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ABSTRACT 

 

Several fields associated to people and everyday life products can be easily affected by bacterial 

contamination. An increasing interest for antibacterial products can be seen on the scientific 

literature and on the market in many fields, from medical applications to everyday life products. To 

this purpose, a new antibacterial silver nanocluster/silica composite coating was developed. The 

radio frequency (RF) co-sputtering is the technique used for the coating deposition, suitable for 

glasses, ceramics, metals and polymers. Sputtering technology is adaptable and suitable also for 

substrates susceptible to high temperature (e.g. polymers). Moreover this technology allows the 

tailoring of the silver content (and consequently the antibacterial activity) depending on the specific 

application and requirements, from aesthetic appearance to bactericidal power and biocompatibility. 

The main properties of the coating in terms of antibacterial effect, morphology, composition and 

adhesion to silica substrates, used as model, will be discussed. In addition, some case studies will be 

reported, demonstrating the suitability of this coating to be applied on different materials,  from 

medical devices, cheese moulds, mobile telephones to  aerospace structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION[n1] 
 

1.1 Bacteria can be everywhere: from medical implants to space stations  
 

Bacterial contamination can interest almost every surface from medical implants [1-5] and 

hospital surfaces (desks, telephones, instruments…) [6-8] to food handling and processing materials 

[9-11], to everyday life objects [12, 13]; this contamination is not limited to the Earth, in fact 

microorganisms represent a problem also for space structures [14-18]. 

In the case of medical implants, the development of an infection is a stressful and health 

hazardous condition that may require post-surgical additional treatments and lead to implant failure 

and, even removal in the worst cases. Moreover, prosthetic and hospital acquired infections 

represent a serious problem also from an economical point of view, because of the expensive 

strategies necessary for their treatment (i.e. additional therapies, revision surgery, longer 

hospitalization time). Biomaterial surfaces represent a preferential site for bacterial adhesion and 

biofilm formation [19]. In fact contamination has frequently been registered on orthopedic and 

dental prostheses [1-3], catheters and abdominal wall repair devices [4, 5] as well as ocular implants 

[20]. 

A significant microbial contamination has been observed on frequent hand-touched surfaces 

in hospitals and particularly on telephones of healthcare workers, patients and visitors [6-8]. The 

contamination from hands to telephones and from telephones to hands has also been noticed [7]. 

The need of antibacterial surfaces in the medical field comes from both medical devices and clinical 

environment, with extremely different requirements in terms of compatibility, bactericidal activity 

and resistance.  

If it is straightforward to associate the medical field with the risk of bacterial contamination, 

it should be also evident that these microorganisms can reside almost everywhere:  in particular, 

every surface at home is a possible point of contamination for bacteria (e.g. S aureus and other 

staphylococci); examples are: working surfaces, sinks, refrigerator and sponges in the kitchen, 

cabinet top and shelves, hand towels and taps in but also pillows and bed lining,  toys, television 

sets, remote controls, telephones, door knobs and carpets, where people, animals and generally the 

environment can get contaminated [13]. 

Food handling and production is another critical source of bacterial contamination that can 

result in human poison and health concerns [9-11]. Cross contamination of foods from processing 

materials have been reported for cheese and meat industries [9-11, 21]. 

A quite unexpected habitat for bacteria is the space, but microbial contamination of space 

structures has been widely documented [15-18, 22] and constitutes a serious problem for astronauts 



because of their hampered immune system [14, 15] and for the deterioration of the space structures 

[22, 23]. 

A wide variety of bacteria have been detected on surfaces for the different application cited 

above, some examples are reported in Table 1. The variety of bacterial contamination requires a 

wide spectrum of antibacterial solutions. Moreover the development of resistant bacterial strains 

require new and low resistant development strategies. 

