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ABSTRACT 24 

A strain of Saccharomyces (S) cerevisiae (ISE19), which displayed an initial good adaptation to a 25 

high sugar medium with increased acetate and glycerol production but weak overall 26 

growth/fermentation performances, was selected during the alcoholic fermentation of Cortese grape 27 

must. To obtain insights into the metabolic changes that occur in the must during growth in particular 28 

conditions (high ethanol, high residual sugars and low nitrogen availability) leading to a sluggish 29 

fermentation or even fermentation arrest, comparative in-gel proteomic analyses were performed on 30 

cells grown in media containing 200 g/L and 260 g/L of glucose, respectively, while the YAN (Yeast 31 

Assimilable Nitrogen) concentration was maintained as it was. Two post-translationally different 32 

arginine synthases (pIs 5.6 and 5.8) were found in higher abundances in the high glucose-grown cells, 33 

together with an increased abundance of a glycosyltransferase involved in cell-wall mannans 34 

synthesis, and of two regulatory proteins (K7_Bmh1p and K7_Bmh2p) that control membrane 35 

transport. In parallel, a proteinase K-like proteolytic enzyme and three other protein fragments 36 

(Indolepyruvate decarboxylase 1, Fba1p and Eno1p) were present in lower abundances in the high 37 

glucose condition, where oxidative stress and cell cycle involved enzymes were also found to be less 38 

abundant. The overall results suggest that in stationary phase stress conditions, leading to stuck 39 

fermentation, S. cerevisiae ISE19 decreases cell replication, oxidative stress responses and proteolytic 40 

activity, while induces other metabolic modifications that are mainly based on cell-wall renewal, 41 

regulation of the solute transport across the cell membrane and de novo arginine synthesis.  42 

Key words: in-gel-proteomics, glycolytic enzymes, cell-wall mannans, proteins controlling stress-43 

induced apoptosis, K7_Bmh. 44 
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 The paper describes what happens at a proteomic level when S. cerevisiae ISE19 is grown in 48 

high sugar grape musts in a condition leading to a fermentation arrest.  49 

 A decreased abundance of proteolytic enzymes and enzyme fragments was observed in a high 50 

sugar condition, in agreement with recent literature data that have reported how the low 51 

expression of proteases in glucose-rich musts can cause the arrest of alcoholic fermentation. 52 

 An increased abundance of cell-wall renewal enzymes and of the proteins that regulate 53 

membrane transport underline an effective stress response concerning envelope structures.  54 

 Apart from proline, arginine could also play a direct protective role against osmotic stress in 55 

S. cerevisiae ISE19 (as previously demonstrated for cold stress), since its biosynthetic 56 

pathway seems to be activated. 57 

 58 

 59 
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During industrial processes, and in particular during alcoholic fermentation, microorganisms 70 

encounter several stressors that can compromise their life, their performances and the achievement of 71 

satisfactory amounts of the desired end-product. The most common environmental factors that can 72 

affect yeasts growth and end-product biosynthesis are must pH, temperature, redox potential and 73 

osmolarity (Auesukaree, 2017; Matallana and Aranda, 2017). Saccharomyces cerevisiae is the most 74 

prominent microorganism involved in wine production. During alcoholic fermentation, the microbial 75 

growth phases are characterized by different metabolic events. During the lag-phase, yeast cells adjust 76 

their metabolism to adapt to the high initial glucose/fructose concentrations and to be able to grow 77 

and convert these sugars into ethanol. One-third of the total ethanol and most of the glycerol amounts 78 

are produced in the exponential phase, in parallel with the/an increase in biomass. The remaining two 79 

thirds of ethanol are generated in the stationary phase, together with the aromatic compounds that 80 

determine the final sensory profile and quality of the wine (Salmon and Barre, 1998). In all these 81 

stages, yeast cells undergo stress  such as: I) low temperatures (Pizarro et al, 2008), II) osmotic stress 82 

(Yale and Bohnert, 2001), III) anaerobiosis (Kwast et al., 2002) IV) lack of nutrients (Boer et al., 83 

2003) and V) ethanol stress (Alexandre et al., 2001). 84 

It is well known that a too high osmotic strength (high solute-low solvent concentration) can 85 

damage microbial physiology, above all by subtracting the solvation water that stabilizes the tertiary 86 

and quaternary structures of proteins (Goldbeck et al., 2001). A salty or sugar-rich environment 87 

prevents or delays growth (Hohmann, 2002). Some aspects of microbial responses to osmotic stress 88 

have long been elucidated: for instance, salt damage is linked to an altered ionic strength, whereas a 89 

high sugar content can cause osmotic stress, without altering the surface charges of the 90 

macromolecules (Lages et al., 1999). 91 

As far as yeasts are concerned, it has been established that cells exposed to hyperosmotic NaCl 92 

concentrations adapt by increasing glycerol uptake inside the cell (Lages et al, 1999), or they die 93 

through an apoptotic process (Huh et al, 2003). However, this apoptotic process is the consequence 94 
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of an ion disequilibrium rather than of hyperosmotic stress. It has been demonstrated that sugar 95 

hyperosmotic stress (70% glucose or sorbitol w/w) can induce both morphological (chromatin 96 

condensation along the nuclear envelope, mitochondria swelling, DNA strand breaks) and 97 

biochemical (reactive oxygen species (ROS) production, meta-caspase activation) events that lead to 98 

cell apoptosis. Cell death is growth-phase dependent, with stationary cells displaying the highest 99 

death rate (Silva et al., 2005). 100 

Ethanol stress affects cell viability to a great extent at the final phase of batch fermentation. 101 

