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Abstract 

Mutualistic and pathogenic plant-colonizing fungi use effector molecules to manipulate the host cell 

metabolism to allow plant tissue invasion. Some small secreted proteins (SSPs) have been identified 

as fungal effectors in both ectomycorrhizal and arbuscular mycorrhizal fungi, but it is currently 

unknown whether SSPs also play a role as effectors in other mycorrhizal associations. Ericoid 

mycorrhiza is a specific endomycorrhizal type that involves symbiotic fungi mostly belonging to the 

Leotiomycetes (Ascomycetes) and plants in the family Ericaceae. Genomic and RNASeq data from 

the ericoid mycorrhizal fungus Oidiodendron maius led to the identification of several symbiosis-

upregulated genes encoding putative SSPs. OmSSP1, the most highly symbiosis up-regulated SSP, 

was found to share some features with fungal hydrophobins, even though it lacks the Pfam 

hydrophobin domain. Sequence alignment with other hydrophobins and hydrophobin-like fungal 

proteins placed OmSSP1 within Class I hydrophobins. However, the predicted features of OmSSP1 

may suggest a distinct type of hydrophobin-like proteins. The presence of a predicted signal peptide 

and a yeast-based signal sequence trap assay demonstrate that OmSSP1 is secreted during symbiosis. 

OmSSP1 null-mutants showed a reduced capacity to form ericoid mycorrhiza with Vaccinium 

myrtillus roots, suggesting a role as effectors in the ericoid mycorrhizal interaction.  

 

Key words 

Ericoid mycorrhiza, Oidiodendron maius, Small Secreted Proteins, hydrophobins, homologous 

recombination  
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Introduction  

Fungi secrete a wide range of enzymatic and non-enzymatic proteins that function in the break-down 

of complex organic molecules but also in the interaction with microbial competitors or with animal 

and plant partners (Scherlach et al., 2013; Stergiopoulos & de Wit, 2009; Talbot et al., 2013; Tian et 

al., 2009). Fungi can establish different types of interactions with plants, ranging from mutualistic to 

antagonistic. Whatever their lifestyle, plant-colonizing fungi are recognized by the plant immune 

system through invariant molecular patterns known as microbe- or pathogen-associated molecular 

patterns (MAMPS or PAMPs) (Jones & Dangl, 2006). To successfully colonize plant tissues, fungi 

must prevent the PAMP-triggered immunity (PTI) reaction (Lo Presti et al., 2015). For this purpose, 

fungi secrete effector molecules that may play different functions depending on the fungal lifestyles. 

For example, they can be toxic compounds that kill the host plant (in necrotrophs), or secreted 

proteins that shield the fungus and suppress the host immune response, or proteins that manipulate 

the host cell metabolism to allow plant tissues invasion and nutrient uptake (de Jonge et al., 2011; 

Giraldo et al., 2013; Selin et al. 2016). Many small secreted proteins (SSPs) have been reported to 

function as effectors (Lo Presti et al., 2015). 

Effectors were initially considered as virulence factors secreted exclusively by pathogens 

(Stergiopoulos & de Wit, 2009; van Esse et al., 2008). However, it has become apparent that 

effectors can manipulate the plant immune system also in mutualistic associations (Kim et al., 2016). 

Mutualistic fungi establish intimate contacts with plants by forming specialised fungal structures 

involved in nutrient exchange with the host (Martin et al., 2017). Effector-like SSPs have been 

functionally characterized as effector-like molecules both in arbuscular (AM) and ectomycorrhizal 

(ECM) fungi, as well as in some endophytic fungi (Plett & Martin, 2015). For example, the ECM 

fungus Laccaria bicolor requires MiSSP7 (Mycorrhizal induced Small Secreted Protein 7) to 

establish symbiosis. MiSSP7 suppresses the plant defence reactions by interacting with the 

jasmonate co-receptor JAZ6 (Plett et al., 2011; 2014). Similarly, the AM fungus Rhizophagus 

irregularis secretes SP7, an effector protein that counteracts the plant immune program by 

interacting with the pathogenesis-related transcription factor ERF19, leading to increased 

mycorrhization (Kloppholz et al., 2011). Tsuzuki et al. (2016) also showed that host-induced gene 

silencing of SlS1, a putative secreted R. irregularis SSP expressed in symbiosis, resulted in 

suppression of colonization and formation of stunted arbuscules. In a similar manner, the candidate 

effector protein PIIN_08944, secreted by the fungal endophyte Piriformospora indica during 

colonization of both Arabidopsis thaliana and barley plants, was demonstrated to play a crucial role, 
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in reducing the expression of PTI genes and of the salicylic acid defense pathway (Akum et al., 

2015).  

Protein effectors are normally secreted following the endoplasmic reticulum-Golgi apparatus system, 

and bioinformatic identification of effector candidates can thus be based on the presence of the N-

terminal signal peptide (Lo Presti et al., 2015), even though alternative secretion pathways have been 

reported for Magnaporthe oryzae and Phytopthora infestans (Giraldo et al., 2013; Wang et al. 2017). 

General SSPs features are: a) the presence of a signal peptide and the absence of transmembrane 

domains or GPI-anchor sites; b) a small size, with a mature length smaller than 300 amino acids; c) a 

richness in cysteine residues and, sometimes, d) the presence of conserved motifs (Hacquard et al., 

2012; Lo Presti et al., 2015; Martin et al., 2008; Stergiopoulos & de Wit, 2009; Zuccaro et al., 2014).  

Bioinformatic analyses of about fifty fungal genomes has highlighted that, when compared with 

saprotrophic and pathogenic fungi, the ECM fungal secretome is enriched in SSPs and contains 

species-specific SSPs likely dedicated to the molecular cross-talk between fungal and plant partners 

(Pellegrin et al., 2015). In line with this finding, a comparative in silico analysis of the AM fungi 

Rhizophagus clarus, R. irregularis and Gigaspora rosea highlighted the presence of shared SSPs 

(Sędzielewska Toro & Brachmann, 2016; Kamel et al., 2017), supporting a general conserved role of 

SSPs in AM. These data suggest that effector SSPs may represent an important fungal “toolkit” that 

enables the establishment/maintenance of host plant colonization in mycorrhiza (Plett & Martin, 

2015, Martin et al., 2016). However, there is increasing awareness that SSPs in mycorrhizal fungi are 

likely involved in additional functions unrelated to symbiosis. For example, several SSPs are 

secreted by the ECM fungi L. bicolor and Hebeloma cylindrosporum during the free-living phase 

(Doré et al., 2015; Vincent et al., 2012). Moreover, large-scale transcriptomic and genomic analyses 

including fungi with different lifestyles revealed a wide array of SSPs in most saprotrophic fungi 

(Pellegrin et al., 2015; Valette et al., 2017), suggesting a possible role for SSPs in competition and 

rhizospheric communication (Rovenich et al., 2014).  