 

Table [n2]1: Main bacterial and fungal strains for different application fields  

Application field Main pathogens Reference 

Medical S. aureus (mainly on metals) 

S. epidermidis (mainly on polymers) 

Streptococci (e.g. S. sanguis, dental) 

Actinomyces (dental) 

Porphyromonas (dental) 

Prevotella (dental) 

Capnocytophaga (dental) 

Fusobacterium (dental) 

P. gingivalis (dental) 

C. gingivalis (dental) 

C. albicans (mainly on polymers, dental) 

[2], [4] 

[2], [4] 

[3] 

[3] 

[3] 

[3] 

[3] 

[3] 

[3] 

[3, 24] 

[24-26] 

Food handling Enterobacter 

Lactobacillus 

Listeria 

Micrococcus 

Streptococcus 

Bacillus 

Pseudomonas spp 

E. coli 

C. jejuni 

Salmonella 

S. aureus 

[11, 27]  

[21, 27]  

[9, 21, 27, 28] 

[27] 

[27] 

[27] 

[21, 27] 

[9, 11, 21, 28] 

[28] 

[9] 

[9-11] 

Everyday life S. aureus and epidermidis (telephones, household) 

Acinetobacter spp (telephones) 

Pseudomonas spp (telephones) 

Enterococcus spp (telephones) 

Streptococcus spp (telephones) 

Escherichia coli (telephones) 

Klebisella spp (telephones) 

Proteus spp (telephones) 

Bacillus spp (telephones) 

[6, 7, 12, 13] 

[7, 8, 12] 

[7, 8, 12] 

[8, 12] 

[8, 12] 

[8, 12] 

[8, 12] 

[8, 12] 

[8, 12] 

Aerospace  Staphilococcus sp. 

Bacillus sp. 

Corynebacterium sp. 

Enterococcus sp. 

Micrococcus strains 

Streptococcus sp. 

Aspergillus sp.  

[16, 18, 22] 

[16, 18] 

[16] 

[16, 22] 

[16, 18] 

[16] 

[16, 22] 



Penicillium sp. 

Cladosporium sp. 

[16, 18] 

[18] 

 

A brief summary of the most common preventive or treating strategies for each application field is 

reported in Table 2. 

 

 

Table 2: Preventive or treating strategies against bacterial contamination in various 

application fields 

Application field Strategies against bacterial contamination 

Medical Antiseptic operative procedures 

Antibiotic prophylaxis 

Revision surgery 

Food handling Cleaning ,  disinfection  and sterilization [21, 27] 

Easy to clean design of equipment [27] 

Everyday life Cleaning and decontamination with chemicals (e.g. isopropyl 

alcohol and chlorexidine, disinfectant wipes) [7, 8] 

UV-light sanitizer/decolonizing treatments [7, 8] 

Antibacterial covers for telephones [7, 8] 

Aerospace  Surface treatments (heat radiation, chemicals) [14] 

Cleaning surfaces 

Disinfectant wipes [14] 

Replacement of contaminated surfaces [14] 

 

 

1.2 The antibacterial effect of silver 

 

Silver is a metal able to expressed an antibacterial action towards a broad-spectrum of 

Gram-positive and Gram-negative bacteria and fungi [29-31]. Valuable pictures about the 

antibacterial effects as well as the impacts on human health and environment of silver-containing 

materials have been recently reported by Marambio-Jones and Hoek [32]. The action mechanism of 

silver against cells depends on its nature as ion, metallic silver or nanoparticle [33-35]. Even if the 

interaction mechanism is still not completely understood, silver generally reacts with thiol groups 

present into specific chemical sites as enzymes or proteins or DNA, altering or inhibiting the 

function of them (i.e. respiration, inactivation or replication processes) and causing the cell death. 

Metallic silver in a biological environment forms ions which play the main role in its antibacterial 

activity. Silver ions interfere directly with proteins or enzymes or DNA because they can attach and 

break cell membranes and enter into the cell nucleus. On the other hand, silver nanoparticles 



became attractive antibacterial agents during the last years due to their unique properties. The 

antimicrobial activity mechanism of silver nanoparticles is very similar to that of metallic silver, but 

enhanced thanks to their large surface area which provides a higher amount of released silver ions 

and a better contact with cells [29-31, 33, 35]. Moreover a direct action of silver nanoparticle on 

bacterial cells has been documented [29, 32]. For the same reason, silver nano-particles may result 

toxic and hazardous for the environment and human cells because of several peculiar nanoparticles 

factors as size, shape, chemistry and so higher reactivity and the environmental features as pH, ionic 

strength, presence of ligands [32, 35-37]. Few toxicity data are available for silver and less about 

the behavior of silver nanoparticles, despite a significant increase in their application in various 

fields, resulting in human exposition to silver by numerous routes, mainly ingestion, inhalation and 

skin contact. The main heath effect caused by chronic exposition to silver is argyria (the permanent 

grey/blue coloration of the skin), however silver accumulation in tissues and organs can be 

documented in some cases [35]. 