Toxicity is mainly due to the interaction of ethanol with the cytoplasmic membrane (and, to a lesser 102 

extent, to cytosolic enzyme damage). The action of ethanol on both the phospholipid heads and 103 

membrane proteins is counteracted by the cell, primarily through membrane-level modifications. 104 

Increases in the content of unsaturated fatty acids and ergosterol and reductions in the membrane 105 

protein content are the best known yeast responses to ethanol stress (Vanegas et al, 2012). These 106 

changes lead to consequences such as: i) variation of the proton flow, which in turn impairs pH 107 

homeostasis, ii) reduced capability of Ca++ and Mg++ translocation, iii) impaired activity of active 108 

membrane transporters (Bisson, 1999). The overall result is an alteration of membrane fluidity that 109 

strongly affects the trafficking capability of the cell.  110 

In a previous investigation, conducted in the very early stages of fermentation, metabolites 111 

and transcripts were evaluated for several yeasts strains grown in a hyperosmotic medium (Noti et 112 

al., 2015). A high glycerol and acetate producer, that is S. cerevisiae (strain ISE19), was detected. 113 

This phenotypic trait correlates with an initial good growth and alcohol production in a sugar rich 114 

environment, but then with weaker performances when the simultaneous effects of prolonged 115 

hyperosmosis, an increasing ethanol concentration and a low nitrogen content are present. These 116 

stressing conditions, which occur in must fermentations with a high sugar content, frequently lead to 117 

stuck or sluggish fermentations (Bisson, 1999). The present research is aimed at shedding light on 118 

the effects triggered by the late fermentation phase stress on the protein profiles of S. cerevisiae 119 



6 
 

ISE19. An in-gel approach was applied to compare the proteomes of high sugar grown cells and 120 

control cells both harvested in stationary phase, in order to identify metabolic indicators of cell stress 121 

in the incoming sluggish or arrested fermentation  122 

MATERIALS AND METHODS 123 

Overall strategy  124 

Comparative proteomic analyses of a high glycerol and acetate producer, namely, the S. 125 

cerevisiae strain ISE 19, which belongs to the CREA-Centro di Ricerca Viticoltura ed Enologia 126 

culture collection (Asti, Italy), and which was grown in natural Cortese must with both a regular and 127 

a high sugar content, in the advanced phases of fermentation, have been performed. 128 

Fermentation conditions 129 

S. cerevisiae ISE 19 was pre-cultured in YPD at 26°C for 48 h. It was subsequently inoculated, 130 

at a concentration of 5*106 cell/mL (total cell), in 0.22 µm filter sterilized Cortese white grape must 131 

(800 mL of culture). The main parameters of the must were: pH 3.30, 200 g/L of reducing sugar and 132 

200 mg/L of Yeast Assimilable Nitrogen (YAN). Two different conditions were tested in the 133 

comparative proteomic study. The former (ISE19g-) was tested with a regular amount of sugar (200 134 

g/L), and the latter (ISE19g+) was tested by adding glucose/fructose 50% w/w to the must to reach 135 

260 g/L of sugar and by restoring the YAN to 200 mg/L. Fermentations were performed at 20°C 136 

without stirring, and three biological replicates were set up. Samples were harvested during 137 

fermentation: growth was estimated by optical density (OD) at 600 nm calculating cell/mL by 138 

calibration curve done with Bürker chamber count, ethanol and acetate were determined by enzymatic 139 

analysis (R-Biopharm AG, Darmstadt, Germany), the residual sugar content (glucose and fructose) 140 

and glycerol were evaluated by means of an HPLC equipped with a refractometric detector, using a 141 

Rezex RCM-Monosaccharide column (dimension: 300 x 7.8 mm; particle size 8 µm; Phenomenex, 142 

Torrance, USA). The adopted conditions were the following: eluent: water; column temperature: 143 

85°C; flow: 0.35 mL/min; injection volume: 20 µL. Samples for the proteomic analyses were 144 
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harvested at 175 g/L of consumed sugar(s), at 11 days of fermentation for ISE19g+ and 14 days of 145 

fermentation for the ISE19g- test. Samples were pelleted and immediately frozen. At this 146 

fermentation stage, residual sugar contents of 25 g/l and of 85 g/l were present in the low and high 147 

sugar media, respectively. 148 

 Preparation of the protein extracts 149 

Yeast cells (50 mL of about 9*107 total cells/mL) were washed with 50 mL of a 0.85% NaCl 150 

solution, centrifuged (5000xg for 20 min) and the supernatant was discarded. Cell lysis was obtained 151 

by re-suspending the pellet with 3 mL of lysis buffer (Tris-HCl 50 mM, pH 7.3, EDTA 1mM), and 152 

by adding an equal volume of 0.5 mm glass beads to break the cells (10 cycles of 20 minutes on ice, 153 

vortexing at maximum speed). At the end of the procedure, centrifugation was carried out (5000xg 154 

for 20 minutes at 4°C), and the supernatant was transferred to a new vial for total protein 155 

quantification.  156 

Protein quantification was performed using the "2D Quant kit" (GE Healthcare) (UV analysis 157 

at 480 nm), according to the manufacturer’s instructions. After the preliminary preparation, protein 158 

samples were ultra-centrifuged (100000xg for 1 hr. at 4°C) in a Beckman L8-60M Ultracentrifuge 159 