Whereas effector SSPs have been characterized in AM and ECM fungi, there is currently no 

information on the occurrence of SSPs in ericoid mycorrhizal (ERM) fungi and on their potential 

role in symbiosis. ERM fungi are soil-borne fungi mostly belonging to Leotiomycetes 

(Ascomycetes). They form a peculiar endomycorrhizal type by colonizing the root epidermal cells of 

plants within the family Ericaceae and promote growth of their host plant in stressful habitats 

(Perotto et al., 2012). A common ERM fungal species is Oidiodendron maius (Dalpé, 1986) and O. 

maius strain Zn, an isolate from a metal polluted soil whose genome and transcriptome have been 

recently sequenced (Kohler et al., 2015), has become a model system to investigate metal stress 
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tolerance in these fungi (Daghino et al., 2016; Perotto et al., 2012; Ruytinx et al., 2016). Genomic 

data have revealed a large set of carbohydrate-active enzymes (CAZymes) in O. maius, with many 

plant cell wall degrading enzymes being expressed during symbiosis (Kohler et al., 2015).  As these 

enzymes could potentially elicit defense reactions through oligosaccharide release, symbiosis 

development likely requires a tight control of the plant defense reactions and, based on our current 

knowledge of arbuscular and ectomycorrhizal interactions, effectors to control plant immunity. Aim 

of this work was to identify, through the analysis of O. maius genomic and transcriptomic data, 

fungal SSPs potentially involved in the molecular dialogue governing the ERM symbiosis. 

 

Materials and Methods 

 

Fungal strains and growth conditions  

Oidiodendron maius strain Zn (hereafter O. maius) was isolated from the roots of V. myrtillus 

growing in the Niepolomice Forest (Poland), and first described by Martino et al. (2000). This O. 

maius strain is deposited at the Mycotheca Universitatis Taurinensis collection (MUT1381; 

University of Turin, Italy) and at the American Type Culture Collection (ATCC MYA-4765; 

Manassas, VA, US), and was maintained on Czapek-Dox solid medium (NaNO3 2 g L
-1

, KCl 0.5 g L
-

1
, glycerol phosphate*H2O 0.5 g L

-1
, K2HPO4 0.35 g L

-1
, FeSO4 0.01 g L

-1
, sucrose 30 g L

-1
, agar 10 

gL
-1

, adjusted to pH 6). O. maius and OmΔSSP1-null mutants were also grown in the presence of 

different stressor compounds. Czapek-Dox medium was supplemented with 0.3 mM Cd (as 

3CdSO4*8H2O), 15 mM Zn (as ZnSO4*7H2O), 117.6 mM H2O2, 0.75 mM menadione, 0.1% (w:v) 

caffeic acid, 0.5% (w:v) tannic acid, 0.5% (w:v) gallic acid and 0.5% (w:v) quercetin. Prior to fungal 

inoculation, sterile cellophane membranes were placed on the agar surface to provide a convenient 

means of removing the mycelium from the plate. The membranes were first boiled for 15 min in 10 

mM EDTA (disodium salt, dihydrate, SIGMA), rinsed and then autoclaved in ddH2O. Fungal 

colonies were removed after 30 days, dried over-night and weighted. 

 

In vitro mycorrhizal synthesis 

Axenic V. myrtillus seedlings were obtained from seeds (Les Semences du Puy, Le Puy-En-Velay, 

France) surface sterilized in 70% ethanol (v:v) 0.2% Tween20 for 3 min, rinsed with sterile water, 

submerged in 0.25% sodium hypochlorite for 15 min and rinsed again with sterile water. Seeds were 

germinated on 1% water agar for 2 weeks in darkness before transfer to a growth chamber for 1 

month.  
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Mycorrhiza was synthesized in petri plates containing Modified Melin-Norkrans (MMN) medium 

containing KH2PO4 0.5 gL
-1

, Bovine Serum Albumin (BSA) 0.1 gL
-1

, CaCl2*2H2O 0.066 gL
-1

, NaCl 

0.025 gL
-1

, MgSO4*7H2O 0.15 gL
-1

, thiamine-HCl 0.1 gL
-1

, FeCl3*6H2O 0.001 gL
-1

, agar 10 gL
-1

 

and final pH 4.7. Sterile cellophane membranes, prepared as described before, were placed on the 

agar surface before fungal inoculation. A suspension of O. maius conidia in sterile deionised water 

was distributed on the cellophane membranes in the bottom half of the MMN petri plates. Ten 

germinated V. myrtillus seedlings were then transferred just above the conidia suspension. Plates 

were sealed and placed in a growth chamber (16-h photoperiod, light at 170 μmol m
–2

 s
–1

, 

temperatures at 23°C day and 21°C night). Roots were collected and the percentage of 

mycorrhization evaluated after 45 day.  

As a control for the asymbiotic condition, O. maius was grown on the same medium used for 

mycorrhizal synthesis. Plates covered by cellophane membranes were inoculated with 5 mm fungal 

plugs and fungal colonies were removed after 45 days. Three biological replicates were prepared for 

each sample of the RNASeq experiment. 

 

RNA extraction and RNA-Seq data analyses 

Total RNA was extracted and quantified from 100 mg aliquots of O. maius mycelium and O. maius-

inoculated V. myrtillus collected 45 days after inoculation, frozen in liquid nitrogen and 

mechanically ground. Total RNA was extracted from O. maius mycelium using a Tris-HCl 

extraction buffer and from V. myrtillus mycorrhizal roots using the CTAB method, as described by 

Kohler et al. (2015).   

Preparation of libraries from total RNA and 2 x 100bp Illumina HiSeq sequencing (RNA-Seq) was 

performed by IGA Technology Services (Udine, Italy). Raw reads were trimmed and aligned to the 

respective reference transcripts available at the JGI MycoCosm database (http://genome.jgi-

psf.org/programs/fungi/index.jsf) using CLC Genomics Workbench v6. For mapping, the minimum 

length fraction was 0.9, the minimum similarity fraction 0.8 and the maximum number of hits for a 

read was set to 10. The unique and total mapped reads number for each transcript were determined, 

and then normalized to RPKM (Reads Per Kilobase of exon model per Million mapped reads). A 

summary of the aligned reads is given in Table S1. The data set was submitted to GEO (GSE63947). 

