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ABSTRACT 

The vast majority of cancer exhibit increased glucose uptake and glycolysis regardless of oxygen 

availability. This metabolic shift leads to an enhanced production of lactic acid that, in turn, leads to the 

acidification of the extracellular pH (pHe) which represents a characteristic hallmark of tumour 

microenvironment. Dysregulated tumour pHe and up-regulated glucose metabolism are therefore tightly 

linked and their relative assessment may be very useful for pursuing a better understanding of the underlying 

biology. Here we investigated in vivo and non-invasively the correlation between tumour 18F-FDG uptake 

and extracellular pH values in a breast HER2+ tumour murine model. Tumour extracellular pH and perfusion 

have been assessed by acquiring MRI-CEST (Chemical Exchange Saturation Transfer) images on a 3T 

scanner, upon the intravenous administration of a pH-responsive contrast agent (iopamidol). Static PET 

images were recorded immediately after MRI acquisitions to quantify the extent of 18F-FDG uptake. First, 

we demonstrated accurate tumour pHe measurements that were able to report on induced pHe changes. 

Combined PET and MRI-CEST images reported complementary spatial information of the altered glucose 

metabolism. A significant inverse correlation was found between extracellular tumour pH and 18F-FDG 

uptake (%ID/g: r = -0.552, P<0.01; SUV: r = -0.587, P<0.01). Furthermore, for the first time, we 

demonstrated in vivo that tumours with high 18F-FDG uptake show higher extracellular acidosis. These 

results suggest that merging the information between 18F-FDG-uptake and extracellular pH mapping 

represent a valuable tool for an improved imaging-based characterisation of tumour microenvironment. 
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INTRODUCTION 

Solid tumours are characterized by a highly heterogeneous and acidic microenvironment. The combination 

of poor vascular perfusion, regional hypoxia and high rates of glucose metabolism are responsible for 

generating extracellular acidosis in solid tumours (1). In fact, tumour cells rely mostly on the conversion of 

glucose into lactate rather than mitochondrial oxidation for energy production, even in the presence of well-

oxygenated conditions (Warburg effect) (2). This metabolic switch toward a glycolytic phenotype occurs 

early in cancers, during the avascular phase, thus promoting the adaptation of the tumour cells to an acidic 

microenvironment. Extracellular tumour acidosis is an indicator of bad prognosis and it is relevant to 

facilitate tumour migration and invasion by the degradation of the extracellular matrix (3). Tumour acidosis 

has also been linked to multi-drug resistance due to the neutralization of weak base chemotherapeutic drugs, 

which makes the drugs less efficient to cross the cellular membrane (4). It follows that the possibility of 

measuring precise extracellular tumour pH (pHe) at high spatio-temporal resolution is considered of great 

interest in both preclinical and clinical settings, offering selective and specific strategies for developing new 

treatments for solid tumours (5, 6). Moreover, the development quantitative imaging techniques and novel 

imaging biomarkers is considered a key research priority in the medical imaging community (7, 8).  

Currently the gold standard for tumour detection in clinical settings is represented by [18F]2-fluoro-2-deoxy-

D-glucose (18F-FGD) as it acts as a metabolic tracer in positron emission tomography (PET) to report on the 

over-expression/up-regulation of glucose transporters (9). 18F-FDG enters the tumour cells and accumulates 

because it cannot be metabolised beyond the first phosphorylation step. In spite of the complexity of the 18F-

FDG PET methodology, 18F-FDG quickly became a biomarker of outstanding importance in oncology and it 

is used daily in the clinical settings as a surrogate marker of pathological response and survival for a vast 

array of cancers (10). Despite this valuable functional information, PET imaging suffers for a limited spatial 

resolution that limits the information about tumour heterogeneity (11). Conversely, the superb spatial 

resolution of magnetic resonance imaging (MRI) allows accurate assessments of the heterogeneity of the 

tumour lesion. Several MRI-based approaches have been proposed for measuring tumour pH in vivo (12-14). 