In the last few years, researchers developed different silver-based coating processes able to 

confer antimicrobial properties to almost all materials; the use of silver-based products may 

currently cover a variety of application fields from the treatment of burned wound [38], to medical 

devices [39-43], textile fabrics [44, 45] and water purification [46].  

Silver-related antibacterial properties can be conferred to a surface using several different 

techniques. Silver can be added to glass and ceramic directly during melting process [47] or through 

ion-exchange [48-53], absorbed on zeolites or in silica microsphere [54, 55], deposited as coating 

on different substrates deposited by means chemical vapor deposition [56], sputtering [57, 58], or 

embedded into materials through sol-gel method or in the polymeric monomer or matrix  [59-63]. 

Some of these methods are low-cost and available at an industry level, but they could not be applied 

on all kinds of materials as for instance, to polymers, because of the high temperatures necessary 

during the process or needed additional treatment for stabilizing the silver doped materials or 

coating.  

Considering the widespread diffusion of silver-based antibacterial products, silver or silver 

nanoparticles accumulation in the environment and the consequential pollution and toxicity 

concerns must be considered, on the other hand few information can be found on these topics [35]. 

In this context the stability of silver containing products and their release kinetics (both for ions and 

nanoparticles should be considered) should be taken into account. 

 

 



2. SPUTTERED ANTIBACTERIAL SILVER 

NANOCLUSTER/SILICA COMPOSITE COATINGS [n3] 
 

In this section of the chapter, an innovative silver nanocluster/silica composite coating, 

developed and studied by authors to confer antibacterial properties to several materials is reviewed. 

First of all, a brief the sputtering technology used for the deposition of this coating is briefly 

described. Then, the main properties and characteristics of the silver nanocluster/silica composite 

coating, evaluated on a silica substrate used as model, are discussed. Finally, some case studies such 

as antibacterial biomedical devices, telephones, food containers and space structures are reported. 

 

 

2.1  Sputtering technology   
 

From the second part of the last century the thin film technology has rapidly grown due to the 

progress in vacuum systems and electronics.  

The sputtering technology is the most diffused one in the electronic thin films industry and 

currently its use is increased also in biomedical, mechanical and other industrial sectors. Sputtering 

is one of the Physical Vapor Deposition (PVD) techniques, but it differs from others because it is a 

“not-thermal” process [64]. The sputtering process is realized in a vacuum chamber, consisting in 

an ion bombardment of the material to be deposited (target) that extract atoms or cluster of atoms. 

The atoms “fly” inside the depositions chamber and reach the substrate material, according to their 

free mean path. The deposited thin film starts its growing, regulated by the chemical and physical 

affinity between ad-atoms and substrate. During sputtering, the target is “vaporized”, exploiting the 

momentum transfer among gas ions (usually Ar+) and the target surface. The released energy is 

generated by atomic mechanical interaction and not by thermal heating, thus without breaking the 

intra-molecular bonding [65].For this reason, sputtering is used to deposit composite materials or in 

general molecular compounds like SiO2. By avoiding melting, the target stoichiometry is almost 

unchanged from the target to the sputtered coating. Moreover, the control of many parameters such 

as plasma energy and carrier gas pressure during sputtering allows the optimization of conditions 

for each kind of film composition. Another advantage of sputtering is the film quality: as the 

sputtered atoms (or molecules) have generally greater energy if compared to those obtained by other 

“thermal” techniques, it results in an improvement in terms of film adhesion and cohesion. The fine 

tuning of parameters allows to better control uniformity and film thickness. The process stability 

during time and along the whole target surface guarantess  the uniformity of the sputtered layer (on 

a nanometeric scale) even on high area samples (square meters). Finally, the sputtering process is a 



“green” one, with exhaust gases generally not toxic or hazardous and in a very low quantity. Only 

the initial equipment cost can be an issue. 