To identify differentially regulated transcripts in mycorrhizal tissues compared to free-living 

mycelium, the Baggerly’s Test (Baggerly et al. 2003) implemented in CLC Genomic workbench was 

used. This test compares the proportions of counts in a group of samples against those of another 

group of samples. The samples are given different weights depending on their sizes (total counts). 
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The weights are obtained by assuming a Beta distribution on the proportions in a group, and 

estimating these, along with the proportion of a binomial distribution, by the method of moments. 

The result is a weighted t-type test statistic. In addition, Benjamini & Hochberg multiple-hypothesis 

testing corrections with False Discovery Rate (FDR) were used. Transcripts with a more then 5-fold 

change and a FDR corrected p-value <0.05 were kept for further analysis. 

O. maius Small Secreted Proteins (SSPs) were identified using a custom pipeline including SignalP 

v4 (1), WolfPSort (2), TMHMM, TargetP (3), and PS-Scan algorithms (4) as reported in Pellegrin et 

al. (2015). To assess whether symbiosis-regulated transcripts were conserved or lineage-specific (i.e., 

orphan genes with no similarity to known sequences in DNA databases), their protein sequences 

were queried against the protein repertoires of 59 fungal genomes using BLASTP with e-value 1e-5. 

Proteins were considered as orthologs of symbiosis-regulated transcripts pending they showed 70% 

coverage over the regulated sequence and at least 30% amino acid identity. 

 

cDNA synthesis and quantitative RT-PCR (RT-qPCR)  

The expression of seven selected SSPs was evaluated by RT-qPCR. cDNA was obtained from about 

1000 ng of total RNA with a reaction mix containing 10 μM random primers, 0.5 mM dNTPs, 4 μl 

5× buffer, 2 μl 0.1 M DTT, and 1 μl Superscript II Reverse Transcriptase (Invitrogen) in a final 

volume of 20 μl. Temperature regime was: 65°C for 5 min, 25°C for 10 min, 42°C for 50 min, and 

70°C for 15 min. Possible DNA contamination was tested with an additional PCR reaction using a 

specific DNA-primer for the O. maius Elongation Factor1α (OmEF1α) (Table S2). RT-qPCR was 

performed with the Rotor-Gene Q (Qiagen) apparatus. The reactions were carried out in a final 

volume of 15 μl with 7.5 μl of iQ SYBR Green Supermix (Bio-rad), 5.5 μl of forward and reverse 

primers (10 μM stock concentration; Table S2) and 2 μl of cDNA (diluited 1:10). qPCR cycling 

program consisted of a 10 min/95°C holding step followed by 40 cycles of two steps (15 s/95°C and 

1min/60°C). The relative expression of the target transcript was measured using the 2
-ΔCt

 method 

(Livak & Schmittgen, 2001). The Omβ-Tubulin (OmβTub) (Table S2) was used as reference house-

keeping gene. Three to five biological replicates and two technical replicates were analyzed for each 

condition tested. qPCR primers were designed with Primer3Plus (http://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi) and checked for specificity and secondary structure formation with 

PrimerBlast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and OligoAnalyzer 

(eu.idtdna.com/calc/analyzer). Primers were synthesized by Eurogentec (Belgium). 
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Construction of the OmSSP1-disruption vector and Agrobacterium-mediated transformation 

OmSSP1-null mutants were obtained through Agrobacterium tumefaciens-mediated (ATM) 

homologous recombination. PCR reactions were used to produce the 5′ upstream flanking region 

(1502 bp) and the 3′ downstream flanking region (1533 bp) of the OmSSP1 gene. PCR reactions 

were carried out in a final volume of 50 μl containing: 50 ng of genomic DNA of O. maius Zn, 1 μl 

dNTPs 10mM, 2.5 μl of each primer (10 μM stock concentration; Table S2), 10 μl of 5× Phusion HF 

Buffer and 0.5 units of Phusion Hot Start II High-Fidelity (Thermo Scientific). The PCR program 

was as follows: 30 s at 98°C for 1 cycle, 10 s at 98°C, 30 s at 60°C, 45 s at 72°C for 30 cycles, 10 

min at 72°C for 1 cycle. Amplicons were then purified with Wizard® SV gel and PCR clean-up 

system (PROMEGA) following manufacturer’s instructions. PCRs amplicons were cut with XmaI-

HindIII (for the 5’) and BglII-HpaI (for the 3’) and cloned into the pCAMBIA0380_HYG vector 

(Fiorilli et al., 2016) in order to obtain the pCAMBIA0380_HYG-ΔOmSSP1 vector (Fig. S1). The 

restriction reactions were performed in a 30 μl final volume containing 0.5 μg of DNA (1 ug for the 

plasmid), 0.5 μl of each enzyme (from PROMEGA), 0.3 μl of BSA 100X and 3 μl of buffer 10X, 

overnight at 37°C. The ligase reaction was carried out in 20 μl final volume containing 50 ng of 

vector, 18 ng of the amplicon, 2 μl of buffer 10X and 1 μl of T4 enzyme (PROMEGA), overnight at 

4°C. The obtained sequence of the vector was checked by PCRs and DNA sequencing.  

The vector was cloned into Agrobacterium tumefaciens LBA1100, that was used to transform 

ungerminated O. maius conidia according to the protocol described in Abbà et al. (2009).  

 

Identification of OmSSP1-null mutants by PCR and Southern Blot 

Fungal transformants were screened by PCR. A small portion of each fungal colony was collected 

and boiled for 15 min in 20 μl of 10 mM Tris HCl pH 8.2, vortexed for 1 min and centrifuged 15 min 

at room temperature. Then, 2 μl of the supernatant were used directly for PCR amplification without 

any other purification, using two sets of primers (Table S2). The first primer set was designed to 

amplify the OmSSP1 gene (OmSSPb1r and OmSSPb1f) whereas the second set (Hyg4f e Hyg2r) was 

designed to amplify the portion of the hph gene corresponding to the Hyg-probe (Fig. S1). A 

OmSSP1-null mutant would yield an amplified product only with the second primer set. The putative 

OmSSP1-null mutants identified were validated by PCR using primers (Table S2) designed on the 

genome at the 5’ and 3’ of the homologous recombination site (respectively preOmSSPb1f3/Hyg6r 

and postOmSSPb1r3/Hyg3f).  The positive OmSSP1-null mutants were further analysed through 

Southern hybridization analysis to verify single-copy integration of the disruption cassette in the 

genome. 15 μg of genomic DNA from the deletion mutants and from the wild type were digested 
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with BamHI (PROMEGA) and size-fractionated on 1% (w:v) agarose TAE 1X gel. The separated 

restriction fragments were blotted onto a nylon membrane following standard procedures (see Abbà 

et al., 2009). Hybridization with a probe designed on the hyg-resistance cassette (Hyg-probe, Fig. 

