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Summary 

• Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) 

symbioses with Ericaceae. In the harsh habitats where they occur, ERM plants 

survival relies on nutrient mobilisation from soil organic matter (SOM) by their 

fungal partners. Characterization of the fungal genetic machinery underpinning 

both symbiotic lifestyle and SOM degradation is needed to understand ERM 

symbiosis functioning and evolution, and its impact on soil C turnover. 

• We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. 

variabilis, Oidiodendron maius and Rhizoscyphus ericae and compared their 

gene repertoires to those of fungi with different lifestyles (ecto- and orchid 

mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal 

transcripts induced in symbiosis. 

• The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, 

proteases, and enzymes involved in secondary metabolism are closer to those of 

saprotrophs and pathogens than of ectomycorrhizal symbionts. The fungal genes 

most highly upregulated in symbiosis are those coding for fungal- and plant-cell 

wall degrading enzymes (CWDE), lipases, proteases, transporters and 

mycorrhiza-induced small secreted proteins (MiSSPs). 

• ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and 

biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy 

to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes. 

 

Key words 
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Introduction	

Mycorrhizal symbioses have arisen repeatedly during plant evolution and are a key 

innovation influencing plant diversification (Tedersoo et al., 2010; Van der Heijden et 

al., 2015; Martin et al., 2016). Ericoid mycorrhiza (ERM) involves several soil fungi 

and the youngest lineage of a single monophyletic plant family, the Ericaceae. The 

remaining Ericaceae taxa encompass subfamilies displaying morphologically diverse 

mycorrhizal associations (Lallemand et al., 2016). Together, there are ~4400 recorded 

species of ericaceous trees and shrubs worldwide, distributed from arctic to temperate 

and tropical regions (Kron et al., 2002). The latest age estimate for the whole Ericaceae 

family is ~117 My (Schwery et al., 2015), whilst diversification of the ERM-forming 

lineages might date back to 90–75 Mya, during angiosperm radiation in the Late 

Cretaceous (Nixon & Crepet, 1993; Carpenter et al. 2015). The ERM symbiosis is 

hypothesized to have evolved within that time frame, and to be the most recent of all 

mycorrhizal types (Brundrett, 2002). 

ERM habitats are usually characterised by acidic soils low in nutrients and high in 

recalcitrant polyphenolic compounds, where decomposition and soil organic matter 

(SOM) turnover are slow (Cairney & Meharg, 2003). SOM accumulation in these 

ecosystems is significant, as they hold ~20% of the earth’s terrestrial soil carbon stocks 

(Read et al., 2004). In these harsh environments, ERM fungi are instrumental in plant 

survival (see in Perotto et al., 2012) as they contribute to the mobilisation of nutrients 

from complex organic matter and to transfer them to the host plant (Read & Stribley, 

1973). In these habitats, ERM fungi are also key players in soil carbon cycling 

(Clemmensen et al., 2013; Averill et al., 2014): up to 50% of carbon assimilated by the 

host plant can be allocated to ERM fungi (Hobbie & Hobbie, 2008), and ERM fungi 

contain high levels of recalcitrant carbon compounds (Read et al., 2004).  

Fungi known to form ERM symbioses include Ascomycetes in the Leotiomycetes 

and some Basidiomycetes in the Serendipitaceae (Setaro et al., 2006; Selosse et al. 

2007; Weiβ et al., 2016). Among the Leotiomycetes, the helotiacean Rhizoscyphus 

ericae (Zhuang & Korf) was the first ERM fungal species to be isolated (Pearson & 

Read, 1973). It was recently transferred to the Pezoloma genus but this transfer is 

questionable, being based on incidental ecological reports (Baral & Krieglsteiner, 2006) 

with no strong taxonomical or morphological support. Vrålstad et al. (2000) first coined 
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the term “R. ericae aggregate” to accommodate several un-named root-isolated taxa 

with close taxonomic affinities to R. ericae, some of which were later described by 

Hambleton & Sigler (2005) within the new genus Meliniomyces. In particular, M. 

variabilis forms ERM associations with several species of Ericaceae and is endophytic 

in ectomycorrhizal (ECM) roots of Northern temperate conifers (Grelet et al., 2010; 

Vohník et al., 2013). M. bicolor can form both ERM with ericaceous species and ECM 

(morphotype Piceirhiza bicolorata) with temperate forest trees (Villarreal-Ruiz et al., 

2004; Grelet et al., 2009). The other well-studied ERM fungus is Oidiodendron maius 

(Barron), a species belonging to Myxotrichaceae, recently moved to the Leotiomycetes 

(Wang et al., 2006) and found to form ERM with several Ericaceae (Read, 1996; Allen 

et al. 2003; Bougoure & Cairney 2005). Like M. variabilis, O. maius is also commonly 

isolated from roots of other plants (Bergero et al., 2000; Kernaghan & Patriquin, 2011) 

as well as from peat, soil, and decaying organic matter throughout temperate 

ecosystems including peatlands, forests, and heathlands (Rice & Currah, 2006). 

Both R. ericae and O. maius were shown to degrade in vitro a variety of complex soil 

organic sources including tannic acid, cellulose, pectin and chitin (Kerley & Read, 

1995, 1997; Rice & Currah 2001, 2005; Thormann et al., 2002). They secrete a wide 

range of enzymes involved in the depolymerisation and degradation of plant and fungal 

cell wall polymers, organic phosphorus forms and complex aliphatic compounds such 

as polyphenols and tannic acid (see Smith & Read, 2008 for summary).  More 

strikingly, O. maius can decompose Sphagnum moss, whose cell walls are chemically 

analogous to wood (Tsuneda et al., 2001). Different isolates of O. maius caused mass 

losses of 1.5% to 47% and eroded all Sphagnum cell wall components simultaneously, 

in a manner similar to wood decomposition by white rot fungi (Rice et al., 2006). The 

O. maius genome contains genes coding for a rich repertoire of polysaccharide-

degrading enzymes (Kohler et al., 2015), providing a genetic basis for SOM 

decomposition. It is unknown if this rich repertoire is shared by other ERM fungi, and 

how these genes are regulated when ERM fungi grow within host plant cells. 

In this study we sequenced the genomes of R. ericae, M. bicolor and M. variabilis, 

and compared their gene repertoires with the genomes of O. maius, six saprotrophic or 

pathogenic Leotiomycetes, and 50 other Ascomycetes and Basidiomycetes representing 

different life strategies. We further compared the transcriptomes of O. maius, M. bicolor 
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and R. ericae in free-living mycelia and in symbiotic root tissues to identify symbiosis-

related genes, focusing on genes putatively involved in plant cell wall polysaccharide 

decomposition. Our main questions were the following: (a) Did the ERM habit arise in 

Leotiomycetes together with appearance of the host plants? (b) Is the rich complement 

of genes responsible for SOM degradation in O. maius a common feature of 

ascomycetous ERM fungi, and are these genes expressed in symbiosis? (c) Do ERM 

fungi have a specific genomic ‘signature’ as for ECM fungi (Kohler et al., 2015)? 