Among them, the method based on chemical exchange saturation transfer (CEST) has recently gained  great 

attention (15). This MRI approach relies on the pH-dependence of the prototropic exchange rates and the 
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exchange of magnetization between mobile protons and water is exploited for detecting low-concentration 

molecules. As a source of mobile protons, either endogenous amide-containing molecules (16, 17), or 

exogenous pH-responsive contrast agents (CAs) can be used (18-20). Notably, within the latter class, it has 

been shown that the FDA-approved iodinated contrast media for x-ray computed tomography (CT) imaging 

can be exploited for MRI-CEST pH imaging both at preclinical and clinical level (19, 21-24). 

Currently, there is a great expectation that the combination of PET and MRI techniques in the acquisition of 

images of the same anatomical region may open new horizons for an improved characterisation of tumour 

microenvironment, merging functional information delivered by PET with morphologic and functional 

imaging attainable by MRI. The physical integration of PET and MRI systems has already been achieved 

both for clinical use as well as for animal studies (25, 26). Therefore, by integrating MRI/PET information, 

the advantages of each imaging modality for assessing key features of the pathology can be exploited (27, 

28). In addition, reduction of ionizing radiation dose, in comparison to PET/ CT systems, gives further 

support to consider PET/MRI approaches especially in longitudinal studies. 

In general, one would expect that tumour extracellular pH and 18F-FDG uptake are linked as the lowering of 

pH in the extracellular region is, first of all, the result of an increased production of glycolytic byproducts, 

lactate and H+, which are released by cancer cells in order to maintain physiological intracellular pH 

homeostasis (29). It is therefore important to elucidate, for each tumour phenotype, whether and to what 

extent, 18F-FDG uptake and pHe can be closely-lined biomarkers of the altered glycolytic rate. 

Unfortunately, despite aerobic glycolysis and increased extracellular acidification are recognised as 

hallmarks of solid tumours, no clear evidence of this relationship has been reported so far in vivo. In 

addition, it would be desirable to develop imaging approaches that can be translatable to the clinics. Here we 

assess the potential of MRI-CEST tumour pHe mapping at a clinical field of 3T by using the pH-responsive 

contrast agent iopamidol. We show that the combination of 18F-FDG PET uptake and iopamidol-based MRI-

CEST pH mapping can provide new insights for an improved characterisation of tumour metabolism and 

microenvironment. 
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MATERIALS AND METHODS 

Materials 

The following materials were used in this study: RPMI1640 medium, fetal bovine serum, glutamine, 

penicillin and streptomycin (Lonza Sales AG, Verviers, Belgium); Iopamidol (Bracco Imaging Spa, 

Colleretto Giacosa, Italy); 18F-FDG (Advanced Acceleration Applications, Colleretto Giacosa, Italy); 

phosphate-saline buffer (Sigma Aldrich, Milano, Italy); goat serum (Sigma Aldrich, Milano, Italy); O.C.T. 

compound (Tissue Tek®, Sakura Finetek, Tokyo, Japan); primary antibody rat anti-mouse CD31 (BD 

Pharmigen, Milano, Italy); secondary antibody Alexa Fluor-568 goat anti-rat  (Life Technologies, Monza, 

Italy); Hoescht33258 (Sigma Aldrich, Milano, Italy); mounting medium Fluoroshield (Sigma Aldrich, 

Milano, Italy). 