S1) was performed with a chemiluminescent detection system (ECL direct DNA labelling and 

detection system; GE Healthcare, U.K.) was performed according to the manufacturer’s 

recommendations.  

 

Quantification of the degree of mycorrhization 

To determine differences in root colonization between O. maius wild-type and the OmSSP1-null 

mutants, the percentage of mycorrhization was recorded after 1.5 months. The roots of 3 to 6 

seedlings colonised by each mutant strain were collected and the whole-root system was stained 

overnight in a solution of lactic acid:glycerol:H2O (14:1:1) containing acid fuchsin 0.01% (w:v), 

destained twice with 80% lactic acid and observed using a Nikon Eclipse E400 optical microscope. 

The magnified intersections method (Villarreal-Ruiz et al., 2004) was adapted to quantify the 

percentage of fungal colonization of V. myrtillus hair roots. Roots were examined under the 

microscope using the rectangle around the cross-hair as intersection area at 40× magnification. A 

total of 60 intersections per seedling root system were scored. Counts were recorded as percentage of 

root colonized (RC) by the fungus using the formula: RC% = 100 ×Σ of coils counted for all the 

intersections/Σ of epidermal cells counted for all the intersections. 

 

Phylogenetic and bioinformatic analyses 

The aminoacid sequences comprised between cysteine 1 and cysteine 8 of the fungal proteins listed 

in Table S3 were aligned using MUSCLE (MUltiple Sequence Comparison by Log-Expectation;  

Gap Open penalty -2, Edgar, 2004) tool implemented in MEGA7 (Tamura et al., 2007). Maximum 

likelihood analysis (Guindon & Gascuel 2003) was conducted using www.phylogeny.fr in advanced 

mode (Dereeper et al., 2008). The phylogenetic tree was reconstructed using the maximum 

likelihood method implemented in the PhyML program (v3.1/3.0 aLRT). 

Bioinformatic analyses of protein primary sequences were performed using on line tools. Blastp 

searches on the Uniprot database (The UniProt Consortium, 2017) identified the closest protein 

matches. Hydropathy profiles were generated with ProtScale tools (http://web.expasy.org/protscale/), 

while the grand average of hydropathicity (GRAVY), the predicted amino acid number and 

molecular weight were calculated using the ProtParam tool (http://web.expasy.org/protparam/). The 

intrinsic solubility profiles were obtained with the camsolintrinsic calculator (http://www-

http://www.phylogeny.fr/
http://web.expasy.org/protscale/
http://web.expasy.org/protparam/
http://www-mvsoftware.ch.cam.ac.uk/index.php/camsolintrinsic
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mvsoftware.ch.cam.ac.uk/index.php/camsolintrinsic). The representation of the residues 

hydrophobicity of the aligned sequences of each clade was obtained using http://www.ibi.vu.nl 

(Simossis & Heringa 2005). 

 

The yeast signal sequence trap assay  

Functional validation of the predicted signal peptide of OmSSP1 was conducted with a yeast signal 

sequence trap assay (Plett et al., 2011). The pSUC2-GW gateway vector carries a truncated invertase 

(SUC2) lacking both its initiation methionine and signal peptide. cDNA encoding the predicted 

OmSSP1 signal peptide was cloned into pSUC2-GW plasmids using BP/LR technologies 

(Invitrogen). Then, yeast cells (YTK12 strain) were transformed with 200 ng of the individual 

pSUC2-GW/OmSSP1 plasmid using the lithium acetate method (Gietz & Schiestl, 2007). 

Transformants were grown on yeast minimal medium with SD/W
-
 medium (adenine hemisulfate 40 

mgL
-1

, L-uracil 40 mgL
-1

, L-histidine hydrochloride 40 mgL
-1

, L-leucine 40 mgL
-1

). After the 

autoclave 200 ml of SD 5x solution containing 3.5 gL
-1

 of drop out mix and 33.5 gL
-1

 of yeast 

nitrogen base without amino acids (adjusted to pH 5.6) and glucose 20 gL 
-1 

were added to the SD/W
-
 

medium. To assay for invertase secretion, colonies were grown overnight at 30°C with shaking 200 

rpm and diluted to an OD600 = 1, then 5 µl of serial dilution of the yeast culture were plated onto 

YPSA medium containing sucrose (10 gL
-1

 yeast extract, 20 gL
-1 

peptone, 20 gL
-1 

agar amended with 

2 gL
-1

 sucrose and 60 µg mL
-1

 antimycin A after autoclaving, pH 6.5).   

 

Statistical analyses 

The significance of differences among the different treatments was statistically evaluated by 

ANOVA with Tukey’s pairwise comparison as post-hoc test for multiple comparisons for normal 

distributed data. Statistical elaborations of growth and biomass data were performed using PAST 

statistical package, version 2.17 (Hammer et al., 2001). The differences were considered significant 

at a probability level of p<0.05. 

 

Results  

 

The O. maius genome contains several SSPs up-regulated during mycorrhizal symbiosis with 

V. myrtillus  

Among the 16,703 genes found in the O. maius genome (Kohler et al., 2015), 445 genes (~38% of 

the total O. maius predicted secretome) code for putatively secreted proteins smaller than 300 amino 

http://www-mvsoftware.ch.cam.ac.uk/index.php/camsolintrinsic
http://www.ibi.vu.nl/
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acids (Table S4a). The transcriptomic analysis of O. maius under free-living conditions (FLM) and in 

symbiosis with V. myrtillus (MYC) indicated that about 24% (278/1163) of the genes coding for 

putatively secreted proteins were induced in symbiosis (Fold Change>5, p-value <0.05), 90 of them 

corresponding to SSPs. Many of these mycorrhiza-induced SSPs (MiSSP) were strongly up-

regulated in symbiosis (13 with FC≥400) or mycorrhiza-specific (Table S4b). Only 32 were cysteine 

enriched (C>3%), a feature normally attributed to SSPs (Kim et al., 2016). About half (49/90) 

contained PFAM motifs specific of CAZymes (especially glycoside hydrolases, GHs), lipases, 

hydrophobins and peptidases, whereas the remaining 41 contained no known PFAM domain. None 

of these MiSSPs contained a nuclear localization signal motif and 6 of them featured a KR rich 

sequence, i.e. a motif characterized by basic aminoacids (like lysine and arginine) supporting the 

plant nucleus entry (Table S4b).  

