the different parameters can be more
difficult to unveil using numerical methods. For these rea-
sons, as it has been successfully done in other fields, we
derive the fluid limit of the Markov chain of interest, that
allow us to obtain simple closed-form expressions for the
main performance metrics independently from the system
size N .

rectly derive the asymptotic fluid model, empirical results
show that the fluid model does not heavily depend on many
of these assumptions.



4. FLUID MODEL
In this section we show that the stochastic dynamics of the

Markov chains (JN (t), SN (t),BN
S (t)) converge in probability

to a deterministic process as N diverges.2 More precisely, we
will show that if 1/N(JN (0), SN (0), BN

S (0)) converges to the
constant values (j0, s0, bs,0) when N diverges, then there ex-
ists a vector of deterministic functions (j(t), s(t), bs(t)) such
that (j(0), s(0), bs(0)) = (j0, s0, bs,0) and for any T > 0:

sup
0≤t≤T

∣

∣

∣

∣

∣

∣

∣

∣

1

N
(JN (t), SN (t), BN

S (t))− (j(t), s(t), bs(t))

∣

∣

∣

∣

∣

∣

∣

∣

→
P

0,

i.e., the rescaled process converges to (j(t), s(t), bs(t)).
This kind of convergence results has become popular since

the seminal work of Kurtz (see for example [9]), that shows
that the limiting process can be described by a system of
differential equations: dx/dt = f(x(t)), where f() is called
the limiting drift function. Classic results require f() to be
a Lipschitz function. By carrying out the usual derivation
of the fluid limit for the process (JN (t), SN (t), BN

S (t)), the
corresponding function f() will appear to be discontinuous
and then it has not the Lipschitz property. Nevertheless, we
can apply more recent and general results from [5] to show
that the dynamics converge to the solution of a system of
differential inclusions, i.e. where the function f() is replaced
by a set valued function.

As we observed in the previous section, the processes
JN (t) and SN (t) are themselves Markov chains. Rather
than studying the joint system (JN (t), SN (t),BN

S (t)) we
first derive the fluid limits for JN (t) and SN (t) and then
move to consider the fluid limit for BN

S (t). While we could
directly consider the limit of the triplet, this approach can
result easier to follow for the reader unfamiliar with fluid
limits. Moreover, the results for JN (t) and SN (t) do not
require the more complex machinery of differential inclu-
sions, so this approach allows us to better highlight where
difficulties arise for BN

S (t).
The Markov chain describing JN (t) is such that the tran-

sition from state J to state J+1 occurs with rate Nλ, while
the transition from state J to state J − 1 occurs with rate
µJ , if J ≤ N , and with rate µN , if J > N . We consider now
the scaled process JN (t)/N , whose transition rates from x to
x+l/n can be expressed as Nβl(x) where the functions βl(x)
do not depend on N . In particular β1(x) = λ, β−1(x) = µx
for x ≤ 1, β−1(x) = µ for x > 1 and βl(x) = 0 otherwise.
The rate of changes of JN (t)/N is then

f(x) =
1

N
(β1(x)− β−1(x)) =

{

λ− µx if x ≤ 1

λ− µ if x > 1

that is a Lipschitz function. This property and the fact that
∑

l
|l|βl(x) < ∞ guarantee [9] that if JN (0)/N converges to

j0, J
N (t)/N converges to the unique solution3 of the follow-

ing equation

dj

dt
= f(j(t)), j(0) = j0. (1)

Observe that j(t) > 1 corresponds to JN (t) > N and then
a situation where all the N data centers are working and

2In what follows, convergence of random variables is always
“in probability.” We omit to repeat it at each time.
3 Continuity of the right hand side guarantees the existence
of the solution and Lipschitz property guarantees unique-
ness.
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Figure 1: Transitions that bring to a change in BS

for J ≤ N .

there are JN (t)−N jobs in the queue. Given that f(x) < 0
for x > 1, Eq. (1) shows that j(t) < 1 for large enough t and
then after some transient the job queue is asymptotically
empty and the number of jobs in the system coincides with
the number of busy servers. Moreover, j(t) converges when

t diverges: j∗ , j(∞) = λ/µ = ρ. This value is the only
accumulation point for the possible trajectories of j(t) and
then it is also the stationary probability that a server is
busy in the original Markov chain [2] (as it is known from
the analysis of the M/M/N queue).

In a similar way, it is possible to show that if SN (0)/N
converges to s0, S

N (t)/N converges to the solution of the
following equation

ds

dt
= νS − (νS + νC)s(t), s(0) = s0, (2)

and when t diverges s(t) converges to s∗ , νS/(νS + νC),
that is the stationary probability that a given datacenter is
powered by renewables.