 

Tumour Model 

TS/A is an aggressive and poorly immunogenic cell line first established from the in vivo transplant of a 

moderately differentiated mammary adenocarcinoma that arose spontaneously in a 20-month-old 

multiparous BALB/c mouse (30). TS/A cells were maintained in RPMI 1640 medium supplemented with 

10% fetal bovine serum, 2mM glutamine, 100 U/mL penicillin and 100 μg/mL streptomycin and preserved 

in a humified incubator at 37°C with 5% CO2. For the preparation of the TS/A tumour model, 2.5x105 cells 

in RPMI medium were inoculated subcutaneously into both the left and right hind limb of BALB/c mice, 

respectively. Tumour growth was allowed to grow to 3 to 5 weeks into tumours of suitable volume that was 

precisely measured by MRI. To investigate the relationship between glucose uptake and tumour pHe, a first 

cohort of TS/A tumour bearing mice were imaged by sequential MRI and PET imaging (n=23 tumours). An 

additional cohort of TS/A bearing mice were split into two groups, with the first group receiving 200 mM 

bicarbonated water ad libitum for five days to modulate tumour pHe (n=6), and the second group receiving 

regular drinking water (n=6). All animal procedures and husbandry were performed in accordance with the 



7 
 

European Communities Council Directive (86/609/EEC) and approved by the Committee on Animal Care 

and Use of our University. 

 

MRI-CEST experiments 

MR images were acquired on a 3T Bruker Biospec (Bruker, Ettlingen Germany) scanner equipped with a 30 

mm quadrature RF coil. Mice were anesthetised with isoflurane vaporised with O2. Isoflurane was used at 

3.0% for induction and at 1.0%–2.0% for maintenance. A single T2-weighted axial slice crossing the centre 

of the tumours was acquired with TR = 4 sec, TE = 3.7 ms, NA =1, slice thickness = 1.5 mm, FOV = 30x30 

mm, matrix size = 256x256, which yielded an in-plane resolution of 117 µm. CEST images were acquired 

with continuous wave (CW) RF irradiation (3 µT for 5 sec) by using a single-shot RARE sequence (TR = 6.0 

sec, effective TE = 8.7ms, centric encoding, slice thickness = 1.5 mm, FOV = 30 mm, matrix size = 96x96, 

in-plane spatial resolution = 312 µm, NA = 1) with 46 frequency offsets unevenly distributed from -10 to 10 

ppm relative to the water resonance, with the acquisition time for each Z-spectrum being 4 min 36s. The 

contrast agent (iopamidol) was injected intravenously into the tail vein at a dose of 4 g I/kg b.w. for tumour 

pH mapping. 

 

PET imaging and analysis 

Following the MRI,  a dedicated animal bed was designed to immediately shift the mice to the PET scanner 

(for a similar approach see (31)), where static acquisitions were performed after an uptake time of 45 min 

and a 18F-FDG injected dose of 15±3 MBq. MRI and PET/CT images were coregistered by fiducial markers. 

Mice were anesthetized with isoflurane vaporized with O2. Isoflurane was used at 3.0% for induction and at 

1.0%–2.0% for maintenance. Mice were imaged using the trimodality PET/SPECT/CT scanner Triumph 

(Trifoil imaging, Chatsworth, CA, USA). 18F-FDG was supplied by Advanced Accelerator Appplications 

(AAA, Colleretto Giacosa, Italy). Mice were kept fasting overnight before intravenously 18F-FDG injection. 

PET images were acquired 45 min after tracer injection followed by a CT acquisition (80 kVp, 110 mA, 

magnification 2.25). PET data were reconstructed using 2D-Maximum Likelihood Expectation 
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Maximization (MLEM) algorithm with 10 iterations and were corrected for tracer decay and for photon 

attenuation. Analysis of PET images and co-registration to MR images were performed using PMOD 

software (http://www.pmod.com). A volume-of-interest (VOI) approach was used to determine the amount 

of radiotracer uptake and to determine regional values for the maximal percentage injected dose per cubic 

centimeter (%ID/cm3). The SUV and SUVmax were obtained using the following formula: SUV = mean 

activity in the region of interest (MBq/g)/(injected dose [MBq]/body weight) and SUVmax: maximum 

activity in the region of interest (MBq/g)/(injected dose [MBq]/body weight). 