Genes orthologous to the O. maius MiSSPs were identified by genomic comparative analyses with 

59 taxonomically and ecologically distinct fungi (Table S4b), including three other ERM fungi in the 

Leotiomycetes (Meliniomyces bicolor, M. variabilis and Rhizoscyphus ericae) belonging to the “R. 

ericae” aggregate (Vrålstad et al., 2000). Ten of the 90 O. maius symbiosis-induced SSPs resulted to 

be specific for O. maius, whereas 2 to 834 orthologous genes were found for the other 80 SSPs 

(Table S4b). Many O. maius SSPs orthologs were found in the other three ERM fungal species, 

although no ERM specific SSPs could be identified. The highest number of O. maius SSPs orthologs 

was found in the genomes of pathogenic and saprotrophic fungi (64 and 73 respectively), whereas 

only 38 orthologous genes were found in the genomes of 12 ECM fungi (Table S4b).  

We selected seven O. maius SSPs for further analyses, with a preference for those uniquely or highly 

expressed in symbiosis that did not contain PFAM motifs with known functions (Table 1). Three 

different software (PrediSi, SIgnalP 4.1, Phobius) confirmed the presence of a signal peptide (Table 

1), but alignment of the primary sequences indicated very low similarities. Cysteine enrichment >3% 

was only observed for OmSSP1 (8.6%), the most highly symbiosis-induced SSP (Table 1). A 

positive GRAVY value was found for OmSSP1 (0.53) and OmSSP3 (0.40), which indicates 

hydrophobic protein regions, whereas the negative values found for the other five SSPs indicate 

overall protein hydrophilicity (Table 1). The expression of these OmSSPs was investigated in free-

living and in mycorrhizal O. maius by RT-qPCR experiments, which confirmed a significant up-

regulation of all selected SSP genes in symbiosis, and in particular a very strong induction of 

OmSSP1 (Fig. 1). 
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OmSSP1 shows molecular similarities with fungal proteins annotated as hydrophobins 

OmSSP1 is a single copy gene located in the scaffold 14 of the O. maius genome. The coding region 

contains 354 nucleotides, with 2 exons and 1 intron. In addition to the signal peptide, OmSSP1 is 

rich in glycine (16.1%) and leucine (12.9%) and contains 8 cysteine residues (Fig. 2). The intrinsic 

calculated solubility and solvent accessibility highlighted at least three poorly water soluble regions. 

The majority of hydrophobic residues in OmSSP1 are clustered between amino acid residues 41-56 

and 79-93 (Fig. 2). OmSSP1 secondary structure predictions indicated a disordered folded state for 

46% of the protein, partly due to the presence of a low complexity region (LCR) before the first 

cysteine (Fig. 2), whereas 16% and 20% of the protein structure could form helix and beta-sheet 

structures, respectively (not shown).   

Although no known domains could be found in the predicted OmSSP1 protein sequence by PFAM 

database searching, nor a functional classification in the InterPro database, BlastP searches both in 

the UniProt and in the RefSeq databases yielded, as best identified protein matches, fungal 

hydrophobins or hydrophobin-like proteins (Table 2).  Therefore, we compared the protein sequence 

of OmSSP1 with those of the four annotated hydrophobins in O. maius and with other fungal 

hydrophobins (Linder et al., 2005; Seidl-Seiboth et al., 2011, Grigoriev et al., 2014). Three out of the 

four O. maius hydrophobins showed a GRAVY score above 0.6, indicating an overall 

hydrophobicity higher than OmSSP1 (0.53), whereas the GRAVY score for O. maius hydrophobin 4 

was only 0.32 (Table S5).  

Two classes of fungal hydrophobins have been distinguished by Wessel (1994) on the basis of the 

hydropathy profile and of slightly different motifs between the eight positionally conserved cysteine 

residues, Class I (C-X5–8-CC-X17–39-C-X8–23-C-X5–6-CC-X6–18-C-X2–13) and Class II (C-X9–10-CC-

X11-C-X16-C-X8–9-CC-X10-C-X6–7). OmSSP1 bears a signature motif similar to class I hydrophobins 

(C-X7-CC-X7-C-X8-C-X5-CC-X16-C-X2), with the exception of a shorter sequence (only 7 

aminoacids) between cysteines 3 and 4, expected to host the most hydrophobic protein region. 

Although shorter, the C3-C4 loop of OmSSP1 showed a conserved hydrophobic core composed by 

valine (V) and leucine (L), thus explaining the negative values in solubility profile and positive 

values in hydropathy profile (Fig. 2). Hydrophobins are amphiphilic molecules (Whiteford & Spanu, 

2002; Rineau et al., 2017), and OmSSP1 has a very hydrophilic stretch rich in G before the C3-C4 

loop, corresponding to the LCR (Fig. 2).  

To better understand the phylogenetic relatedness of OmSSP1 with fungal hydrophobins, we aligned 

the OmSSP1 protein sequence with the four annotated O. maius hydrophobins and with Class I and 

Class II annotated hydrophobins from Ascomycetes (listed in Table S3). A phylogenetic tree built on 
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the complete C1-C8 sequence alignment is shown in Fig. 3. However, since the different proteins 

showed a highly variable sequence length of the C3-C4 loop, ranging from 4 to 39 amino acids, a 

more conserved phylogenetic tree was generated by Maximum Likelihood (ML) without this protein 

region, to avoid possible bias due to the different protein lengths (Fig. S2). In both trees, class II 

hydrophobins and two of the four O. maius hydrophobins (Oidma2 and Oidma3) grouped in a single, 

well supported cluster. The two other O. maius hydrophobins grouped in a well-supported cluster 

together with characterised Class I hydrophobins (Figs. 3 and S2). Although the position of some 

fungal proteins differed in the two ML trees, most terminal clades (A to D) were maintained and well 

supported. OmSSP1 clustered in Clade C (Figs. 3 and S2) together with other proteins reported as 

hydrophobins (Table S3) and featuring a short C3-C4 loop (X4-9). The complete C1-C8 sequence 

alignment of proteins in Clade C is shown in Fig. 4. As in OmSSP1, most amino acids in the short 

C3-C4 loop of other proteins in this clade were hydrophobic. Clade B (Figs. 3 and S2) was another 

well-supported clade containing proteins also featuring a very short (X8-9) C3-C4 loop (Fig. 4). Clade 

B included a Trichoderma atroviride hydrophobin (Triat1) described by Seidl-Seiboth et al. (2011) 

as a member of a novel subclass in Class I hydrophobins. Unlike Clade C, proteins in Clade B 

featured mainly hydrophilic amino acids in the C3-C4 loop (Fig. 4). Clade A included the two O. 

maius hydrophobins Oidma1 and Oidma4. 