 

Materials and Methods 

 

Fungal strains 

Isolation and identification of the four ERM isolates are described in Martino et al. 

(2000) for Oidiodendron maius (MUT1381/ATCC MYA-4765), Grelet et al. (2009) for 

Meliniomyces variabilis (UAMH11265/ICMP18552), and Meliniomyces 

bicolor (UAMH11274/ICMP18549), and Read (1974) for Rhizoscyphus ericae 

(UAMH7375/ICMP18553). R. ericae UAMH7375 is the same strain that led to the first 

formal description of the R. ericae species after production of ascomata in culture. We 

also included for comparison the as yet unpublished genome of the saprotrophic 

Leotiomycetes Amorphotheca resinae. Isolation and description of the sequenced strain 

ATCC 22711 are described in Edmonds & Cooney (1967). 

 

Genome sequencing, assembly, annotation, and data access 

The nuclear genomes of M. bicolor, M. variabilis and R. ericae were sequenced using a 

combination of Illumina fragment (270 bp insert size) and 4 Kbp long mate-pair (LMP) 

libraries and assembled using ALLPATHS-LG (Gnerre et al., 2011). The genome of M. 

bicolor was then further improved by closing gaps with Pacific Biosciences (PacBio) 

reads using PBJelly (English et al., 2012). The genome of Amorphotheca resinae was 

sequenced using a combination of 454 (Roche) standard and LMP libraries, assembled 

using Newbler (2.5-internal-10Apr08-1) (Roche) and further improved by closing 328 

gaps with gapResolution (Trong et al., 2009). Transcriptomes of all four species were 

sequenced using Illumina, assembled using Rnnotator (Martin et al., 2010) and used for 

genome annotation (see SI – Methods S1 for further details). All four genomes were 
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annotated using the JGI Annotation pipeline and made available via the JGI MycoCosm 

database (jgi.doe.gov/fungi; Grigoriev et al., 2014). The data were also deposited at 

DDBJ/EMBL/GenBank under the following BioProject/GenBank Accessions: M. 

bicolor E: PRJNA196026/LXPI00000000; M. variabilis F: 

PRJNA200595/LXPR00000000; R. ericae UAMH 7357: 

PRJNA263050/LYBP00000000, A. resinae ATCC 22711: 

PRJNA207866/MADK00000000. Genomes from other fungi were downloaded from 

the JGI MycoCosm database (http:jgi.doe.gov/fungi; Grigoriev et al., 2014).   

 

Phylogenetic tree 

A phylogenetic tree was constructed with 199 core gene representatives out of 246 

single-copy families (Marthey et al., 2008). We aligned each corresponding protein 

sequence with 60 orthologous sequences using CLUSTAL omega, extracted the 

conserved blocks from each alignment with Gblocks, and concatenated all the blocks in 

one sequence per species. Bootstrap analysis and tree inference were carried out with 

the RAxML (Randomized Axelerated Maximum Likelihood) program (Stamatakis, 

2006). Ultrametric trees were calculated from the ML tree generated above using the 

pathd8 method (Britton et al., 2007). The molecular clock was calibrated using the 

Pezizomycotina node estimated in Kohler et al. (2015) at 400 Mya.  

 

Comparative genomic analyses and annotation of functional categories 

Our comparative analyses focused on repeated elements, carbohydrate-active enzymes 

(CAZymes), lipases, proteases, secreted proteins, and additional gene categories 

involved in secondary metabolism. RepeatScout (Price et al., 2005) was used to identify 

de novo repetitive DNA in the genome assembly as reported in Peter et al. (2016). 

CAZymes – glycoside hydrolases (GH), glycosyl transferases (GT), polysaccharide 

lyases (PL), carbohydrate esterases (CE), redox enzymes that act in conjunction with 

CAZymes (Auxiliary activities, AA), carbohydrate-binding modules (CBM) and 

enzymes distantly related to plant expansins (EXPN) – were identified using the CAZy 

database (www.cazy.org) annotation pipeline (Cantarel et al., 2009). To compare the 

distribution of genes encoding CAZymes in the various genomes, we applied 

hierarchical clustering of the number of genes for each of the 60 species using the 
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Genesis software (Sturn et al., 2002). The Euclidian distance was used as the distance 

metric and a complete linkage clustering was performed. Proteases were identified 

using the MEROPS peptide database (http://merops.sanger.ac.uk) and lipases using the 

Lipase engineering database (www.led.uni-stuttgart.de). Secreted proteins were 

identified using a custom pipeline including SignalP v4, WolfPSort, TMHMM, TargetP, 

and PS-Scan algorithms as reported in Pellegrin et al. (2015). Genes and gene clusters 

involved in secondary metabolism were predicted for the 60 species using a pipeline 

based on SMURF (Peter et al., 2016). Potential transporters were predicted using 

TransportTP online tool (http://bioinfo3.noble.org/transporter/) (Li et al., 2009). 

 

MCL/CAFE analyses 

Multigene families were predicted on a subset of 20 genomes using the MCL algorithm 

(Enright et al., 2002) with an inflation parameter set to 3.0. Multigene families were 

analyzed for evolutionary changes in protein family size using the CAFE 

program (P<0.001) (De Bie et al., 2006). CAFE estimates for each branch in the tree 

whether a protein family has not changed, expanded or contracted. 

 

RNA-Seq 

Mycorrhizal roots of V. myrtillus were obtained in vitro as described in Kohler et al. 

(2015). Fifteen plates, each containing ten plants, were analyzed for each treatment. 

RNA extraction and sequencing (RNA-Seq), and identification of mycorrhiza-induced 

transcripts in M. bicolor and R. ericae were performed as described for O. maius in 

Kohler et al. (2015). The complete data sets have been deposited in NCBI’s Gene 

Expression Omnibus and are accessible through GEO Series accession numbers 

GSE63947, GSE107845 and GSE107647 for O. maius, M. bicolor and R. ericae 

respectlively. 