It is clear that we would not have needed fluid models to
derive the asymptotic probability that a datacenter is busy
or that it is powered by the renewables, but the fluid models
allow us to evaluate simply the transient dynamics for the
percentage of busy datacenters and of datacenters powered
by renewables. Moreover, they are required to characterize
the quantity BS(t)/N that is needed to quantify how many
datacenters work using the cheap renewable energy.

In Fig. 1 we show the Markov chain transitions affecting
BS(t), i.e. the number of datacenters working and powered
by renewables, when the number of jobs in the system J(t) is
smaller than N . As we observed above, for N large enough
J(t) < N holds with probability arbitrarily close to one after
some finite time depending on JN (0). For this reason, we
can for simplicity assume that the system is in this situation.
Observe that the transition indicated in the figure by the
dashed line is possible only for specific values of S and BS.
If a new job arrives and there are idle datacenters in state
S (i.e. BS < S) then the job will be assigned to one of
them and BS will increase by one unit. Otherwise BS will
stay constant. If we calculate the drift for BS(t)/N when
(J(t), S(t), BS(t)) = (j, s, bs) as done above we obtain that
it is equal to

g(j, s, bs) =

{

λ− (νS + νC + µ)bs + νSj if bs < s,

−(νS + νC + µ)bs + νSj if bs = s.

Unfortunately the function g() is not continuous, and then
neither Lipschitz. Nevertheless, [5] shows that whenBN

S (0)/N
converges in probability to bs,0, B

N
S (t)/N is related to the



solutions of the following differential inclusion

dbs
dt

= G(j, s, bs) =

{

{g(j, s, bs)} if bs < s,

[g(j, s, s), g(j, s, s) + λ] if bs = s.

(3)

bs(0) = bs,0

The set-valued function G(j, s, bs) coincides with g(j, s, bs)
for bs < s, while G(j, s, s) is the interval obtained by the
convexification of the accumulation points of g(j, s, bs) when
bs = s. Equation (3) admits at least a solution because G()
is upper-semicontinuous and Theorem 5 in [5] shows that in
such case

inf
bs∈D

sup
0≤t≤T

∣

∣

∣

∣

∣

∣

∣

∣

BS(t)

N
− bs(t)

∣

∣

∣

∣

∣

∣

∣

∣

→
P

0,

where D is the set of solutions of Eq. (3). This result has
practical utility if we can prove that the differential inclu-
sion (3) has a unique solution. A standard sufficient condi-
tion for the uniqueness of the solution is the one side Lip-
schitz condition [8], that unfortunately does not hold for
G(). We suspect that Eq. (3) has a unique solution, but we
have not been able to prove it. Nevertheless, we can prove
that any possible solution converges to the same value as
t diverges. This is enough to draw conclusions about the
stationary distribution of our stochastic system.

We start observing that for large t j(t) and s(t) are ar-
bitrarily close respectively to the values j∗ = ρ and s∗. It
holds

g(j∗, s∗, s∗) = νS

(

ρ−
νS + νC + µ

νS + νC

)

< 0,

because ρ < 1. If λ + g(j∗, s∗, s∗) < 0, then all the values
of G(j∗, s∗, bs) are negative when bs belongs to an oppor-
tune interval (s∗ − ǫ, s∗] and then any possible trajectory
of bs(t) will be constrained to the interval [0, s∗ − ǫ], where
the differential inclusion (3) reduces to a usual differential
equation with Lipschitz drift and then it admits a unique
solution. This solution converges to (λ+ρνS)/(νS +νC +µ)
when t diverges. If λ+ g(j∗, s∗, s∗) > 0, then for bs < s∗

g(j∗, s∗, bs) > λ−(νS+νC+µ)s∗+νSj
∗ = λ+g(j∗, s∗, s∗) > 0,

and any trajectory of bS(t) converges to s∗, that is a stable
point because in this case 0 ∈ G(j∗, s∗, s∗). Summarizing,
it holds

b∗s , bs(∞) =

{

s∗, if λ+ g(j∗, s∗, s∗) > 0

(λ+ ρνS)/(νS + νC + µ), otherwise.

By observing that λ+ g(j∗, s∗, s∗) > 0 is equivalent to s∗ <
(λ+ ρνS)/(νS + νC +µ), and replacing λ = ρµ we can write
in a more compact way:

b∗s = min

{

s∗, ρ
νS + µ

νS + νC + µ

}

. (4)

Figure 2 shows how the stationary distribution of BN
S /N

converges to b∗s as N increases. The quality of the fluid
approximation is different for different values of the load
ρ. In particular as far as ρ is far from the critical value
for which s∗ = ρ(νS + µ)/(νS + νC + µ), corresponding to
the non differentiability in Eq. (4), the approximation is
very accurate even for N = 20 datacenters. For the critical
load, the federation should include an order of magnitude
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Figure 2: Percentage of datacenters powered by re-
newables : Fluid Model (b∗s) vs Simulation Averages
(νS = νC = 0.01 µ = 1, N = 20, 100, 500).

more datacenters to achieve a good level of approximation.
For a given value of N the quality of the approximation
improves (/worsen) the larger (/smaller) is the acute angle
between the two segments determined by the fluid model,
as it happens if νC increases (/decreases).