(Type 60 rotor). The supernatant containing the soluble proteins was recovered, supplemented with 160 

10 µL/mL of Nuclease Mix (GE Healthcare) and dialyzed/concentrated against four volumes of 161 

bidistilled water in 10 KDa membrane cutoff tubes (Amicon), at a final volume of 1 mL. A second 162 

quantification was performed, followed by methanol/chloroform protein precipitation, according to 163 

Wessels and Flugge (1984). The obtained pellet was then solubilized in a rehydration solution (6.5 164 

M urea, 2.2 M thiourea, 4% w/v CHAPS, 5 mM Tris-HCl, pH 8.8, 0.5% IPG buffer (GE Healthcare), 165 

100 mM DTT). The protein concentration was evaluated again by using the 2D Quant kit (GE 166 

Healthcare). 167 
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 Two dimensional electrophoresis 168 

Isoelectric focusing 169 

Thirteen cm long strips were used, over  a 4-7 pH range, for Isolectric Focusing (IEF). Three 170 

technical replicates were performed for each of the three biological replicates in the two different 171 

fermentation conditions (glucose-enriched and control). About 275 µg of extracted proteins was 172 

loaded for each strip. IEF was performed using IPGphor (GE Healthcare) at 20°C, with 66.000 Vh, 173 

at 8000 V, after 10 h of active rehydration (50 V). 174 

The IEF strips were then incubated at room temperature for 15 min in a reduction buffer (6 M 175 

urea, 30% v/v glycerol, 2% w/v SDS, 50 mM Tris-HCl pH 8.6), and enriched with 10 mM DTT. They 176 

were subsequently incubated for 15 min in an alkylation buffer (6 M urea, 30% v/v glycerol, 2 w/v 177 

SDS, 50 mM Tris-HCl pH 8.6), and enriched with iodoacetamide 4.5% w/v to alkylate the sulfide 178 

groups and prevent re-oxidation during electrophoresis. 179 

SDS-PAGE 180 

After equilibration, the strips were sealed at the top of 1.00 mm vertical second dimension 181 

gels with 0.5% of boiling agarose.  SDS-PAGE was carried out for each sample on 11.5% T and 3.3% 182 

C acrylamide (Biorad) on homogeneous gels. The running buffer was 25 mM Tris, 192 mM glycine, 183 

0.1% SDS, pH 8.3. The running conditions were: 600 V constant voltage, 20 mA/gel, 60 W for 15 184 

min at 15°C, 600 V constant voltage, 40 mA/gel, and 80 W for about 2.5 h at 15°C. The used 185 

molecular weight marker was a Low Mr Electrophoresis Calibration Kit (GE Healthcare). 186 

The gels were automatically stained, using Processor Plus (Amersham Biosciences), with 187 

freshly prepared Colloidal Comassie Blue stain (Neuhoff et al., 1988). After 12 hours of staining, the 188 

gels were dried in a GD 2000 Vacuum Gel Drier System (GE Healthcare). 189 
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Image analysis 190 

2-DE gel images were acquired using a SI Molecular Dynamics Personal Densitometer 191 

(Amersham Biosciences). Image analysis was performed using the Progenesis PG 220 software (Non 192 

Linear Dynamics). Spot detection was automatically performed using the 2005 detection software 193 

algorithm. 194 

Statistical analysis 195 

Nine replicates were performed for each 2-DE gel, and for each condition (high and normal 196 

sugar contents in the culture media): three analytical replicates were conducted for each biological 197 

replicate. Spot intensities were measured, via normalized spot volumes, using the "total quantity in 198 

valid spot" standardization system. The spot volumes were statistically analyzed by means of the 199 

Student’s T-test: the mean values were considered significantly different when p<0.05. Protein spots 200 

with a fold change ≥ 2 and p<0.05 were selected for MS analysis. 201 

Mass spectrometry analysis and protein identification 202 

The selected spots were identified by means of MALDI-TOF/TOF mass spectrometry, using 203 

an Ultraflex III MALDI TOF/TOF instrument (Bruker Daltonics, Bremen). The spots withdrawn 204 

from the 2DE gels were destained overnight (with a 50 mM ammonium bicarbonate and 40% v/v 205 

ethanol solution), washed three times for 10 min with acetonitrile and then dried in a Speedvac device. 206 

The proteins were in gel digested with trypsin (Promega, Madison, USA), and their spectra were 207 

acquired as described by Zava et al. (2009). The MS-Fit software package (http://prospector.ucsf.edu) 208 

was used to search against the NCBI 2015.3.10 database, using the peptide mass fingerprinting 209 

method (PMF) (Pappin et al., 1993). The following parameters were set for the searches: S-210 

carbamidomethyl derivate on cysteine as a fixed modification, oxidation on methionine as a variable 211 

modification and two missed cleavage sites for trypsin digestion. The peptide mass tolerance was 20 212 

ppm. 213 
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RESULTS 214 

Fermentation performance 215 

Figure 1 shows the fermentation profiles of the two tested conditions (with or without added sugars), 216 

which were obtained by monitoring sugar consumption and ethanol production. The fermentation of 217 