 

Double hierarchical clustering analysis 

Homologs of symbiosis-upregulated genes from O. maius, R. ericae and M. bicolor in 

the other Leotiomycete genomes and from O. maius in 59 genomes of saprotrophic, 

mycorrhizal, pathogenic and endophytic fungi were identified and their distribution 

illustrated by using heatmaps. The predicted protein sequences of symbiosis- 
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upregulated genes were queried using BLASTP (e-value 1e-5) against the different sets 

of gene repertoires to find homologs. Proteins were considered as homologs of 

symbiosis-regulated transcripts if they showed 70% coverage over the regulated 

sequence and at least 30% amino acid identity. Heatmaps were produced using double-

hierarchical clustering matrices (euclidian distance metric and ward clustering method) 

of symbiosis-upregulated transcripts homologs in the two different fungal genomes sets. 

Data were visualized and clustered using R (package HeatPlus) (Ploner, 2015). 

  

Statistical analyses 

We performed unconstrained ordination analyses in R of gene counts for all CAZymes, 

lipases and proteases. We used a non-metric multidimensional scaling (NMDS) 

approach (function metaMDS in package Vegan, Oksanen et al., 2009; see SI – 

Methods S1). The non-parametric Mann-Whitney U test with Bonferroni adjustment for 

multiple testing was used to identify gene families enriched in ERM fungi. The 

significance of differences between mycorrhizal and non-mycorrhizal plant fresh 

biomass was statistically evaluated by ANOVA with Tukey’s post hoc test (P<0.05).  

 

Results  

 

Phylogeny and genomic features of sequenced ERM fungi 

We generated and assembled the draft genomes of R. ericae, M. bicolor and 

M.variabilis, and compared them to those of O. maius (Kohler et al., 2015), six other 

Leotiomycetes (three soil saprotrophs – A. resinae, Ascocoryne sarcoides and Chalara 

longipes – and three plant pathogens – Blumeria graminis, Botrytis cinerea and 

Sclerotinia sclerotiorum) and 50 additional taxonomically and ecologically distinct 

fungi, including other mycorrhizal fungi (ECM and orchid mycorrhiza, ORM), 

endophytes, soil saprotrophs, white and brown rot fungi, and pathogens (Table S1). A 

phylogenetic tree constructed using 199 core orthologous single-copy genes highlights 

the taxonomic relationships of these 60 fungi (Fig. 1). As expected, the four ERM fungi 

clustered in the Leotiomycetes. The most recent common ancestor (MRCA) of the 

Leotiomycetes was estimated to have occurred ~148 Mya, while the MRCA of ERM 

fungi was estimated to have occurred ~118 Mya (Fig. 1). 
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The genome size (from 46 Mbp for O. maius to 82 Mbp for M. bicolor) and the 

number of predicted genes (from 16,703 for O. maius to 20,389 for M. variabilis) of the 

four ERM fungi fell within the range of other Ascomycetes (Fig. S1, Table S2). The 

percentage of repeated elements (RE) ranged from 4.6% for M. variabilis to 26.6% for 

M. bicolor (Fig. S1b, Table S3). The four ERM species showed similar numbers of 

common and clade-specific genes to other Leotiomycetes (Fig. S2). Gene distributions 

in the KEGG pathways, KOG and Gene Ontology categories (available through the R. 

ericae genome portal at the JGI MycoCosm database) are also very similar, although 

the M. variabilis genome encodes a much larger set of unspecific and salicylate 

monooxygenases that may be involved in aromatic compound metabolism (Peng et al., 

2008). 

Predicted proteins specific to the Leotiomycetes and to ERM fungi are listed in Table 

S4a. Leotiomycetes-specific proteins with known domains are enzymes involved in 

detoxification (e.g. glutathione S-transferase) and regulation of gene expression and 

development (e.g. methyltransferases, zinc finger transcriptional factors and 

deoxycytidylate deaminases). Proteins specific to ERM fungi included enzymes 

involved in resistance to environmental stress, such as isochorismate synthase (Sadeghi 

et al., 2013) and histidine triad domain-containing proteins (Eijkelkamp et al., 2016).  

Gene families significantly expanded in the four ERM genomes (MCL-CAFE 

analysis; Mann-Whitney test P<0.05) code for proteins involved in self/non-self 

recognition (heterokaryon incompatibility proteins), nutrient uptake/exchange (Major 

Facilitator Superfamily and sugar transporters), detoxification of environmental 

pollutants and/or stress response (cytochrome P450, ankyrin repeats, beta-ketoacyl 

synthases, and carboxylesterases) (Table S4b).  

 

ERM fungi resemble saprotrophs and pathogens in their repertoire of degrading 

enzymes  

We compared the distribution of genes coding for the degradation of polysaccharides, 

proteins and lipids (Table S5, S6 and S7; Fig. 2, S3 and S4). Lifestyle had a significant 

effect on gene content and distribution (P<0.001). Gene repertoires fell into two broad 

groups (P<0.01) including (1) ERM fungi, pathogens and soil/litter saprotrophs or (2) 

ECM, ORM, white and brown rot fungi (Fig. 2). Overall, ERM genomes encode a 
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higher median number of secreted and total CAZymes than the other fungi, although 

this difference was consistently significant only between ERM and ECM genomes (Fig. 

2). Interestingly, ERM fungi contain nearly twice the median number of lipase genes as 

any other type of fungi (Fig. 2), mostly coding for secreted carboxylesterases (GGGX) 

(Table S7). The total number of protease genes was less affected by lifestyle, except for 

a lower median protease gene count in soil saprotrophs (Fig. 2). 

ERM genomes contain the highest number of CAZyme genes encoding GHs and 

GTs (Fig. 3, Table S5). Although GTs are predicted to be secreted enzymes, they 

remain in the endoplasmic reticulum (Freeze & Haltiwanger, 2009). There were no 

specific patterns in the ERM genomes for genes encoding CEs, EXPNs, CBMs and 

redox enzymes that act in conjunction with CAZymes (AAs) (Fig. 3), whereas genes 

encoding PLs were mostly absent, except pectin lyases (PL1).  

ERM genomes contain a significantly higher number of CAZyme genes than ECM 

genomes (Table S5). They encode a higher set of genes coding for lignocellulose 

oxidoreductases, such as laccases (AA1), cellobiose dehydrogenases (AA3), and lytic 

polysaccharide monooxygenases (LPMOs) involved in the cleavage of chitin (AA11) 

and cellulose (AA9). Compared to ECM or white/brown rot fungi, iron reductases 

(AA8) and quinone-dependent oxidoreductases (AA12) acting on cellulose were 

significantly enriched in ERM fungi (Mann-Whitney U test; Table S5). Seventeen 

families of secreted CAZymes were significantly enriched in ERM fungi compared with 

all other fungi (Table S8); they are involved in the degradation of cellulose (GH5_5 and 

GH5_16), hemicellulose and/or pectin (GH27, GH28, GH53, GH54), but also β-1,3-

glucans (GH55, GH72, GH132) and mannans (GH76) (Table S8).  