5. EXPLOITING THE MODEL
In this section we show how our simple fluid model can

help quantifying the potential advantages of a federation of
datacenters and the effect of the different parameters.

We start by discussing Eq. (4). The percentage b∗s of data-
centers working and powered by renewables is obviously lim-
ited by the percentage s∗ of datacenters powered by renew-
ables, and by the percentage ρ of datacenters working, then
b∗s ≤ min{s∗, ρ}. These two regimes appear also in Eq. (4)
and we refer to them as the renewables-limited regime and
the load-limited regime. In particular, Eq. (4) shows how
close the dispatching algorithm can approach the bound
min{s∗, ρ} when, as we assumed, the job will be completed
by the datacenter that started working on it. The factor
(νS +µ)/(νS + νC +µ) multiplying ρ takes into account the
fact that a datacenter may change status from S to C (or
the other way around) after starting to process a job. These
changes limit the utility of job scheduling.

Without the federation every datacenter receives a load ρ
and can exploit renewables a fraction s∗ of the time. Then
the percentage of time a datacenter works and is powered
by renewables is ρs∗, that is smaller than b∗s from Eq. (4):

min

{

s∗, ρ
νS + µ

νS + νC + µ

}

> ρs∗,

because ρ < 1 and (νS +µ)/(νS +νC +µ) > νS/(νS +νC) =
s∗. The difference between the left hand side and the right
hand side of the inequality times N quantifies how many ad-
ditional datacenters work powered by renewables thanks to
the federation in comparison to the situation when there is
no federation. In what follows we compare the correspond-
ing average energy costs, by normalizing the energy cost per
time unit to 1 (/0) when the datacenter is (/is not) powered
by renewables. The average energy cost per time unit and



per datacenter is then:

cf , ρ− b∗s , with the federation

cnf , ρ− ρs∗,without the federation
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Figure 3: Cost reduction due to the federation vs
speed of renewables’ dynamics (s∗ = 0.5).

We focus on the relative cost reduction achieved by the
federation in comparison to the uncoordinated case, i.e., on
(cnf −cf )/cnf . Fig. 3 shows how the relative cost changes as
renewables’ dynamics become faster for two different values
of the load ρ. We set νS = νC so that s∗ is constant and
equal to 0.5. Eq. (4) shows that, when ρ and s∗ are con-
stant, b∗s changes only for the effect of the ratio (νS+νC)/µ.
In other words, it is not important how fast the quantity of
renewable energy produced changes, but how much faster
it changes than the job completion time. Intuitively, if this
ratio is very large, the scheduling is not effective, because a
datacenter changes its status S/C many times before com-
pleting the job, so that the job takes advantage of renew-
ables’ energy on average a fraction s∗ of the time, inde-
pendently from the status of the datacenter when the job
execution started. Fig. 3 shows indeed that the advantage
of the federation converges to 0 as the ratio (νS + νC)/µ
diverges. This behaviour is common to both the load val-
ues considered. When ρ = 0.5, the system is always in the
load-limited regime (b∗s = ρ(νS + µ)/(νS + νC + µ)) and the
advantage of the federation always decreases as the ratio
(νS + νC)/µ increases. When ρ = 0.65 the system is ini-
tially in the renewables-limited regime, so that the relative
gain of the federation is limited by the average availability of
renewables’ energy and the gain is independent on the speed
of their dynamics. This situation corresponds to the initial
horizontal part of the corresponding curve. As the speed of
renewables’ dynamics further increases, the scheduling is no
more able to effectively follow them and the system enters
in the load-limited regime. The relative improvement from
the federation in this regime is independent from ρ, so that
both curves in Fig. 3 overlap.