 

CEST image analysis 

All data analysis was performed using custom-written scripts in Matlab (Mathworks, Natick, MA, USA). All 

Z-spectra were interpolated, on a voxel-by-voxel basis, by smoothing splines, to identify the right position of 

the bulk water signal, for B0 inhomonogeneity correction. The interpolated Z-spectrum was shifted so that 

the bulk water resonance corresponds to the zero frequency and CEST contrast was quantified at a specific 

offset of interest (i.e. Δω= +4.2/+5.5 ppm) using the asymmetry analysis: 

𝑆𝑆𝑆𝑆 =
𝑆𝑆−Δ𝜔𝜔 − 𝑆𝑆+Δ𝜔𝜔

𝑆𝑆0
 

Where S±Δω is the water signal intensity in the presence of a saturation pulse at offset ±Δω and S0 is water 

signal intensity in the absence of a saturation pulse.  

For in vivo images, difference contrast maps (ΔST%) were calculated by subtracting the ST% contrast after 

iopamidol injection from the ST% contrast before the injection on a per voxel basis in order to reduce the 

confounding effect of the endogenous contributions. ST% maps were calculated for both the frequency 

offsets of 4.2 and 5.5 ppm, by subtracting the corresponding pre-contrast ST% maps. A threshold value of 

2% was set, based on the ΔST variations between multiple pre-contrast ST% maps (ca. 0.8% at 4.2 ppm and 

1.7% at 5.5 μT, respectively) to discriminate between enhancing and not-enhancing pixels. Ratiometric 

values were calculated by ratioing the difference contrast maps at the two different frequency offsets of 4.2 

and 5.5 ppm. Only those voxels showing an increase of ST contrast higher than 2%, in comparison to pre-
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contrast ST% map were included for the following pH calculations. pH maps were obtained by back-

calculating the pH values from the obtained ratiometric values on a voxel-by-voxel basis according to the 

corresponding pH calibration curve of Fig. 1c. Extravasation (perfusion) maps were determined as the 

percentage of pixels showing a ΔST% higher than 2% inside the whole tumour region. The higher the 

percentage of pixels showing an increase of the ST% contrast above the threshold, the higher the 

corresponding extravasation parameter. 

 

Histologic analysis 

After images acquisition, mice were sacrificed and tumour tissues excised. Tumours were embedded in 

O.C.T. compound and frozen in liquid nitrogen. Cryo-sections slices of 5 µm of thickness were subsequently 

cut and fixed in ice-cold acetone for 10 minutes and blocked with PBS containing 10% goat serum for 1 hour 

at room temperature. The sections were incubated with anti-mouse CD31 (1:200) overnight and then with 

secondary antibody (1:500) for 1 hour at room temperature. After nuclei staining with Hoescht 33258 for 10 

minutes at room temperature, sections were mounted with Fluoroshield. Images were acquired with a 

motorised z-focus confocal microscope (Leica Microsystems, Milano, Italy). 

 

Statistical analysis 

Statistical evaluations were performed using GraphPad Prism software (GraphPad, San Diego, CA, USA). 

Correlations among MRI-CEST (using pH, ΔST% and extravasation fraction) and 18F-FDG-PET (using 

%ID/g, SUV and SUVmax) values and tumour volumes were calculated using the Pearson product-moment 

coefficient. Correlations were interpreted using the guidelines from Cohen (32), with absolute correlations of 

<0.3 considered weak, 0.3–0.5 moderate, and 0.5–1.0 strong. Statistical significance was assessed at a level 

of P less than 0.05. 