Secretion of secondary metabolites is important for fungal survival in competitive 

environments and in fungal-plant interactions (Calvo & Cary, 2015). The number of 

polyketide synthase (PKS) and PKS-like genes was strikingly higher in the O. maius 

genome than in any other sequenced fungi (Fig. 4). The two Meliniomyces species were 

among the top 20 fungi for the number of secondary metabolite coding genes, whereas 

R. ericae featured a lower gene number (Fig. 4).  

Melanin allows fungi to tolerate environmental stress and makes their biomass 

recalcitrant to degradation (Fernandez et al., 2016). The analyses of five genes linked to 

melanin biosynthesis (SI-Methods S1) showed that two of them (arp1 - scytalone 
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dehydratase and abr1 - brown 1) are significantly enriched in ERM fungi compared to 

fungi with different ecological strategies (Table S9). Three more genes (alb1 - 

polyketide synthase; arp2 - 1,3,6,8-tetrahydroxynaphthalene (THN) reductase; ayg1- 

yellowish-green) are significantly more enriched in ERM than in ECM, white and 

brown rot fungi (Table S9). Compared to the other fungal groups (Table S5), ERM 

fungi have a significantly higher number of AA1, multicopper oxidases (MCOs). MCOs 

are involved in melanin biosynthesis (Hoegger et al., 2006), but also in lignin 

degradation (Leonowicz et al., 2001). 

  

ERM fungi display different substrate preference 

Although ERM fungi are characterized by a rich set of CAZymes (Fig. S5), they are 

discriminated by their secreted CAZymes repertoire (Fig. 5). In particular, O. maius 

clustered with a general soil saprotroph and a pathogenic Ascomycete, neither 

belonging to the Leotiomycetes, whereas members of the R. ericae aggregate (M. 

variabilis, M. bicolor and R. ericae) clustered with two saprotrophic Leotiomycetes, C. 

longipes and A. sarcoides (Fig. 5). These differential repertoires of secreted CAZymes 

suggest that ERM fungi preferentially decompose different carbon compounds. For 

example, compared to the R ericae aggregate, O. maius contained a higher set of 

CAZymes degrading mainly hemicelluloses and pectins (e.g. GH2, GH27, GH79) 

(Table S5) and cellulose-binding domains as CBM1 and CBM6 are more represented in 

O. maius. On the other hand O. maius contained less CAZymes degrading chitin, which 

are all present in the R. ericae aggregate species (e.g. CE4, AA7 and the chitin-binding 

domains CBM18 and CBM50) (Table S5). In addition, Meliniomyces genomes 

contained a larger set of genes coding for secreted lignocellulose degradating enzymes 

(e.g., laccases – AA1, cellobiose dehydrogenases – AA3 – and galactose oxidase – 

AA5) than O. maius and R. ericae (Table S5).  

 

Gene expression profiles during ERM symbiosis 

To investigate expression of fungal genes during symbiosis, V. myrtillus seedlings were 

inoculated with the four ERM fungi. Typical fungal coils were observed in the 

V. myrtillus root epidermal cells inoculated with O. maius, M. bicolor and R. ericae, but 

not with M. variabilis. Mycorrhizal plants also showed an increased biomass. The 
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effects of mycorrhizal inoculation on growth and root phenotype are shown for 

O. maius only (Fig. 6). 

Transcriptome analysis showed that 995 (~ 6%) O. maius genes, 545 (~ 3%) M. 

bicolor genes and 481 (~ 3%) R. ericae genes were either mycorrhiza-specific (i.e. no 

detectable expression in free living mycelium) or up-regulated (fold change >5; P<0.05 

Baggerley's test) in symbiotic roots (Tables S10, S11, S12, S13). 

The three ERM fungi showed a similar pattern in the percentage of up-regulated 

CAZymes, lipases, proteases, and also transporters and small secreted proteins (SSPs) 

which have important roles in symbiotic interactions (Fig. S6). Overall, O. maius 

displayed a higher number and percentage of symbiosis-regulated genes in most 

categories (Table S10). 

CAZymes. Of the 27% CAZyme genes up-regulated in O. maius during symbiosis 

(Table S10), the most highly induced genes (Table S11) code for secreted enzymes 

targeting pectin (PL1, CE8, GH28) and hemicellulose (GH27, GH43 and GH95), 

whereas the up-regulated CAZymes with the highest transcript levels mainly act on 

cellulose or contained a cellulose-binding domain (e.g. GH7-CBM1, GH5, GH10-

CBM1, GH6-CBM1, GH62-CBM1) (Table S11). Almost 40% of the secreted 

CAZymes in the O. maius genome were up-regulated in symbiosis, representing 44% of 

the secreted proteins up-regulated in symbiosis and 65% of the total up-regulated 

CAZymes (Fig. S6 and Table S10). For some secreted CAZyme families, most or all 

members were up-regulated in symbiosis, such as acetyl xylan esterase (CE1; 3 out of 

4), pectin methylesterase (CE8; 4/4), acetylesterase (CE16; 3/4), endo-β-1,4-glucanase 

(GH7; 4/5), endoxylanases (GH11; 7/8), and β-galactosidase (GH35, 5/6) (Table S5). 

M. bicolor and R ericae showed a similar pattern. In M. bicolor, of the 14% 

CAZyme genes up-regulated during symbiosis (Table S10), the most highly induced 

genes (Table S12) coded for secreted enzymes targeting hemicellulose (GH43, GH35, 

GH54) cellulose (GH5) and pectin (GH28, PL4). Up-regulation in symbiosis was 

observed for most members of some secreted CAZymes families, such as pectin 

methylesterase (CE8; 4/5) and xyloglucan β-1,4-endoglucanase (GH12; 3/4). In R. 

ericae, of the 10% CAZyme genes up-regulated in symbiosis (Table S10), the most 

highly induced genes coded for secreted enzymes targeting pectin (GH28), cellulose 

(GH45, GH7-CBM1), hemicellulose (GH12) and starch (GH31) (Table S13). 
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Proteases and lipases. 21% of the O. maius genes coding for secreted proteases were 

up-regulated in symbiosis (Table S10), with aspartic proteases (A1), glutamic proteases 

(G01) and subtilisins (S53) being the most highly up-regulated (Table S11). The 

proportion of up-regulated secreted proteases was lower in M. bicolor (6%) and R. 

ericae (11%) (Table S10). In these species aspartic proteases (A1) and glutamic 

proteases (G01) were the most highly up-regulated, together with a carboxypeptidase 

(S10) (Tables S12 and S13). Several lipase genes (mostly coding for carboxylesterase 

B) were up-regulated in mycorrhizal roots colonized by O. maius, M. bicolor and R. 

ericae (Tables S7, S11, S12, S13).  