Cortese must with the added sugars, initially shows a better performance with a higher daily rate of 218 

ethanol production.  The conversion of the sugars into ethanol slowed down from the eleventh day of 219 

fermentation onwards, until it reached a complete stop on the eighteenth day of fermentation. Stuck 220 

fermentation occurred at an alcohol content of about 13.40 vol%, with 36 g/L of residual sugar, 221 

mainly consisting of fructose. The fermentation profile of the must not supplemented with sugars was 222 

regular, with complete exhaustion of the residual sugars and a final ethanol concentration of about 223 

12% (v/v). The growth kinetics in the two conditions (Fig. 2) showed a higher yeast population in the 224 

supplemented must, which reached a maximum of about 120 x 106 cell/mL after six days of 225 

fermentation, whereas the must without any sugar addition underwent a maximum growth of 100 x 226 

106 cell/mL, which was reached after seven days of fermentation. From the 14th day onwards, the 227 

yeast population tended to decrease in both sugar conditions reaching similar values on day 21.  228 

Glycerol and acetate production differed in the two tests in relation to the initial sugar content (Fig. 229 

3). In grape must with higher sugar concentrations, yeasts showed an acetic acid production rate 230 

constantly higher as compared to the fermentation with regular sugar, reaching 0.60 ± 0.03 (SD) g/L 231 

after 7 days. Later, acetate accumulation proceeded slower, showing, at the end of fermentation, 232 

concentration of 0.68 ± 0.03 g/L (Fig. 3). Regular sugar test showed a decrease in the acetate 233 

production rate after 3 days and reached a maximum of 0.5 ± 0.02 g/L acetate at the end of the 234 

fermentation. Similarly, the test with added sugar exhibited a higher concentration also for glycerol 235 

that occurs since the beginning of the fermentation and reached 7.0 ± 0.12 compared to a max of 6.30 236 

± 0.28 in fermentation with regular sugar. However, glycerol showed a more regular biosynthetic rate 237 

as compared to the production of acetate and its concentration remains stable under both conditions 238 

(high and low sugar) after 9 days of fermentation (Fig. 3)  239 
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Comparative proteomic studies 240 

Protein profiles of the high glycerol and acetate producer S. cerevisiae ISE 19 grown in regular 241 

(ISE19g-) and high (ISE19g+) sugar contents, respectively, have been analyzed at a critical moment 242 

of the cell growth, that is, when the simultaneous presence of osmotic stress, ethanol stress and 243 

nitrogen depletion occurs. Samples were harvested at the stationary phase (Fig. 2), when 10.5% 244 

vol/vol of ethanol was produced in both conditions, whereas the remaining residual sugars were 25 245 

and 85 g/L in  ISE19g- and ISE19g+, respectively (Fig. 1). Protein concentrations at the end of the 246 

extraction process were 9.97±0.71 µg/µL in ISE19g- and 11.78±0.75 µg/µL in ISE19g+. 247 

Comparative proteomic analyses were performed on the total cell protein extract (in toto proteome) 248 

in the acidic pI range (pH 4-7), where most yeast proteins can be found, in order to detect the presence 249 

of the differentially abundant proteins.  250 

Protein identification 251 

The 2DE allowed a good protein separation degree to be obtained for each considered sample. 252 

Image analysis of the 2DE gels revealed differences in spot intensity in the two experimental 253 

conditions. (Figure 4).  254 

At first sight, a greater total protein pool abundance in gels loaded with extracts from cells 255 

grown in high sugar condition is detectable. Image analysis revealed 28 statistically significant 256 

different abundant spots. Three spots were absent in the high sugar condition and four spots were 257 

present exclusively in the high sugar condition. Of the remaining spots, 7 were present in higher 258 

abundances and 14 in lower abundances in the condition stimulated with a high sugar content. The 259 

spot identifications and assignment of the proteins to specific metabolic pathways are shown in Table 260 

1.  261 

DISCUSSION 262 

The protein expression profiles of S. cerevisiae ISE19, in an advanced stage of must fermentation 263 

with different initial sugar concentrations, have been analyzed in this work. The imbalance condition 264 



12 
 

between the must sugar content and the presence of Yeast Assimilable Nitrogen (YAN) has been 265 

recognized as being the primary cause of fermentative arrests, even though the molecular mechanisms 266 

involved in sluggish fermentation and the arrest of fermentation are still unclear (Bisson 1999).  267 

In the present study, the fermentation with the higher sugar content initially showed a better 268 

performance, both in terms of ethanol production and cell growth, with respect to the control 269 

conditions. The difference of 60 g/l in the initial juice sugar load did not result in any extension of 270 

the lag phase, thus demonstrating strain response capacity toward the high initial osmotic pressure. 271 

At this early stage, the ISE19 strain was probably favored by a higher carbon source availability, 272 

whereas the nitrogen concentration was not yet a limiting factor. The stuck fermentation, which 273 

occurred at 13.40% ethanol at the end of the stationary phase, was presumably due to the low nitrogen 274 

availability, which is known to be a strong limiting factor (Christ et al., 2015). Actually, owing to the 275 

higher sugar concentration and the good osmotolerance of this strain, the biomass yield was higher. 276 

In this condition, there is an increased need of nitrogen to support growth. Moreover, the concomitant 277 

presence of several stressors, that is, a high ethanol content, the osmotic pressure of the residual sugars 278 

and the accumulation of toxic compounds, such as medium-chain fatty acids, may have contributed 279 

to the slowing down of the fermentative efficiency, as previously suggested by other authors (Lafon-280 