Our analysis shows significant reduction of energy costs
achievable by the federation of different datacenters, but,
until now, we have assumed that the states of the renew-
ables’ sources at the different datacenters are independent.
This is not true in general. For example, production from
PV panels or wind turbines are clearly positively correlated
at nearby locations. When energy quantities produced at
the datacenters are positively correlated, the improvement

from scheduling is reduced. In order to quantify the effect of
positive correlation, we consider the following simple model.
We assume that the Markov chain determining the state of
a renewable source (S or C) is modulated by an underlying
Markov chain that is common to all the different sources.
In particular, as a toy-example, we consider a Markov chain
with two states G and B. The transition rates νS and νC of
each renewable source depend now on the particular state
of the modulating Markov chain and we denote them νS,G,
νC,G, νS,B and νC,B . We consider that

s∗G =
νS,G

νS,G + νC,G

>
νS,B

νS,B + νC,B

= s∗B

and then states G and B correspond respectively to good and
bad weather (at least for the purpose of renewable energy
production). It is possible to extend simply our previous
analysis, if we assume that the dynamics of the modulat-
ing Markov chain are much slower than those of the mod-
ulated chain and of job execution (i.e., max{νG, νB} <<
min{νS,G, νC,G, νS,B, νC,B, µ}). In such case, the average
percentage of datacenters working and powered by datacen-
ters can be obtained through a weighted sum of what would
happen without modulation as follows

b∗s ≈ πGb
∗
s,G + πBb∗s,B,

where πG = νG/(νG + νB), πB = νB/(νG + νB) and b∗s,G
(resp. b∗s,B) is calculated from Eq. (4) replacing the rates
νS and νC by νS,G and νC,G (resp. νS,B and νC,B). As
we anticipated, the modulating Markov chain correlates the
state of the renewable sources. We can quantify this effect
by using the correlation coefficient η defined as

η =
(s∗G)

2πG + (s∗B)2πB − (s∗GπG + s∗BπB)
2

(s∗GπG + s∗BπB)(1− s∗GπG − s∗BπB)
.

As a sanity check, we observe that if νS,G = νS,B and
νC,G = νC,B (i.e., the modulating Markov Chain has no
effect on the renewables’ state evolution), then η = 0. If
instead we have that s∗G = 1 and s∗B = 0, then η = 1,
because all the datacenters are in state S when the modu-
lating Markov chain is in state G and in state C when the
modulating Markov chain is in state B.
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Figure 4: Cost reduction due to the federation vs
renewables’ correlation (νG = νB = 0.00001, νS,G +
νC,G = νS,B + νC,B = 0.002, νS,G = νC,B, µ = 1).

Figure 4 shows the relative cost reduction due to the feder-
ation versus the correlation η. In the specific setting consid-
ered, the average percentage of time renewables can power



datacenters is constant: s∗ = πGs
∗
G +πBs∗B = 0.5. Then, as

the correlation increases s∗G increases and s∗B decreases of the
same amount. As expected, the benefit from the federation
is maximum when renewable sources evolve independently
(η = 0) and null when at any time they are all in the same
state (η = 1). The benefit is non-increasing in η, but, de-
pending on the load ρ, there is a more or less wide range of
correlation values for which the benefit does not depend on
η. In order to justify this result, we write the specific ex-
pression of b∗s neglecting for simplicity the rates νS,G, νC,G,
νS,B and νC,B when summed to µ, that is much larger. It
holds:

b∗s ≈
1

2
min {s∗G, ρ}+

1

2
min {s∗B, ρ}

Under this approximation, the setting ρ = 0.5 = s∗ corre-
sponds to the case when the system is at the boundaries
between the two regimes for η = 0. When the correlation
increases, the system is i) in the load-limited regime in good
weather (state G) with a value b∗s,G almost constant and
equal to ρ and ii) in the renewables-limited regime in bad
weather (state B) with a value b∗s,B decreasing in η. As a
consequence the corresponding curve is decreasing. When
ρ > s∗ = 0.5, the system is the renewables-limited regime
in both states G and B when η = 0, and then b∗s,G = s∗G and
b∗s,B = s∗B . As η increases, the increase of s∗G is exactly com-
pensated by the decrease of s∗B so that the system exhibits
the same relative improvement until η is so large that the
system enters in the renewables-limited regime when in bad
weather and then the improvement decreases again. Finally,
when ρ < s∗ = 0.5, the system is initially in the load-limited
regime in both states, and then b∗s,G = b∗s,B = ρ, indepen-
dent on η. Again, the improvement does not depend on
η until η becomes so large that the system enters in the
renewables-limited regime when in bad weather.

As we have shown, our simple fluid model reveals the
existence of two different regimes and helps to understand
and quantify their non-trivial interaction as the parameters
change.

6. CONCLUSIONS
The paper proposes a model of geographical load balanc-

ing strategies for a collection of federated (micro) datacen-
ters powered by renewable energy sources. In our strategy
the scheduler uses a selection criterion that prioritizes dat-
acenters where renewable energy is currently produced. For
this kind of system we use mean field techniques to derive
a simple approximate model that allows us to derive sev-
eral performance measures. First, asymptotic convergence
is proven and the quality of the approximation for finite size
systems is evaluated through an ad-hoc simulator. Then,
we use the simple fluid model to quantify the effect of the
different system parameters and to understand the different
tradeoffs.
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