Transporters. Genes coding for membrane transporters belonging to the major 

facilitator superfamily (MFS), and amino acid and ion permease families were 

significantly up-regulated during symbiosis (Tables S11, S12, S13). 

MiSSPs. The percentage of MiSSPs, out of the total SSP-coding genes found in the 

ERM fungal genomes, ranged between 10% (for the two R. ericae aggregate fungi) to 

20% for O. maius (Table S10). 

 

Conservation of mycorrhiza-upregulated genes in ERM and Leotiomycete 

genomes  

In ECM fungi, most symbiosis-upregulated genes code for taxonomically conserved 

genes involved in core metabolism (e.g. N and C assimilation, membrane transport) in 

both saprotrophic and symbiotic fungi (Kohler et al., 2015), while a substantial 

proportion of genes (7–38%) code for species-specific genes with unknown function 

(e.g. MiSSPs). We identified homologs of the symbiosis-upregulated genes of O. maius, 

R. ericae and M. bicolor by BLASTP queries in the other ERM genomes and in six 

genomes of saprotrophic or pathogenic Leotiomycetes (Fig. 7, Tables S11, S12, S13).  

Most homologs of up-regulated genes identified in the three ERM fungi were also 

found in the saprotrophic fungus C. longipes. About half (49%) of the 995 symbiosis-

upregulated O. maius genes were conserved (>40% sequence identity) in the gene 

repertoires of other Leotiomycetes (clusters IV, V and VI), with the exception of the 

pathogenic Blumeria graminis, known for its highly compact genome (Spanu et al., 

2010) (Fig. 7a). These conserved symbiosis-upregulated genes code mainly for 

CAZymes and proteins involved in primary metabolism, cellular processes and 
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signaling (Fig. 7a; Table S11). On the other hand, a substantial proportion (13%) of the 

O. maius up-regulated genes was restricted to this species (cluster II), with no homologs 

in other species. These taxonomically restricted genes mainly encode MiSSPs, proteins 

with no known KOG domains and a few metabolic components (e.g. MFS transporters, 

zinc finger C2H2-type transcription factors, CAZymes) (Fig. 7a; Table S11). Cluster I 

contains symbiosis up-regulated O. maius genes sporadically found in other 

Leotiomycete genomes (Fig. 7a).  

Not surprisingly, a high proportion of symbiosis-upregulated genes in M. bicolor and 

R. ericae (~85% for M. bicolor and ~90% for R. ericae) were also highly conserved 

(>60% sequence identity) in closely phylogenetically-related species of the R. ericae 

aggregate, as well as in the saprotroph C. longipes (Figs. 7b and 7c).  

Most homologs (87%) of the M. bicolor symbiosis up-regulated genes were also 

conserved in at least one of the sequenced Leotiomycete genomes (clusters I, II, IV and 

V), and taxonomically restricted symbiosis up-regulated genes (13%, cluster III) mainly 

code for proteins with no known conserved KOG domains, including MiSSPs, and 

components of the signaling pathways (Fig. 7b and Table S12). Several M. bicolor 

symbiosis up-regulated genes had no homologs in the gene repertoire of the congeneric 

species M. variabilis (Fig. 7b). 

For R. ericae, 61% of homologs of the symbiosis up-regulated genes (clusters I, II 

and III) were also conserved in several Leotiomycetes, except B. graminis. The 

proportion of taxonomically restricted symbiosis up-regulated genes was low (~10%, 

cluster VI), and these genes mainly code for MiSSPs and proteins with no known 

conserved KOG domains (Fig. 7c; Table S13). 

To assess if the transcripts conserved across all Leotiomycetes were also conserved 

across other fungal groups, we also blasted the 995 symbiosis-upregulated genes from 

O. maius against the entire gene repertoire of all other 59 fungal genomes included in 

this study. We found similar transcript distribution patterns between conserved and 

taxonomically restricted genes (Fig. S7, Table S14). 

 

Discussion 

 

ERM symbiosis is the youngest mycorrhizal type 
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Our phylogenomic analysis placed the MRCA of the sequenced ERM fungi at ~118 

My. This is the same age as the Ericaceae family (~117 My) recently estimated by 

Schwery et al. (2015). Thus, our fungal phylogenomic reconstruction provides further 

evidence that the ERM symbiosis is the youngest mycorrhizal symbiosis. Indeed, the 

origin of the AM symbiosis has been dated back to 450 Mya (Redecker et al., 2000), 

whereas origin of the ECM symbiosis in the Pinaceae has been placed between about 

270 and 130 Mya (see in Martin et al., 2016). Schwery et al. (2015) set the 

diversification of the ERM-forming lineages of the Ericaceae about 90–75 Mya, with 

contemporary dominant ERM plant species being even younger (45.6 My for present-

day Vaccinieae and 22.3 My for Dracophyllum in the Styphelioideae). Considering 

possible dating errors (see Schwery et al., 2015), our results suggest two possible 

scenarios: 1) the ancestral ERM fungal and plant partners diversified simultaneously, or 

2) ERM fungi existed, in a different niche, before the diversification of the ERM-

forming plant lineage.  

Several authors (see Smith & Read, 2008) have proposed that the ERM symbiosis 

evolved under pressure to adapt to carbon-rich, nutrient-deficient soils with a high 

content of recalcitrant organic compounds. Carpenter et al. (2015) further suggested that 

the appearance of Australian sclerophyllous Ericaceae was concomitant with the 

massive loss of soil phosphorus due to increased fire frequency. Under these 

environmental conditions, a dual saprotrophic/mutualistic habit of the ERM fungal 

symbionts may have provided their hosts with greater ecological flexibility. 

 

ERM genomes contain a rich repertoire of genes coding for degradative enzymes 

The ability of ERM fungi (in particular R. ericae and O. maius) to degrade a wide range 

of complex substrates has been extensively explored (Smith & Read, 2008; Rice & 

Currah, 2005, 2006). Our survey of the gene repertoires of O. maius, R. ericae, M. 

bicolor and M. variabilis confirmed that their ability to digest most organic compounds 

found in SOM (including recalcitrant ones) is explained by the rich and varied 

repertoire of genes coding for CAZymes and other degradative enzymes, such as lipases 

and proteases. 

All ERM fungi are well equipped with secreted CAZymes involved in the 

degradation of plant and fungal cell wall components, such as cellulose, hemicellulose, 
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pectins, chitin and ß 1,3 glucans. In addition, genes coding for lignocellulose-degrading 

enzymes were identified in all ERM genomes, providing genetic support for the 

observation that O. maius, and to a lesser extent R. ericae and M. variabilis, can 

decompose Sphagnum moss (Piercey et al., 2002), a rare, but crucial, trait in the fungal 

kingdom (Thormann, 2001). Monooxygenases are also abundant in ERM fungi and may 

be involved in the biodegradation of complex polyaromatic organic molecules 

(Cerniglia & Sutherland, 2010).  