Lafourcade et al., 1984, Borrull et al., 2015). When fermentation arrest was observed, the main sugar 281 

present was fructose (data not shown), due to the lower affinity of the hexose transporters (HXT) with 282 

fructose and the differences in the efficiency of the hexokinases (HXK) activity toward this sugar 283 

observed in yeasts (Bisson, 1999, Berthels et al., 2008). 284 

S. cerevisiae cells react to stress through general and/or specific response mechanisms. Global 285 

changes in the majority of transcripts have been observed during the fermentation process of wine 286 

making, thus highlighting a general adaptive response to the typical stressors of alcoholic 287 

fermentation (Marks et al., 2008). In the early fermentation stages, the greatest environmental 288 

constraint is osmotic stress, which generates a water flow from inside to outside the cytoplasmic 289 
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membrane. Later, the yeast cell adapts itself through multi-level specific response mechanisms 290 

(Hohmann, 2002; Yanget al., 2006, Zuzuarregui et al., 2006; Tapia et al., 2015). However, the main 291 

response of yeast cells to high-osmolarity is the production of glycerol, the best osmotic balance 292 

stabilizer (Hohmann, 2002). Glycerol accumulation has been shown to account for 95% of the internal 293 

osmolarity recovery (Reed et al., 1987). 294 

It should be underlined that, from a metabolic standpoint, glycerol can originate from 295 

glycolysis, at the expense of the biomass, by diverting dihydroxyacetonephosphate (DHAP) from the 296 

glycolytic flux after sensing altered osmolarity (Remize et al., 2003; Capaldi et al., 2008), thus 297 

performing the so-called glyceropyruvic fermentation (Fig 5). However, during hyperosmotic stress, 298 

yeasts can also enhance the intracellular glycerol content by limiting the glycerol flux outside the 299 

cytoplasmic membrane with closure of aquaglyceroporin Fps1 channels (Oliveira et al., 2003) and 300 

activating synthesis of glycerol transporters encoded by the STL1 gene (Petelenz-Kurdziel et al., 301 

2013). These proton symport systems can enhance the active uptake of external glycerol, which in 302 

turn is used both as a carbon source and during adaption to osmotic stress (Ferreira et al., 2005) and 303 

temperature (Tulha et al., 2010). Transcriptional and non-transcriptional mechanisms are involved in 304 

these flux regulations (Hohmann, 2009; Ahmadpour et al., 2014). Along with the osmo-adaptation 305 

mechanism, glycerol production during fermentation is the result of the redox balance control 306 

mechanism set up to oxidize the excess of NADH produced in the formation of 1,3-307 

diphosphoglycerate starting from the 3-phospate glyceraldehyde in glycolysis (Ansell et al., 1997). 308 

On the other hand, in order to balance the excess of NAD+ generated by the initial formation of the 309 

osmo-protective glycerol, the cell utilizes NAD + dependent aldehyde dehydrogenases, synthesizing 310 

acetate (Navarro-Aviño et al., 1999, Pigeau and Inglis, 2005).  In the present investigation, the higher 311 

glycerol and acetate production observed in must with added sugar reflects the mechanism for 312 

adaptation to hyperosmosis and the successive redox regulation during alcoholic fermentation 313 

according to the mechanisms outlined above.  314 
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No apparent modifications concerning the glyceropyruvic pathway (Fig 4) were observed, at 315 

a proteomic level (Tab.1), after prolonged exposure of S. cerevisiae ISE 19 to high sugar environment 316 

in a condition of incoming sluggish and stuck fermentation. As far as the functional state (open or 317 

closed) of the aquaglyceroporin Fps1 channels is concerned, no conclusion can be reached from the 318 

proteomic studies. However, the regulatory proteins K7_Bmh2p (spot 1687B) and K7_Bmh1p (spot 319 

1689B), which control the formation of the vesicles involved in transport and exocytosis, were found 320 

to be present, but only in the hyperosmotic condition. These proteins, which belong to the 14-3-3 321 

gene family, are also involved in the protection against stress-induced apoptosis, and they play an 322 

important role in the post-transcriptional control of yeast proteins (Clapp et al., 2012).  323 

Peculiar results concerning glycolysis are worth discussing. Three enzymes of the alcoholic 324 

fermentation pathway were present, with higher abundance in the sugar-stimulated condition: 325 

fructose biphosphate aldolase (Fba1p) (spot 1415B), phosphopyruvate hydratase (Eno 2 p) (spot 326 

1378B), and pyruvate decarboxylase (Pdc1p) (spots 1331B, 1564B and 1569B). The latter enzyme, 327 

converting pyruvate into acetaldehyde and having TPP as a cofactor, was present in three spots 328 

displaying different isoelectric points (6.1, 5.8 and 5.9 respectively) and the same molecular weight, 329 

thus suggesting that they are the result of post-translational modifications of the same gene product. 330 