 

RESULTS 
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The CEST method for mapping pH using iopamidol (a widely used x-ray contrast agent) was recently 

proposed and applied in vivo on a scanner operating at 7 T (18). As our project aims at exploring routes to 

transfer preclinical results to clinical applications it was deemed of interest to work at 3T that is the magnetic 

field strength of the currently available PET-MRI scanners. Iopamidol MRI-CEST pH-sensitivity was then 

first evaluated at 3T and 310K on a phantom consisting of tubes filled with aqueous solutions of Iopamidol 

(30mM) at different pH, from 6.0 to 7.4. The Saturation Transfer (ST%) values to the bulk water signal were 

measured when the off-set of the irradiation fields was set at the exchanging amide proton resonances, i,e, at 

4.2 ppm and at 5.5 ppm, respectively. Fig. 1a shows representative Z-spectra at pH of 6, 6.5 and 7. Fig. 1b 

shows CEST effect (ST%) measured at 4.2 (circles) and 5.5 (squares) ppm, respectively, upon applying a 

saturation rf field of 3 µT for 5s. ST% values steadily increase with pH for both amide proton pools. The 

differences in the pH dependence of ST% observed for the absorptions at 4.2 and 5.5 ppm enables the set-up 

of the ratiometric method for pH quantification yielding ratios that range from 1.1 to 1.9 on going from pH 6 

to 7.4, respectively (Fig. 1c). The accuracy of the pH-CEST method was evaluated by comparing the pH 

values calculated on the basis of the observed ST% ratios and the pH values measured by a pH-meter. pH 

values determined from the MRI-CEST approach  strongly correlates with the calibrated pH (Pearson’s r = 

0.993, P<0.001), showing that a good pH accuracy is feasible at a clinical magnetic field. The pH MRI 

precision decreased with pH, as the standard deviation of calculated pH was higher at lower pH, likely due to 

the decreased prototropic exchange rates at lower pH that results in smaller ST% effects (Fig. 1d). 

MRI-CEST pHe maps were acquired in vivo in HER2 positive tumour bearing mice upon the intravenous 

administration of iopamidol at clinical magnetic field (3T). CEST contrast was quantified by measuring 

difference ST% maps (ΔST% = ST%post – ST%pre iopamidol injection) in order to reduce confounding 

effects from baseline ST contrast arising from tumour endogenous components. It has been found that 

iopamidol is sufficiently well detected at this field, with an average ST% increase from baseline values of 3-

5% at 4.2 ppm and of 2-4% at 5.5 ppm, respectively (Fig. 2e). ΔST% maps showed that the increase in ST% 

contrast is highly heterogeneous in the ROI, indicating that not all the voxels of the tumour region are 

vascularised, or are leaky, to a similar extent (Fig. 2a and Fig. 2b). As a consequence, the not homogeneous 

distribution of iopamidol is itself a read-out of the extent of perfusion in the tumour microenvironment and it 

directly informs about the tumour heterogeneity in terms of vascular permeability (Fig. 2d). Overall, about 
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50-60% of the total pixels showed an increase in ΔST% values above the detection thresholds. For these 

pixels the corresponding tumour extracellular pH values have been computed (Fig. 2c). All the investigated 

HER2 positive breast cancer mice showed extracellular acidifications, with mean tumour extracellular pH 

values in the range 6.6-7.0. Variations in pHe values within the tumours covered a range of ~0.6-0.8 pH units 

(Fig. 2c), but no marked general trend (e.g. from the core to the rim) was observed. 

Validation of the proposed CEST-pH mapping approach in assessing pHe changes was performed in tumours 

bearing mice fed with bicarbonated water. The average pHe in control mice was significantly more acidic 

than the average pHe of tumours in mice having received 5 days of bicarbonated water (6.74 ±0.07 versus 

7.01 ±0.08, respectively; P<0.001, Fig. 3a). Representative tumour pHe maps show an increase of less acidic 

pHe voxels in mice drinking water containing sodium bicarbonate, in comparison to control mice (Figs. 3b 

and 3c). 