When the gene repertoire of ERM fungi was compared to fungi with different 

lifestyles, the most striking differences were found with ECM fungi. The higher number 

of CAZyme and lipase coding genes identified in ERM fungi (all Ascomycetes) may 

partly mirror their different phylogenetic position from sequenced ECM fungi (mostly 

Basidiomycetes). However, the profiles of CAZyme, protease and lipase coding genes 

for ECM ascomycetes (i.e. Cenococcum geophilum and Tuber melanosporum) did not 

significantly differ from ECM basidiomycetes, yet differed (P<0.05) from those of 

ERM fungi, with the exception of total proteases (Table S15). This indicates that 

lifestyle is more important than phylogeny in shaping the fungal genomes.  

Although most degradative enzymes were common to all four ERM fungal genomes, 

O. maius seemed to be better equipped to attack cellulose (e.g. with almost three times 

the number of genes containing the cellulose binding domain CBM1) and pectin, 

whereas M. bicolor, M. variabilis and R. ericae featured a much higher (4 to 5 times) 

number of secreted proteins containing the chitin binding domain CBM18, as well as 

enzymes involved in chitin degradation (e.g. CE4, AA7) absent in O. maius. Chitin 

contributes almost half the total N in the litter layer of heathland soils and R. ericae can 

readily degrade this polymer (Kerley & Read 1997). 

These differential repertoires of degrading enzymes may reflect the different 

phylogenetic position of ERM fungi in the Leotiomycetes, with M. bicolor, M. 

variabilis and R. ericae belonging to the Helotiaceae (Vrålstad et al., 2000), and O. 

maius belonging to the Myxotrichaceae (Rice & Currah, 2006). Different gene 

repertoires may also mirror different habitat preferences of ERM fungi, as shown in 

Japan, where communities of putative ERM fungi differed among microhabitats 

(Koizumi & Nara, 2017). Notwithstanding its large CAZymes arsenal, M. bicolor is the 
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ERM strain with the lower percentage of secreted CAZymes (Fig. S3). This observation 

could partly support its double ERM and ECM nature. 

ERM fungi significantly contribute to the mobilisation and accumulation of soil 

carbon in ERM habitats not only because of their role in decomposition, but also 

because their fungal biomass is rich in recalcitrant carbon compounds (Read et al., 

2004), as supported by the higher number of genes coding for melanin metabolism. 

 

ERM fungi: recently recruited or highly versatile mycorrhizal partners?  

ECM fungi evolved multiple times from saprotrophic fungi (Ryberg & Matheny, 2012) 

and transition to the mycorrhizal habit coincided with an extensive loss of genes coding 

for plant cell wall degrading enzymes (PCWDEs), a genomic hallmark of ECM fungi 

(Martin et al., 2016). In contrast to ECM fungi, all ERM fungi, regardless of their 

taxonomic position, feature a large set of CWDEs, specifically those involved in the 

degradation of hemicelluloses, pectins, glucans and mannans. The ERM CAZyme and 

lipase gene profiles differ from that of ECM fungi, including the two ECM ascomycetes 

considered in our analyses (C. geophilum and T. melanosporum). The decay apparatus 

of ERM genomes is even greater than most of the sequenced soil saprotrophs and plant 

pathogens. Given the more recent appearance of the ERM symbiosis, it is tempting to 

speculate that ERM fungi have retained this efficient saprotrophic arsenal because, 

unlike ECM symbionts, they are still in a transitional evolutionary stage between 

saprotrophy and mutualism.  

Besides being true endomycorrhizal symbionts of ericaceous hosts, forming typical 

mycorrhizal structures, promoting plant growth and reciprocal resource exchange 

(Grelet et al., 2009; Kosola et al., 2007; Villarreal-Ruiz et al., 2012; Wei et al., 2016), 

ERM fungi also occur as root endophytes in other plant species. 

Fungal endophytes are a ubiquitous, highly diverse group, comprising both 

Ascomycetes and Basidiomycetes. They have been recognized as fundamental 

components of many ecosystems (Rodriguez et al., 2009; Hardoim et al., 2015). Like 

mycorrhizal fungi, fungal endophytes may behave as mutualistic symbionts or as latent 

pathogens along a mutualism–antagonism continuum that may reflect their polyphyletic 

origin, but also depend on host and environmental conditions (Johnson et al., 1997; 

Schulz & Boyle, 2005; Hacquard et al., 2016).  
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ERM fungi, in particular M. variabilis and O. maius, have been found as co-

associated endophytes in the root tips of ECM plants (Bergero et al., 2000; Tedersoo et 

al., 2009; Grelet et al., 2010; Kernaghan & Patriquin, 2011; Vohník et al., 2013), and 

colonising co-occuring ECM and neighboring non-ECM species (Chambers et al., 

2008).   

Although the ecophysiological role of ERM fungi as endophytes is unclear, 

Abuzinadah & Read (1989) showed that Oidiodendron enhances the growth of Betula 

pendula on a medium containing proteins as sole nitrogen source. Similarly, M. 

variabilis, formerly known as the “Variable White Taxon” (Hambleton & Sigler, 2005), 

increased Scots Pine biomass under elevated CO2 (Alberton et al., 2010). O. maius 

isolated from ECM tips inhibits in vitro root pathogens such as Phytophthora 

cinnamomi and Heterobasidium annosum (Schild et al., 1988; Qian et al., 1998). This 

antagonistic activity may rely on the production of secondary metabolites. Interestingly, 

O. maius features a high number of genes involved in secondary metabolism; such as 

polyketide synthase (PKS) and PKS-like genes (Fig. 4). PKS play important functions 

in fungal biology being involved in the production of several secondary metabolites, 

including pigments (melanin), toxins, antibiotics and signaling molecules (Eisenman & 

Casadevall, 2011).  