As far as the other two enzymes are concerned, the higher abundance of Fba1p can be exploited to 331 

supply more DHAP for glycerol biosynthesis whose greater production has actually been observed in 332 

yeasts during high sugar fermentation (fig. 3b). The higher abundance of Eno2p is in agreement with 333 

the fact that Eno2p is the true glycolytic enzyme, and that glucose can act as an inducer of its 334 

synthesis, as previously observed (Kornblatt et al., 2013).  335 

Other enzymes involved in glycolysis/alcoholic fermentation are present in lower abundances 336 

in high osmotic condition-grown yeasts. The low level of enolase Eno1p (spot 1434A) (25 fold less 337 

abundant in high glucose) is consistent with the known repression on the encoding gene exerted by 338 

glucose (Kornblatt et al., 2013). Previous studies showed that Eno1p (as well as the oxidative alcohol 339 
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dehydrogenase ADH2) is more abundant in yeast cells grown in media containing ethanol, thus 340 

suggesting a gluconeogenic rather than a glycolytic role (Futcher et al., 1999). Two triose-phosphate 341 

isomerase Tpi1 (spot 1519A) and Tpi1p (spot 1515A) enzymes, with different entry codes 342 

(NP_010335 and EGA87556 respectively) (probably the products of two different genes), were 343 

present in low abundance. Triose phosphate isomerase has the function of maintaining a correct 344 

balance between glyceraldehyde phosphate (GAP) and DHAP (derived from fructose 1.6 345 

biphosphate), and of supplying glycolysis with GAP. A part of the DHAP is probably necessary, in 346 

the hyperosmotic condition, to feed the glyceropyruvic route (Fig.5), hence triose phosphate 347 

isomerase has to work at a basal level to prevent all the DAPH from being converted into GAP. Three 348 

spots (1396A 1400A and 1419A), corresponding to oxidative alcohol dehydrogenases (ADHs), were 349 

found to be of low abundance in high glucose-medium grown cells. The inhibition of oxidative ADHs, 350 

together with the enhanced abundance of pyruvate decarboxylase, suggests the activation of alcoholic 351 

fermentation.  352 

The overall results concerning glycolysis (in the cells grown in the hyperosmotic medium) 353 

suggest: i) an initial activation of the glycolytic flux, due to an enhanced abundance of fructose 1,2 354 

biphosphate aldolase, ii) a slight slowing-down of glycolysis, due to a decreased abundance of triose-355 

phosphate isomerase, which probably favors  glycerol synthesis and iii) an activation of the 356 

conversion of 2-phosphoglycerate to PEP through the enhanced biosynthesis of Eno2p (the glycolytic 357 

enzyme) and a decreased abundance of Eno1p (the gluconeogenic enzyme). A stimulation of the 358 

alcoholic fermentation in the hyperosmotic medium was obtained, as proved by the enhanced 359 

abundance of pyruvate decarboxylase and lower abundance of oxidative alcohol dehydrogenases. It 360 

is possible to hypothesize that alcoholic fermentation proceeds, even in a relatively lowered glycolytic 361 

flux, by exploiting also the pyruvate that comes from other paths. 362 

Three fragments originating from Pdc1p (spot 1354A), Fba1p (1500A) and Eno1p (1507A) 363 

were found to be less abundant or totally lacking in a hyperosmotic medium. Since these fragments 364 
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are the result of a proteolytic action over the native protein, this finding suggests that proteolysis 365 

occurs to a lesser extent in high glucose conditions. As a support to this, the only proteolytic enzyme, 366 

Proteinase K (spot 1494A) was found in a lower abundance in the high-sugar medium grown cells. 367 

These results are in agreement with a recent report that suggests that the low expression of proteases 368 

in glucose-rich musts can cause fermentation arrests, due to the lack of nitrogen scavenger activity 369 

exerted by proteolytic enzymes (Szopinska et al., 2016). This is probably what also occurs for S. 370 

cerevisiae ISE 19. 371 

Erasmus et al. (2003) reported an up-regulation of genes for glycolysis and for the pentose 372 

phosphate pathway, whereas genes involved in the de novo biosynthesis of purines, pyrimidines, 373 

histidine and lysine were down-regulated during hyperosmotic stress. These findings have also been 374 

confirmed at a proteomic level (Pham and Wright, 2002).  375 

In the present work, no modifications have been observed in the biosynthetic pathway of 376 

histidine. However, the enzymes involved in amino acid biosynthesis displayed fold changes in the 377 

high glucose-grown cells. In fact, diaminopimelate epimerase (Yhi9p) (spots 1490A and 1493A), a 378 

piridoxalphosphate (PLP)-dependent isomerase involved in the so-called aspartate pathway leading 379 

to the synthesis of lysine, displayed a low abundance in the hyperosmotic medium, in agreement with 380 

the data reported above (Pham and Wright, 2002). On the contrary, two post-translationally different 381 

arginine-succinate synthases (Arg1p) (spot 1358B, pI 5.8 and spot 1577B pI 5.6) were more abundant 382 

(up to 10 fold) in the high sugar condition. Xu and co-workers (2011) demonstrated that arginine 383 

could protect the yeast Candida glabrata during hyperosmotic stress. Both imported (extracellular) 384 

arginine and de novo synthesized arginine lead to a higher biomass production (measured as dry cell 385 

weight). However, these authors also observed the enhanced transcription of genes encoding enzymes 386 

for arginine biosynthesis, thus suggesting that the second mechanism (i.e. de novo synthesis) is 387 

prevalent. Although a cryoprotective effect of arginine on the freezing stress of S. cerevisiae has been 388 

reported (Morita et al., 2002), the present proteomic results are the only ones that have found that 389 