Fig. 4 shows one example of a mouse bearing subcutaneous HER2+ allograft tumours, which was 

sequentially imaged by a 3T MRI and a PET scanner. After the acquisition of tumour pHe map upon 

iopamidol injection (Fig. 4a), the 18F-FDG tracer was administered and static PET images were acquired, 

clearly showing 18F-FDG uptake in the tumour regions (Fig. 4b). The area of higher FDG uptake in the 

tumour corresponds to lower pHe values, whereas the area of lower FDG uptake corresponds to less acidic 

tumour microenvironment. This can also be seen in the histogram analysis of the corresponding areas, 

showing pHe distribution values shifted to more acidic values for the tumour regions with an increased 

glucose uptake (Fig. 4c). In the analyzed tumors, the 18F-FDG average %ID/g ranged from 1.5 to 5.5% 

(mean 3.2 ±1.1%), the SUV ranged from 0.4 and 1 (mean 0.7 ±0.2) and the SUVmax ranged from 0.5 to 1.3 

(mean 0.9 ±0.3).  

Finally, the relationship between the glycolytic rate and tumour acidosis was assessed between the estimates 

obtained from 18F-FDG-PET and MRI-CEST pH in 23 matched PET-MRI tumour images (Table 1 and Fig. 

5). PET derived parameters appear related to the tumour volume (Pearson’s correlation coefficients %ID/g: r 

= -0.671, P<0.01; SUV: r = -0.710, P<0.01, SUVmax: r = -0.764, P<0.01; TLG: r = 0.467, P< 0.01). A 

significantly strong correlation was found between 18F-FDG uptake related parameters and CEST-pH 

measurements (%ID/g: r = -0.552, P<0.01, SUV: r = -0.587, P<0.01 and SUVmax: r=-0.525, P<0.01).  
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Insights on the heterogeneous tumour vascularisation have been gained ex-vivo by immunofluorescence 

staining for CD-31 which showed an extensive tumour vascular heterogeneity (Supplementary Fig. S1) 

analogous to that measured by CEST extravasation maps (Fig. 2d). 

 

DISCUSSION 

To the best of our knowledge, this is the first study aimed at comparing 18F-FDG uptake and extracellular pH 

in tumours by means of combined PET and MRI-CEST measurements. The herein reported results show that 

this approach is feasible and it may be a valuable tool for non-invasive imaging-based metabolic 

phenotyping of tumours. 

18F-FDG-PET imaging is a well established, clinically used modality in the diagnosis and management of 

various malignancies, showing that the vast majority of cancers exhibit significantly increased glucose 

uptake compared with normal tissue. The increased glycolysis of tumour cells, even in the presence of 

adequate oxygen supplies, results in a significant decrease of the extracellular pH. There is now god 

evidence that the increased consumption of glucose is instrumental for the production of H+, which promotes 

tumour cell migration, invasion and angiogenesis (33). Increased glucose consumption and increased acid 

production are therefore tightly correlated and their relative assessment may be very useful for pursuing a 

better understanding of the underlying biology. The herein reported results show that a good correlation 

exists between 18F-FDG-PET uptake (associated with the metabolic characteristics of the tumour) and MRI-

CEST extracellular pH (associated with the acidification of the extracellular tumour microenvironment). In 

the investigated breast tumour model, we observed a significant inverse correlation between 18F-FDG uptake 

and extracellular pH (Fig. 5). Moreover, it has been found that tumour regions with higher extracellular 

acidosis correspond to tumour regions with high 18F-FDG uptake (Fig. 4c). Notably, the observed behaviour 

is in agreement with the expectation that glycolysis and production of acids are increased in tumours cells 

compared to normal cells (34). Previous studies investigated the relationship between tumour acidosis and 

lactate production, but no spatial correlations have been observed, despite large amount of lactate are 

excreted by glycolytic cancer cells (13, 35). One possible explanation is related to the role of lactate in 
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tumour metabolism, for which recent findings have shown that is not merely the final product of glycolysis, 

but it can be re-used as an energetic fuel for oxidative metabolism (36). Therefore, the lack of a direct 

correlation between lactate and acidosis may not be unexpected accordingly to the differential use of this 

molecule. 