A common genomic trait of fungal root endophytes is that transition from 

saprotrophytism to endophytism, similar to transition to ERM, did not involve PCWDE 

genes loss (Fesel & Zuccaro, 2016). This is observed for endophytes belonging to the 

Helotiales (Leotiomycetes). For example, the widely distributed root endophyte 

Phialocephala subalpina shares several genomic features with ERM fungi, including 

expansion of PCWDE families acting on pectin, hemicellulose, cellulose and lignin, a 

low abundance of repeated elements and a large number of genes coding for key 

secondary metabolite enzymes (Schlegel et al., 2016). Almario et al. (2017) also 

reported a larger set of CAZyme encoding-genes in the genomes of two beneficial 

helotialean endophytic fungi, compared to saprotrophs and plant pathogens. C. longipes, 

a saprotrophic helotialean fungus with an endophytic phase (Koukol, 2011), also shares 

many of these features: numerous genes coding for PCWDEs, lipases and secondary 

metabolite enzymes, very few repeated elements, and many homologs of ERM 

symbiosis-induced genes. Intriguingly, there are also ecological and genomic features 
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shared between ERM fungi and Sebacinales. These Basidiomycetes include species 

displaying transitions from saprotrophy to endophytism and to mycorrhizal nutrition 

(Weiß et al., 2016). Some Sebacinales subclades also form ERM associations with 

Ericaceae plants (Berch et al., 2002; Selosse et al., 2007). Similarly to ERM fungi, 

genomic studies in the Sebacinales have revealed a rich array of PCWDEs, supporting 

their known saprotrophic abilities in vitro (Kohler et al., 2015; Weiβ et al., 2016). As 

suggested for the Sebacinales (Selosse et al., 2009; van der Heijden et al., 2015), 

endophytism could be a ‘waiting room’ leading to mycorrhizal symbiosis (Weiß et al., 

2016). In light of these considerations, we cannot exclude that the first interactions of 

ERM fungi with Ericaceae, about 118 Mya, may have been as endophytes, and that the 

mycorrhizal lifestyle evolved later. 

Thus, the genomic features of ERM fungi reflect their ecological flexibility, capable 

of forming mycorrhizal and endophytic associations and, for O. maius at least, living as 

saprotrophs in substrates rich in organic matter (Rice & Currah, 2006). This ecological 

strategy sets ERM fungi well apart from ECM fungi, which specialized as plant 

symbionts by losing their degradative ability during the evolution of symbiosis. 

 

Fungal gene expression in symbiosis 

All three ERM fungi increased expression of several genes coding for secreted 

CAZyme isoforms during symbiosis with V.myrtillus. The most up-regulated CAZyme 

genes coded for secreted PCWDEs targeting cellulose, pectin and hemicellulose. Only 

four, one and six CAZyme genes were down-regulated in symbiosis (fold change <-5, 

P<0.05) for O. maius, M. bicolor and R. ericae, respectively. Several hypotheses may 

explain this pattern. To establish intracellular structures inside the epidermal root cells 

of ericaceous hosts (Massicotte et al., 2005), fungi may use secreted PCWDEs to 

penetrate the thick outer plant cell wall. In addition, PCWDEs may influence cell–cell 

interactions by altering the symbiotic plant-fungus interface formed by the invagination 

of the plant membrane (Balestrini & Bonfante, 2014). For example, whereas cellulose 

and other plant cell wall components have been identified in the interface formed 

around intracellular arbuscular mycorrhizal fungi (Bonfante et al., 1990), β1,4 glucans 

were missing in the ERM plant-fungus interface (Perotto et al., 1995), and their absence 

may reflect the sustained expression of secreted PCWDEs in symbiosis. 
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Sustained expression of PCWDEs in symbiosis might also contribute to closing the 

life cycle of an infected cell. Indeed the plant-fungus interface is thought to last about 

five weeks (Rice & Currah, 2006), after which mycorrhizal root cells first, then the 

intracellular fungal hyphae degenerate (Smith & Read, 1997). Seven to nine percent of 

secreted proteins up-regulated in symbioses were lipases and proteases. Altogether, 

these enzymes could promote the recycling of degenerating plant and fungal materials 

through decomposition and solubilisation of C and N compounds from senescing 

tissues, providing an efficient adaptative mechanism to low nutrient environments. 

The expanded gene family (Table S4b) most represented in the symbiosis up-

regulated transcriptome was the Major Facilitator Superfamily (MFS). Nutrient 

exchange is at the core of both saprotrophic and mycorrhizal functioning, and expansion 

of this gene superfamily in ERM fungi evolution was likely advantageous. By contrast, 

the expression of most members of other expanded families (e.g. HET genes) was not 

regulated in symbiosis, suggesting that these genes may be more relevant to 

saprotrophic growth. 

Symbiosis-upregulated genes of ERM fungi include a cluster of taxonomically 

restricted genes specific to each ERM fungal species that contain a high proportion of 

effector-like MiSSPs. Characterized MiSSPs dampen plant defense reactions in 

arbuscular mycorrhizal and ectomycorrhizal symbioses (Kloppholz et al., 2011; Plett & 

Martin, 2015; Tsuzuki et al, 2016). The percentage of MiSSPs (10–20% of total SSPs) 

in ERM falls in a range similar to that found for ECM fungi (4–21%; Kohler et al., 

2015) and for the arbuscular mycorrhizal fungus R. irregularis (19%, Tisserant et al., 

2013).  

In conclusion, our study describes the genetic machinery underpinning the extremely 

versatile nutrition mode of ERM fungi in the Leotiomycetes. This class of Ascomycetes 

includes fungi displaying different lifestyles, including plant pathogens, plant 

endophytes and saprotrophs (Zhang & Wang, 2015), and evolution of ERM fungi from 

any of these guilds is plausible. The results from this work and from Schlegel et al. 

(2016) suggest a closer relationship between ERM fungi and saprotrophic fungi, but 

genome sequencing of additional ERM isolates will help to verify this hypothesis.  

The phylogenetic distance between O. maius and ERM fungi in the R. ericae 

aggregate suggests that the ERM habit evolved independently multiple times. However, 
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common traits of ERM fungi are their ecological plasticity and their ability to interact 

both with recalcitrant organic substrates as saprotrophs, and with living plants as 

biotrophs. The genetic bases of this dual life strategy are their large array of degradative 

secreted enzymes, often richer and more varied than that of soil saprotrophs and wood 

decayers, and a wide set of MiSSPs that may be involved in manipulating the host plant 