17 
 

arginine is a good osmoprotectant in S. cerevisiae ISE19 as well as in Candida glabrata. Furthermore, 390 

our results support the observations of Gutierrez et al. (2012, 2015), who demonstrated that arginine 391 

exerted a positive effect (compared to other amino acids) on the growth and fermentation rate of S. 392 

cerevisiae. It is possible that arginine exerts this beneficial effect on growth not only because of its 393 

nutritional role as a nitrogen source, but also because of its osmoprotectant effect. On the other hand, 394 

arginine is one of the most abundant amino acid present in must (Gutierrez et al., 2015), and it could 395 

have contributed to an evolutionary selection of S. cerevisiae strains in this ecological niche. 396 

A glycosyltransferase, involved in the synthesis of cell-wall mannans (YJR075Wp-like 397 

protein) (spot 1688B), was only present in the high glucose concentration, thus suggesting the need 398 

of cell-wall processing and renewal during hyperosmotic stress. This is to be expected, since the cell-399 

wall of S. cerevisiae is an elastic and dynamic structure responsive to changes in the external 400 

environment, which provides osmotic and physical protection to the yeast cell. Changes the cell-wall 401 

mannan structures under osmotic stress have been previously observed in yeasts (Koyama et al. 402 

2009). On the other hand, a unique oligosaccharide modification, mannosylphosphorylation, has been 403 

demonstrated in the cell-wall mannoproteins of S. cerevisiae during cellular response to a variety of 404 

stresses, among which osmotic stress, which strongly enhances mannosyl phosphorylation (Odani et 405 

al., 1997). These authors hypothesized that mannosylphosphate transfer, which gives a net negative 406 

charge to the cell-wall, allows the formation of a hydration shell on the cell surface, resulting in yeast 407 

cell protection from high solute stress. Whether this mechanism is also operative in S. cerevisiae 408 

ISE19 during osmotic stress still has to be elucidated. 409 

An inverse correlation was found between osmotic stress and the abundance of oxidative-410 

stress related enzymes, such as catalase T (Ctt1p) (spot 1326A and spot 1743A). Szopinska et al. 411 

(2016) have recently reported that the highest transcription rate of genes involved in antioxidant 412 

activities can be found when all the fermentable sugars have been depleted. The present findings are 413 

in agreement with these observations, and confirm that oxidative stress is a statistically rare event 414 

when sugars are abundant and hence not completely consumed.  415 
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CONCLUSIONS 416 

Alcoholic and glyceropyruvic fermentation are closely linked throughout winemaking. On 417 

average, 8% of must sugars undergoes glyceropyruvic fermentation, while the remaining part is 418 

converted to ethanol. The ability to produce glycerol varies according to the yeast strain, and can 419 

therefore affect the percentage of glycerol and ethanol formed by the same amount of fermented 420 

sugars. The present proteomic results on S. cerevisiae ISE 19 have not revealed any direct activation 421 

of the glyceropyruvic pathway at stationary phase after prolonged exposure to a hyperosmotic 422 

environment, in a condition leading to stuck fermentation, although the catalytic activation of the 423 

enzymes involved in glycerol synthesis cannot be excluded. On the other hand, an overall 424 

enhancement of the abundance of the proteins involved in alcoholic fermentation, cell-wall synthesis, 425 

aromatic amino acid as well as arginine biosynthesis has been detected. No apparent increase in 426 

abundance of stress proteins has been observed and proteolysis seems to be negatively modulated in 427 

hyperosmotic conditions. 428 

Understanding how osmotolerant yeasts are able to survive and adapt to critical conditions 429 

will allow a better biomass yield and an overall better alcoholic fermentation to be obtained. 430 

Moreover, the elucidation of the cytotoxic effects, induced by high glucose concentrations, could 431 

contribute to the optimization of the industrial fermentative yeast performance under hyperosmotic 432 

stress. 433 
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CAPTIONS TO FIGURES 589 

Figure 1. Fermentation performance, referring to ethanol production versus glucose consumption, in 590 

the ISE19 strain on Cortese grape must with regular (black line) and high (grey line) sugar contents. 591 

Error bars represent standard errors of the mean (n=3). 592 

Figure 2. Growth kinetics of the ISE19 strain in Cortese grape must with regular (black line) and high 593 

(grey line) sugar contents. Error bars represent standard errors of the mean (n=3). 594 

Figure 3. Acetate and glycerol production during fermentation by strain ISE19 in Cortese grape must 595 

with regular (black line) and high (grey line) sugar content. Error bars represent standard error of the 596 

mean (n=3). 597 
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Figure 4. Representative 2DE images of intracellular soluble proteins of Saccharomyces cerevisiae 598 

ISE 19 grown under a regular sugar condition (200 g/L) (on the left) and with the addition of 599 

supplementary sugar (260g/L) (on the right).  600 

Figure 5. Schematic representation of the glyceropyruvic fermentation pathway. 601 
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Tab.1. Protein identification. B: proteins more abundant in the high glucose medium. A: proteins more abundant in the 603 

regular glucose medium 604 

Spot n° 
Fold 

changes 

Name of the protein and 

acronym (if it exists )  

Protein Entry 

(NCBI 2015.3.10) 

Number of 

peptides/numb

er of total 

signals 

Sequence 

coverage by 

PMF 

Molecular weight 

(Da) 

(Theoretical/experi

mental) 

pI 

(Theoretical/ex

perimental) 