 

The yeast invertase secretion assay indicates that OmSSP1 is secreted  

The predicted OmSSP1 signal peptide was functionally validated in a yeast signal sequence trap 

assay. This test is based on the yeast requirement for a secreted invertase (SUC) to grow on sucrose 

amended media (Klein et al., 1996). The pSUC-GW (Jacobs et al., 1997) gateway vector carries a 

truncated invertase that lacks its signal peptide (SUC2). The cDNA coding for the putative OmSSP1 

signal peptide (OmSSP1_SP) was fused in frame to the yeast SUC2 invertase, and the recombinant 

pSUC-GW vector was transformed into the invertase-deficient yeast strain YTK12. As positive 

control, the MiSSP7 (Plett et al., 2011) signal peptide (MiSSP7_SP) and the yeast wild type signal 

peptide (SUC2_SP
+
) were used, whereas the empty vector was used as negative (mock) control. All 

transformants grew on SD-W and YPGA control media containing glucose, whereas only 

OmSSP1_SP and the two positive controls rescued YTK12 yeast’s growth on YPSA media 

containing sucrose, indicating that OmSSP1 contains a secretion sequence that is functional in yeast 

(Fig. 5).  
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Growth of OmΔSSP1 mutants is not impaired under stressful conditions, but they have a 

reduced capability to colonize V. myrtillus roots 

O. maius can be genetically transformed and gene disruption can be obtained by homologous 

recombination (Martino et al., 2007; Abbà et al., 2009). To investigate the biological function of 

OmSSP1 in O. maius, knock-out mutants (OmΔSSP1) were obtained through AMT transformation 

using a vector containing the hpd-cassette (Fig. S1). Hygromycin-resistant colonies were screened by 

PCR, and eight putative homologous recombinants out of 742 screened fungal transformants could 

be identified. Southern blot hybridization with a probe to the Hygromycin cassette showed a single 

band of the expected size for four out of the eight candidate mutants (Fig S3). To further confirm the 

vector insertion site, PCR amplifications were performed with primers designed to amplify the 

genome regions flanking the inserted pCAMBIA0380ΔOmSSP1 disruption cassette (Fig. S1, Table 

S2), followed by sequencing of the amplicons. Three O. maius transformants (OmΔSSP1
150

, 

OmΔSSP1
377

, OmΔSSP1
412

) were confirmed as deletion mutants for the OmSSP1 gene. These three 

OmSSP1-null mutants were not affected in mycelium morphology or growth rate when inoculated on 

Czapek-Dox solid medium (not shown). OmSSP1 deletion did not modify the wettability phenotype 

of the O. maius mycelium (Fig. S4), but it should be noted that OmSSP1 gene expression was very 

low in the FLM.   

It has been recently suggested that, in FLM, SSPs may increase fungal tolerance to toxic compounds 

(such as aromatic compounds or reactive oxygen species) released during substrate degradation 

(Valette et al., 2017).  We therefore investigated whether deletion of the OmSSP1 gene reduced O. 

maius fitness when exposed to different stress inducers. As shown in Fig. S5, growth of the three 

OmΔSSP1 mutants was not significantly affected by any of the stress conditions tested, namely two 

toxic heavy metals (Cd and Zn), molecules causing oxidative stress (H2O2 and menadione) and plant-

derived organic compounds displaying toxic/antimicrobical effects (caffeine, tannic acid, gallic acid, 

quercetin and caffeic acid).  

We then investigated the symbiotic ability of the three OmΔSSP1 mutants on seedlings of the host 

plant V. myrtillus as compared with the wild type O. maius strain (Fig. 6). Although there were no 

statistically significant differences in plant biomass after 45 days of co-culture, a statistically 

significant (p<0.05) reduction in the percentage of root colonization was measured for all OmΔSSP1 

mutants, when compared with the wild type O. maius strain (Fig. 6).   
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Discussion 

Similar to other mycorrhizal fungi, the ERM fungus O. maius has a wide array of SSPs. 

Effector-like SSPs have been found to be secreted by ECM and AM fungi and to be instrumental for 

plant colonisation (Plett & Martin, 2015; Martin et al., 2016). SSPs are also encoded in the genome 

of the model ERM fungus O. maius.  Overall, the O. maius genome contains 445 SSPs, 

corresponding to 2.6% of the total number of O. maius genes. Similar percentages were reported for 

the ECM fungus L. bicolor (Pellegrin et al., 2015) and for saprotrophic fungi (Valette et al., 2017). 

The 90 symbiosis-induced SSPs correspond to about 20% of the total O. maius SSPs, a percentage 

similar to the ECM fungus L. bicolor (Kohler et al., 2015) and the AM fungus R. irregularis 

(Tisserant et al., 2013).  

In O. maius, the most highly up-regulated SSP (OmSSP1) was 20,000 times more expressed in 

mycorrhizal roots than in the FLM. Bioinformatic analysis of O. maius symbiosis-induced SSPs 

revealed that 45.5% (41/90) correspond to orphans genes with no known PFAM domains. Although 

many fungal effector SSPs are targeted to the host plant nucleus (Lo Presti et al., 2015), none of the 

O. maius symbiosis-induced SSPs showed features supporting a localization in the plant nucleus.  

Species specific SSPs (SSSPs), defined as SSPs with no homology in other species, have been found 

in both AM (Salvioli et al., 2016; Tang et al., 2016; Sędzielewska Toro & Brachmann, 2016) and 

ECM fungi (Pellegrin et al., 2015) and they are considered to be likely involved in the promotion of 

host-specific interactions (Pellegrin et al., 2015). Comparative genomics revealed that 27% of the 

total O. maius SSPs are O. maius specific (Table S5a). This value falls in the proportion of species-

specific SSPs (SSSPs) for symbiotic organisms (25-50%) predicted by Kim et al. (2016), although 

only 10 out of the 90 O. maius symbiosis-induced SSPs were species-specific. 

Whereas lifestyle-specific SSPs have been found for ECM fungi (Pellegrin et al., 2015), no ERM 

specific SSPs (i.e. shared by the four ERM fungi and with no orthologous in the other fungi used for 

comparative analysis) could be found.  ERM and ECM fungi also differed because the comparative 

analysis showed that the highest number of O. maius symbiosis-induced SSPs orthologous belong to 

pathogenic and saprotrophic fungi, whereas ECM fungi share most of their SSPs with saprotrophs 

such as brown rot, white rot, and litter decayers (Pellegrin et al., 2015).  