response. 
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Figures 
 

Fig. 1. Phylogenetic and molecular clock tree. Phylogenetic tree constructed with 199 core gene 
representatives out of the 246 single-copy families (deposited in the FUNYBASE, Marthey et al., 2008). 
Branch confidence values were obtained from 500 bootstrapped topologies and only nodes receiving less 
than maximal support are indicated with asterisks. Numbers in the tree correspond to My of nodes. The 
molecular clock was calibrated using the Pezizomycotina node estimated at 400 Mya (Kohler et al., 
2015). The red dot in the tree corresponds to the ericoid fungal species separation. ECM, 
ectomycorrhizal, ERM, ericoid mycorrhizal, ORM, orchid mycorrhizal fungi; S/L/O, soil, litter, organic 
matter; WR, white rot; BR, brown rot. See Table S1 for full names of species and lifestyles. 
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Fig. 2. MDS ordinations and gene counts for CAZymes, proteases and lipases in the 60 genomes. 
Effect of lifestyle on the number of genes involved in SOM (soil organic matter) decomposition 
(CAZymes - Carbohydrate-Active EnZymes, proteases and lipases). Lifestyles are color coded as follows: 
purple (ECM; n=12), black (END/ORM; n=3), red (ERM; n=4), green (PATH; n=12), orange (SAP 
S/L/O; n=14), brown (SAP BR; n=4) and grey (SAP WR; n=11). Plots (a) and (b) illustrate the MDS 
ordinations for all gene counts (total or secreted only, including all counted CAZyme, protease and lipase 
coding-genes), square symbols and lines indicate means and SEM for each lifestyle. Each individual 
genome is marked as a closed circle. Plots (c)–(h) show the average distributions of genes counts 
(minimum, first quartile, median, third quartile, and maximum) and outliers per gene category per 
lifestyle. In plot (c)-(h), lifestyles with different letters are significantly different at P<0.05 (modified 
one-way ANOVA analyses using MULTCOMP in R). ECM, ectomycorrhizal, ERM, ericoid 
mycorrhizal, ORM, orchid mycorrhizal fungi; END, endophytes; PATH, pathogens; SAP, saprotrophs; 
S/L/O, soil, litter, organic matter; WR, white rot; BR, brown rot. See Table S1 for full names of species 
and lifestyles. 
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Fig. 3. Gene counts for total and secreted CAZyme coding genes. Effect of lifestyle on the number of 
genes belonging to the different CAZyme (Carbohydrate-Active EnZymes) families, coding for total (a) 
or secreted (b) enzymes. Lifestyles are color coded as follows: purple (ECM; n=12), black (END/ORM; 
n=3), red (ERM; n=4), green (PATH; n=12), orange (SAP S/L/O; n=14), brown (SAP BR; n=4) and grey 
(SAP WR; n=11). Plots show the average distributions of genes counts (minimum, first quartile, median, 
third quartile, and maximum) and outliers per CAZyme gene family per lifestyle. Lifestyles with different 
letters are significantly different at P<0.05 (modified one-way ANOVA analyses using MULTCOMP in 
R, performed on each individual CAZymes sub-category). GH, glycoside hydrolases; GT, glycosyl 
transferases; PL, polysaccharide lyases; CE, carbohydrate esterases; AA, Auxiliary Activities enzymes; 
CBM, carbohydrate-binding modules; EXPN, enzymes distantly related to plant expansins. ECM, 
ectomycorrhizal, ERM, ericoid mycorrhizal, ORM, orchid mycorrhizal fungi; END, endophytes; PATH, 
pathogens; SAP, saprotrophs; S/L/O, soil, litter, organic matter; WR, white rot; BR, brown rot. See Table 
S1 for full names of species and lifestyles. 
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Fig. 4. Genes coding for secondary metabolism enzymes. Number of genes coding for secondary 
metabolism enzymes predicted for each of the 60 fungal species using a pipeline based on the SMURF 
method (Peter et al., 2016) is given as bar chart. PKS, polyketide synthase; NRPS, nonribosomal peptide 
synthase, DMATS, aromatic prenyltransferase. ECM, ectomycorrhizal, ERM, ericoid mycorrhizal, ORM, 
orchid mycorrhizal fungi; END, endophytes; PATH, pathogens; SAP, saprotrophs; S/L/O, soil, litter, 
organic matter; WR, white rot; BR, brown rot. See Table S1 for full names of species and lifestyles.  
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Fig. 5. Double hierarchical clustering of the secreted Carbohydrate-Active EnZyme (CAZyme) 
coding gene numbers in 60 genomes. A double hierarchical clustering of the number of secreted 
CAZyme coding genes for each of the 60 fungal species was performed using the Genesis software (Sturn 
et al., 2002). The Euclidian distance between gene counts was used as distance metric and a complete 
linkage clustering was performed. Relative abundance of genes is represented by a color scale (on the 
left), from the minimum (white) to the maximum (red) number of copies per species. On the right, 
CAZyme names were color-coded as in Table S5 to indicate significantly enriched CAZyme classes in 
ERM fungi (Mann Whitney test with Bonferroni correction): red, against all; pink, against all other 
Leotiomycetes; purple, against ECM fungi; grey, against white and brown rot fungi; orange: against 
saprotrophs S/L/O; green, against pathogens. Double-colored cases means significantly enriched 
CAZyme classes against two different fungal groups. Species marked by dotted lines are Leotiomycetes 
(in red, ERM fungi; in black, other fungi). ERM, ericoid mycorrhizal, ECM, ectomycorrhizal, ORM, 
orchid mycorrhizal fungi; S/L/O, soil, litter, organic matter; WR, white rot; BR, brown rot. See Table S1 
for full names of species and lifestyles. 
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Fig. 6. In vitro mycorrhization of Vaccinium myrtillus by O. maius. (a) Biomass of aboveground and 
root portions of non mycorrhizal (dotted bars) or mycorrhizal (hatched bars) V. myrtillus plants. 
Significantly different values by ANOVA (P<0.05) were indicated by different letters. Error bars indicate 
standard deviation. n=15. (b) Non mycorrhizal and mycorrhizal V. myrtillus plants in Petri plates. (c) 
Ericoid fungal coils in the root epidermal cells, as observed by light microscopy (cells containing fungal 
coils are dark blue). (d) Ultrastructure of an epidermal cell of V. myrtillus where the fungal hyphae (f) 
surrounded by the plant plasma membrane and forming the coil inside the plant cell are visible (courtesy 
of R. Balestrini).  
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Fig. 7. Sequence conservation and functional analysis of the ERM symbiosis-induced genes. 
Homologs of symbiosis-upregulated genes from (a) O. maius, (b) M. bicolor and (c) R. ericae in the 
genomes of saprotrophic and pathogenic Leotiomycetes. The heatmaps represent a double hierarchical 
clustering of symbiosis-upregulated genes for the three ericoid fungi (rows, fold change >5, false 
discovery rate–corrected P<0.05; Tables S11-S13) based on their percentage sequence identity (color 
scale at left) with their homologs (if any) in selected fungal species (columns). Right of heatmap, the 
percentages of putative functional categories are given for each cluster as bargrams and the number and 
percentage of genes in each cluster are shown. In (a) genes of cluster II are O. maius–specific genes, in 
(b) genes of cluster III are M. bicolor–specific genes, in (c) genes of cluster VI are R. ericae–specific 
genes. CAZymes, Carbohydrate Active enZymes; SSPs, Small Secreted Proteins. See Table S1 for full 
names of species and lifestyles. 
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