Interest in measuring and in vivo imaging of tumour pH has driven the development of pH-sensing contrast 

agents, in particular in the MRI field, in order to obtain pH maps of both extracellular and intracellular 

compartments (5, 14, 37). MRI-CEST based approaches have recently emerged as a powerful tool for 

imaging pH, thanks to the development of ratiometric methods that rule out the need to know the contrast 

agent concentration (18, 22, 38-40). In addition, our approach, in comparison to others, allow measurements 

of tumour pHe with high spatial resolution, high temporal resolution and can be applied to tumours as small 

as few mm3 (41). Cancers display various kinds of heterogeneity, including metabolism and vasculature, but 

many approaches are limited to volume-averaged tumour pHe measurements that cannot account for tumour 

heterogeneity (42). In contrast, CEST-pH imaging allows the non-invasive characterisation of in vivo pHe 

distribution on a voxel-basis. Owing to the high spatial resolution of MRI-CEST images, the pHe values 

distribution within a tumour ROI can also be analysed by conventional histogram analysis as an improved 

method to assess pHe heterogeneity (Fig. 4c). Our technique, owing to the injection of an extracellular agent, 

allows also the assessment of the extravasation fraction, a surrogate marker of tumour perfusion. We 

observed inhomogeneous iopamidol distribution within the tumours, likely reflecting low and high 

vascularised area in the heterogeneous tumour region, as confirmed by immunohistochemical analysis of 

tumour vascularisation (Supplementary Fig. S1). Similar findings have also been reported upon comparing 

several iodinated contrast media, in the same breast tumour model (43). It was found that the heterogeneous 

distribution of x-ray radiographic molecules in the extracellular-extravascular space of the tumour, as 

measured by the CEST approach, correlates well with the extravasation quantified by the CT approach, 

hence dependent on tumour vascular volume and vessel permeability characteristics. 

Besides the capability of measuring tumour pHe, novel proposed approaches should be able to provide a 

precise read-out of pH changes. It is known that administering sodium bicarbonate significantly alter tumour 

pHe (44). We achieved similar results with mice drinking ad libitum bicarbonate water (200 mM): the 
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average tumour pHe in the non-modulated mice was significantly more acidic than the average pHe of 

tumours in mice having received 5 days of bicarbonated water (Fig. 3). Thus our approach is enough 

sensitive to detect small pHe changes upon pharmacological treatment, thus opening the possibility to exploit 

pH imaging as a surrogate marker of therapeutic response to novel anticancer therapies (45).  

Overall, as the information provided by each readout (18F-FDG uptake and pH) reflect a different aspect of 

the same altered metabolic behaviour, the combination of the two metrics should results in a synergic action 

of the two modalities. Furthermore, the availability of combined PET/MRI scanners for the simultaneous 

acquisition of molecular and functional data with high temporal and spatial fusion accuracy are already 

available both at preclinical and clinical level, thus making pH mapping and 18F-FDG uptake a powerful tool 

for tumour metabolic phenotyping (46, 47). However, despite the extracellular acidity is considered a 

distinctive feature of cancer, the exploitation of pH sensing agents has been commonly limited to preclinical 

studies, since no investigations on their safety profiles have been reported so far for their use in patients. On 

the contrary, the method presented here uses a pH-responsive agent that is a FDA approved contrast media 

within the CT modality, hence a fast translation to patients for assessing tumour pH is expected; in fact, an 

early phase clinical trial to estimate tumour extracellular pH in women with early stage breast cancer is 

currently ongoing (48). Moreover, analogues approaches based on other (radio)-tracers specific for 

physiological processes such as proliferation, hypoxia and amino acid transporters may likely widen the 

impact of hybrid PET/MRI measurements for tumour characterisation (49, 50).  

One of the limitations of our study is that pH and 18F-FDG measurements have been performed on the same 

animal but not simultaneously on the same scanner, therefore the time gap between the two measures may 

likely introduce some bias on the metrics that we are comparing. However, the aim of this study was the 

correlation between the mean tumour values of 18F-FDG uptake and pHe, and further combined MRI/PET 

studies will allow investigating the true temporal and spatial correlation between the two estimates. 