 

OmSSP1, the most highly expressed O. maius MiSSP, may be a distinctive type of 

hydrophobin.  

Hydrophobins are small secreted proteins less than 200 amino acids long, with a secretion signal and 

a pattern of eight cysteine residues recurring in the sequence (Whiteford & Spanu, 2002). A unique 
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three-dimensional folding comes from these features, keeping exposed the hydrophobic residues and 

rendering them amphiphilic (Rineau et al., 2017). Two classes of hydrophobins have been recognised 

(Wessels 1994): Class I, with higher sequence variability and more stable superstructures, is found in 

both Asco- and Basidiomycetes, while Class II has only been found in Ascomycetes (Kershaw & 

Talbot, 1998). Hydrophobins are abundantly expressed during fungal development, pathogenesis and 

symbiosis (Wösten, 2001; Whiteford & Spanu, 2002). Being amphiphilic, they could behave as 

biosurfactants and facilitate fungal adhesion to organic matter and its decomposition (Rineau et al., 

2017). Hydrophobins are also instrumental for fungal hyphae to form aerial structures and to adhere 

to each other and/or to hydrophobic surfaces, such as the plant leaf surface during pathogenesis. 

Symbiosis-upregulated hydrophobins have been found in the ECM fungi Pisolithus tinctorius (Tagu 

et al., 2001) and in L. bicolor (Martin et al., 2008; Plett et al., 2012), where they could play a role in 

establishing hyphal aggregation in the symbiotic interfaces (Raudaskoski & Kothe, 2015).  

The O. maius genome features four annotated hydrophobins containing the PFAM and InterPro 

hydrophobin domains. Rineau et al. (2017) suggested that all O. maius hydrophobins belong to Class 

I, but our phylogenetic analysis (that also included Class II hydrophobins) showed that two proteins 

(Oidma1 and Oidma4) belong to Class I and two (Oidma2 and Oidma3) to Class II hydrophobins.  

OmSSP1 shares some features with Class I hydrophobins and clusters with annotated hydrophobins 

in this Class, but it was not identified as a hydrophobin because it lacks the corresponding PFAM 

and InterPro domains, possibly because of the shorter C3-C4 region.  

Amino acid features, such as charge and hydrophobicity, can influence hydrophobin structure and 

function.  Thus, the amino acidic composition of the C3-C4 loop as well as of the N-terminal region 

of hydrophobins may influence the wettability and the substrate-attachment preference of the protein 

(Linder et al., 2005; Kwan et al., 2006). In this respect, it is interesting to note that proteins in Clade 

B and Clade C, both showing a C3-C4 loop unusually short for Class I hydrophobins, feature amino 

acid sequences with very different hydrophobicity (Fig.4), suggesting they may represent structurally 

and functionally diverse subclasses of Class I hydrophobins. The low complexity region found in 

OmSSP1 is also unusual for hydrophobins and could be considered a recently evolved trait of this 

protein (Toll-Riera et al., 2012). Its presence suggests for OmSSP1 a low propension to aggregate 

and to form alpha-helices and beta-sheets, three properties often correlated with the ability of 

hydrophobins to pile up in needle-like (amyloid) structures (Rineau et al., 2017).   

A high number of hydrophilic residues (asparagine especially) were found in the N-amino terminal 

region of OmSSP1. According to Linder et al. (2005), the amino terminal region of hydrophobins 

could have important roles in the specific function of individual proteins. For example, hydrophobins 
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featuring high number of exposed hydrophilic residues at the N-terminal region were found to be 

overexpressed in mycorrhizal tissues (Whiteford & Spanu, 2002; Rineau et al., 2017).  

 

OmSSP1 null-mutants have a reduced ability to colonize V. myrtillus roots 

There is increasing awareness that SSPs may play important roles during saprotrophic fungal growth, 

as they have been identified in saprotrophic fungi and they can be expressed by mycorrhizal fungi 

during asymbiotic growth (Vincent et al., 2012; Doré et al., 2015; Valette et al., 2017). However, 

although a limited range of growth conditions were tested, OmSSP1 did not appear to be necessary 

in the FLM, as the three OmSSP1-null mutants were not affected in mycelium morphology or growth 

rate, even when they were exposed to toxic and oxidative chemical compounds. By contrast, when 

they were tested for symbiotic capabilities on V. myrtillus plants, a significant reduction in the 

percentage of mycorrhization (from about 37% to about 23-24%) was measured as compared with 

the wild type strain, thus suggesting a specific role of OmSSP1 in the mycorrhization process. The 

OmSSP1 deletion did not fully prevent root mycorrhization. However, 20% of O. maius SSPs are 

induced in symbiosis, and although OmSSP1 was the most highly up-regulated, we cannot exclude a 

functional redundancy, as already reported for the effectors of pathogenic fungi (Selin et al., 2016). 

Thus, the absence of OmSSP1 could be partly compensated by other O. maius mycorrhiza-induced 

SSPs with similar function, thus lowering the impact of the OmSSP1 deletion. It will be therefore 

interesting to check the expression level of other symbiosis-induced OmSSPs in the OmSSP1 null-

mutant strains.  

 

Conclusions 

In conclusion, the genome of the ERM fungus O. maius contains several SSPs that are up-regulated 

in symbiosis. Decreased colonization of V. myrtillus roots by OmSSP1-null mutants indicates that 

this protein, the most highly induced in the ERM symbiosis, is a hydrophobin-like effector that 

participates in the molecular fungal-plant interaction occurring during mycorrhizal formation. Our 

data demonstrate for the first time the importance of MiSSPs in ERM, although several questions 

remain open on the cellular localisation of OmSSP1 and its role in symbiosis.  

In ECM, hydrophobins likely play an important role in hyphal aggregation during the formation of 

the extraradical fungal mantle and the Hartig net (Tagu et al., 2001). However, ERM fungi do not 

form any extraradical hyphal aggregate on the roots of their ericaceous hosts, and individual fungal 

hyphae take direct contact with the hydrophilic root surface prior to cell wall penetration (Perotto et 

al., 2012). The different features of fungus-host plant interaction in ERM, together with the 
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distinctive features of OmSSP1 as compared to typical Class I hydrophobins, may suggest functions 

specific to the ERM symbiosis.   
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Table 1. Expression level, biochemical and bioinformatic features of seven selected O. maius mycorrhizal-induced SSPs. 