1331B 4 
Pyruvate decarboxylase 

isozyme 1, Pdc1p 
EGA57763 10/56 24% 61542/56000 5.8/6.1 

1358B 2 
Argininosuccinate synthase, 

Arg1p 
EGA76938 14/51 36.6% 46455/47000 5.7/5.8 

1378B 2.5 
Phosphopyruvate hydratase, 

Eno2p 
NP_012044 16/55 44.4% 46915/45000 5.7/6.2 

1415B 3.5 
Fructose-bisphosphate 

aldolase, Fba1p 
EGA61531 12/58 43.5% 39607/40000 5.5/5.9 

1564B 5 
Pyruvate decarboxylase 

isozyme 1, Pdc1p 
EGA57763 15/63 33% 61542/53000 5.8/5.8 

1569B 2 
Pyruvate decarboxylase 

isozyme 1, Pdc1p 
EGA57763 18/74 41.7% 61496/58000 5.8/5.9 

1577B 10 
Argininosuccinate synthase, 

Arg1p 
EGA76938 17/56 45.8% 46455/46500 5.7/5.6 
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1663 B 
Only in 

B  

phenylalanyl-tRNA 

synthetase beta subunit ,  

Frs1p 

AAT92797 9/25 20.3% 67332/70000 5.5/5.8 

1687 B 
Only in 

B 

14-3-3 family protein, 

K7_Bmh2p 
GAA22335 9/22 38.6% 30933/35000 4.8/4.5 

1688B 
Only in 

B 
YJR075Wp-like protein EDZ71169 4/33 11.7% 30721/32000 6.1/6.0 

1689B 
Only in 

B 

14-3-3 family protein, 

K7_Bmh1p 
GAA23007 13/30 47.9% 30205/35000 4.9/4.6 

1306A 3 Methionine synthase, Met6p EDN63067 27/58 39.4% 85831/85000 6.1/6.5 

1326A 62 Catalase T, Ctt1p AJP38866 9/76 21.4% 64560/64000 6.2/6.3 

1354A 2.5 

Pyruvate decarboxylase 

isozyme 1,  Pdc1p  

(fragment) 

EGA57763 12/54 24.7% 61496 /51000 5.8/5.9 

1396A 2 
Alcohol dehydrogenase,  

ADH1 
AAA34410 10/35 31.3% 36823 /40000 6.3/6.5 

1400A 2 
Alcohol dehydrogenase,  

ADH1 
AAA34410 9/61 24.4% 36823/40000 6.3/6.3 

1419A 4 
Alcohol dehydrogenase,  

ADH1 
AAA34410 6/41 18% 36837/40000 5.9/5.6 

1434A 25 Enolase, Eno1p EGA82740 11/27 40.1% 41709/38000 6.2/6.5 

1485A 
Only in 

A 

S-adenosylmethionine 

synthetase, Sam1p 
EGA73728 5/49 29.5% 28481/33000 6.0/6.0 

1490A 
Only in 

A 

Diaminopimelate 

epimerase, Yhi9p 
EGA58492 7/32 31.6% 32186/31000 5.5/6.2 
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 605 

Ssf2p EGA83416 4/32 18.2% 32878/31000 6.2/6.2 

1493A 8.5 

Inorganic pyrophosphatase, 

Ipp1p 

Diaminopimelate 

epimerase,Yhi9p 

AJP83924 

EGA58492 

8/43 

5/43 

37.3% 

24.7% 

32284/31000 

32186/31000 

5.4/5.8 

5.5/5.8 

1494A 2.5 

Peptidases_S8_PCSK9_Prote

inaseK_like (from 

YEL060Cp-like protein aa 

130-406) 

EDZ72718 6/34 12.8% 29297/31000 6.8/6.6 

1500A 3.5 

Fructose-bisphosphate 

aldolase, Fba1p fragment  

(starting from aa 1) 

EGA61531 7/42 20.3% 39607/30000 5.5/5.5 

1507A 
Only in 

A 

Enolase, Eno1p fragment  

(starting from aa 116) 
EGA82740 7/50 20% 29715/30000 5.3/5.1 

1513A 5 YAL034W-Ap-like protein EDZ74019 6/42 32.9% 29537/28000 6.1/5.8 

1515A 2 
Triose-phosphate isomerase, 

Tpi1p 
EGA87556 3/39 18.3% 27305/27000 6.3/6.3 

1519A 2 
Triose-phosphate isomerase, 

Tpi1 
NP_010335 10/48 49.2% 26796/27000 5.7/5.9 

1743A 5.5 Catalase T,  Ctt1p EDV10159 13/44 27.4% 65696/63000 6.2/6.6 
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HIGHLIGHTS 623 

 The paper describes what happens at a proteomic level when S. cerevisiae ISE19 is grown in 624 

high sugar grape musts in a condition leading to a fermentation arrest.  625 

 A decreased abundance of proteolytic enzymes and enzyme fragments was observed in a high 626 

sugar condition, in agreement with recent literature data that have reported how the low 627 

expression of proteases in glucose-rich musts can cause the arrest of alcoholic fermentation. 628 

 An increased abundance of cell-wall renewal enzymes and of the proteins that regulate 629 

membrane transport underline an effective stress response concerning envelope structures.  630 

 Apart from proline, arginine could also play a direct protective role against osmotic stress in 631 

S. cerevisiae ISE19 (as previously demonstrated for cold stress), since its biosynthetic 632 

pathway seems to be activated. 633 

 634 
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