 

CONCLUSION 
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In summary, the herein reported results, although limited to a breast cancer murine model, have shown the 

correlation between tumour extracellular pH and 18F-FDG uptake. MRI-CEST tumour pH mapping provides 

significant, complementary information to 18F-FDG-PET in the characterisation of the cancer phenotype, as 

the high spatial resolution associated to MR images provides additional insights on tumour perfusion 

heterogeneity. Furthermore, as the increased acidification of the extracellular tumour microenvironment can 

be targeted with specific novel therapies, this combined imaging approach could be exploited as a novel 

imaging biomarker of therapeutic response. 
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TABLES 

Table 1. Pearson correlation coefficients for [18F]-FDG PET, CEST-pH data and tumour volume 

Measures Volume %ID/g SUV SUVmax pH Extravasation  

Volume 1       

%ID/g -0.671** 1      

SUV -0.710**  0.959** 1     

SUVmax -0.764**  0.932**  0.952** 1    

pH  0.519**  -0.552** -0.587** -0.525** 1   

Extravasation    0.143   0.283   0.208    0.082 -0.025 1  

Abbrevations: SUV = mean standard uptake value; SUVmax= maximum SUV. 
All correlations were calculated using independent data points from 23 tumours. Intermodality correlations are shown in 

boldface type. 
*p<0.05 **p < 0.01 
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FIGURE LEGENDS 

Fig. 1 Iopamidol pH responsiveness at 3T. (a) Z-spectra of PBS buffered solutions of iopamidol (30 mM) at 

three representative pH values  of 6, 6.5 and 7 (B1=3 µT, RF saturation time = 5s, 310K). (b) CEST ratio 

(ST%) calculated from the asymmetry analysis as a function of pH. (c) Plot of the ratiometric (RST) values in 

the pH range from 6 to 7.4. (d) Comparison of pH values determined by the iopamidol MRI-CEST method 

versus pH-meter measured values. 

Fig. 2 Representative MRI-CEST images of a breast tumour bearing mouse showing difference ST% 

contrast map (calculated as ST% after injection – ST% before injection) at 4.2 ppm (a) and at 5.5 ppm (b), 

respectively, pH map (c) and extravasation map (d) overimposed onto the anatomical T2w-image. Pre- and 

post- iopamidol injection ST% curves from ROIs including the two tumours are shown in (e). 

Fig. 3 Average tumour pHe values in mice drinking natural or bicarbonated water showing a statistically 

significant increase of tumour pHe after 5 days of bicarbonated water (a). Representative tumour pHe maps 

showing higher percentage of pixels with more acidic values for control mice (b) in comparison to sodium 

bicarbonate treated ones (c). 

Fig. 4 Combined (a) PET/CT and (b) MRI T2w/CEST pH images of a representative TS/A tumour bearing 

mouse with different 18F-FDG uptake levels: PET images showing tumour area with higher 18F-FDG uptake 

levels correspond to pH maps with lower tumour extracellular pH values. Distribution histogram plots (c) of 

MRI-CEST pH values within two ROIs designed in the PET image (b) for tumour regions characterised by 

high (ROI 1) and low (ROI 2) FDG uptake values. ROI1 shows more acidic values in comparison to ROI2 

(mean pH = 6.5 ±0.3 and 6.8 ±0.5 for ROI1 and ROI2, respectively). 

Fig. 5 Scatterplots with regression line (solid line) showing correlations between multi-modality PET/MRI 

calculated estimates. (a) %ID/g 18F-FDG uptake as a function of extracellular tumour pH. (b) SUV 18F-FDG 

uptake as a function of extracellular tumour pH. (c) SUVMAX 18F-FDG uptake as a function of extracellular 

tumour pH. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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