 

Name Expression Biochemical features 
N. of orthologs 

(see also Table S4c) 

Selected 

SSPs 

Protein 

ID 

FLM 

Means 

MYC 

Means 

Fold 

Change  
p-value  

Predicted 

domains, repeats 

PFAM motifs 

C 

residues 

(%) 

GRAVY 

index 

Protein 

length 

Molecular 

weight 

(kDa) 

O. maius  
Total  

(60 

genomes) 

OmSSP1 182936 0.685 13734 20056 5.07 E-20 1 LCR, NO PFAM 8 (8.60) + 0.53 93 9.2 1 4 

OmSSP2 160794 0.103 409 3961 8.84 E-44 
1 LCR, PFAM: 

DUF4360 
4 (1.58) − 0.29 253 27.6 3 82 

OmSSP3  56093 0.044 28 628 2.96 E-10 NO PFAM 1 (0.54) + 0.40 188 19.7 1 1 

OmSSP4  20160 0 105 MYC 7.56 E-10 
2 internal repeats, 

NO PFAM 
0 (0.00) − 0.48 102 11.3 1 1 

OmSSP5  23797 0 48 MYC 1.55 E-06 
2 internal repeats, 

NO PFAM 
0 (0.00) − 0.24 108 11.8 1 1 

OmSSP6 125454 0 34 MYC 1.50 E-22 NO PFAM 2 (0.91) − 0.06 220 23.0 2 14 

OmSSP7 25811 0 16 MYC 0.003 1 LCR, NO PFAM 6 (2.37) − 0.19 253 26.5 3 172 

 

LCR: Low complexity region 

MYC: Transcripts could not be identified in the free living mycelium (FLM) and were considered as mycorrhiza specific  
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Table 2. Results of BlastP searches on the Uniprot database using the OmSSP sequence as query 

 

 

Uniprot database 

 

Accession Organism Submitted name Identity Score E-value 

A0A014P1Y3 Metarhizium robertsii Hydrophobin-like protein 57% 60.5 1e-09 

G9N067 Hypocrea virens (=Trichoderma virens) Hydrophobin 55% 57.8 2e-08 

A9NIV6 Fusarium culmorum Hydrophobin 3 55% 54.3 2e-07 

A0A1J7IK23 Coniochaeta ligniaria Hydrophobin 3 54% 51.6 2e-06 

A0A0M9EQ60 Fusarium langsethiae Hydrophobin 3 54% 51.6 2e-06 

A0A179FBJ9 Pochonia chlamydosporia Fungal hydrophobin domain-containing protein 55% 50.1 9e-06 
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Figure 1. RT-qPCR validation of selected O. maius SSPs expression level in mycorrhizal tissues 

of V. myrtillus (MYC) as compared to the free living mycelium (FLM). Relative expression 

(mean of ΔCt values) of 7 O. maius SSPs normalized to OmTub transcripts. Bars represent the mean 

±SD. Asterisks (*) indicates a statistically significant difference (p < 0.05) (ANOVA, Tukey’s post 

hoc test).   
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Figure 2. OmSSP1 structural and biochemical features predicted through bioinformatics tools.  

(A) Schematic representation of OmSSP1 primary amino acid sequence. The green bar represents the 

signal peptide (SP), the blue bar the low complexity region (LCR) and the red bars the cysteine (C) 

residues. (B) Calculation of the intrinsic solubility profile (ISP) and hydrophaty profile (HP). For the 

ISP, scores larger than 1 indicate highly soluble regions, while scores smaller than -1 indicate poorly 

soluble regions. For the HP, hydrophobic aa show positive peaks with values above 0 whereas 

hydrophilic aa show negative peaks. 
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Figure 3. Phylogenetic tree of OmSSP1 and O. maius hydrophobins with other annotated 

hydrophobins from Ascomycetes. The analysis included protein sequences annotated or described 

as Ascomycetes class I and class II hydrophobins (listed in Table S3), OmSSP1 and the four O. 

maius hydrophobins. This sequence alignment considered the complete amino acid sequence 

comprise between C1 and C8. Muscle algorithm implemented in MEGA7 (Tamura et al., 2007) was 

used to generate the multiple protein sequence alignment. The phylogenetic tree was reconstructed 

on the Phylogeny.fr platform (Dereeper et al., 2008) using the maximum likelihood method 

(Guindon & Gascuel 2003) implemented in the PhyML program (v3.1/3.0 aLRT). The WAG 

substitution model was selected assuming an estimated proportion of invariant sites (of 0.088) and 4 

gamma-distributed rate categories to account for rate heterogeneity across sites. The gamma shape 

parameter was estimated directly from the data (gamma=7.097). Reliability for internal branch was 

assessed using the aLRT test (SH-Like). Graphical representation and edition of the phylogenetic 

tree were performed with TreeDyn (v198.3; Chevenet et al., 2006).  
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Figure 4. Aminoacid hydrophobicity properties of the aligned proteins. The protein sequences belonging to the four clades observed in Fig. 

3 were aligned by using the Praline tool of the IBIVU server (http://www.ibi.vu.nl/programs/pralinewww/; Simossis et al., 2005). The 

hydrophobicity scale used is from Eisenberg et. al. (1984). 

http://www.ibi.vu.nl/programs/pralinewww/
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Figure 5. OmSSP1 contains a secretion sequence that is functional in yeast. (A) OmSSP1 signal 

peptide: upon sucrose selection the OmSSP1 signal peptide (OmSSP1_SP) rescues the functionality 

of the yeast invertase as well as of the other two positive controls (MiSSP7 signal peptide - 

MiSSP7_SP - and the wild type sequence of the yeast signal peptide - SUC2_SP
+
). The empty vector 

(mock) was used as a negative control. (B) Control media (SD-W and YPGA) containing glucose 

restore the growth ability of all yeast transformants.  
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Figure 6. OmΔSSP1 mutants have a reduced capability to colonize V. myrtillus roots. Roots of 

V. myrtillus observed after 1.5 months of co-culture with O. maius WT and with three OmSSP1 null-

mutants strains: (A) Hyphal coils fuchsine-stained were observed in V. myrtillus roots using the light 

microscope. (B) The percentage of the root colonization was significantly lower for the OmSSP1 

null-mutants as compared to the O. maius WT. (C) Quantification of fresh plant biomass (roots - 

grey bars - and aboveground portions – white bars) of V. myrtillus plants grown alone, in the 

presence of the O. maius WT strain or of the OmSSP1 null-mutants. All pictures were taken at the 

same magnification. Bars represent the mean ±SD, n=5 (each biological replicate represents the total 

biomass of eight V. myrtillus seedlings grown in an individual plate). Different letters indicate 

statistically significant difference (p < 0.05) (ANOVA, Tukey’s post hoc test). 