An innovative antibacterial coating was developed to confer antibacterial behavior to most 

of the used materials (glasses, ceramics, metals, polymers) [66-68]. Starting from two different 

targets, one of pure SiO2 which forms the matrix and one of Ag that provides the antibacterial 

effect, the thin film is realized by tailoring the SiO2/Ag ratio in order to optimize its antibacterial 

behavior and mechanical / thermal properties. 

Due to the low depositions rate of silica, high power density on this target is required and low 

energy is needed on the Ag target. Moreover to better control the SiO2/Ag ratio a duty cycle during 

deposition is applied on the Ag cathode by switching on and off the plasma on the Ag cathode 

during the whole deposition time. By increasing the power on the silica target, the SiO2 deposition 

rate, the substrate temperature and the thin film strength increase. On the contrary, by increasing the 

power on the Ag target, the substrate temperature is generally not affected because the Ag does not 

require high energy to be deposited. 

In order to increase the antibacterial effect, the amount of Ag must be increased, but it must be also 

balanced to guarantee the film cohesion. 

The deposition time affects the film thickness and consequently the total amount of Ag into the 

layer. Moreover, by using a non-cooled substrate holder and increasing the deposition time 

increases the substrate temperature: this can be dangerous for polymer substrates. 

The antibacterial effectiveness is also related to the Ag ions release: it is thus evident that by 

increasing the Ag content in the film, it is possible to increase the lifetime of the antibacterial 

coatings. 

 

2.2 Properties of the silver nanocluster/silica composite coating 

 

The co-sputtering technique allows the simultaneous deposition of silica and silver, forming silver 

nanocluster/silica composite coating. In this paragraph, the main chemical, antibacterial, thermal 

and mechanical properties of the silver nanocluster/silica composite coating, studied and developed 

by authors [69-72], are reported.  

The analyses are carried out on the silver nanocluster/silica composite coating deposited on a silica 

substrate. It was, in fact, demonstrated that silica is an inert material which does not interact with 

the coating chemical properties, allowing determination of the principal characteristics of the silver 

nanocluster/silica composite film [72].  



The thickness of the coating is selected at 300 nm for these discussion. The coating thickness is an 

important parameter directly correlated to the total silver content, which is in turn related to the 

antibacterial effect. Hence, the choice of the thickness and the optimization of the silver amount are 

important aspects, especially for biomaterials which are close to body organs and tissues, with an 

increased risk of cytotoxicity development, as it will be discussed in the next chapter.  

In addition, as the final application of an antibacterial layer could require high temperature, the 

effects of temperature between 300 and 600°C are evaluated subjecting the silver nanocluster/silica 

composite coating to several thermal treatments: results are reported here compared with the as 

deposited coating. 

The silver nanocluster/silica composite coating deposited on silica substrate has a typical 

homogenous dark brown color (Figure 1a).  

 

 
Figure 1: silver nanocluster/silica composite coating on silica substrates: (a) photograph, (b) FESEM micrograph 

 

Observing the coating morphology reported in the field emission scanning electron microscopy 

(FESEM) micrograph in Figure 1b, the silica matrix has the typical porous structure of a sputtered 

layer whereas silver nanoclusters (few nm) as bright dots are well embedded in it. The matrix is 

able to firmly hold the silver nanoparticles and to release only silver ions, principal responsible of 

the antibacterial effect. The composite nature of this coating reduces the amount of silver necessary 

to obtain a coating, if compared to the amount of silver needed to obtain a metallic silver layer, thus 

reducing toxicity issues and overall cost. 

The antibacterial activity against Staphylococcus aureus of the silver nanocluster/silica 

composite coating is demonstrated by means of inhibition halo test [73] as reported in Figure 2.   

 



 
Figure 2: Effect of the thermal treatment and sterilization on visual appearance and antibacterial behavior of the 

silver nanocluster/silica composite coating on silica substrates 

 

Silver nanoclusters in the as deposited coating (As dep), generate silver ions which diffuse into the 

agar and produce a well visible halo of about 5 mm. The thermal treatments up to 450°C do not 

influence the antibacterial behavior and the halo formed around heated samples remains quite the 

same, well visible and reproducible (test performed in triplicate). On the contrary, a reduction of 

antibacterial effect is visible for coated samples heated at 600°C, where the inhibition halo is less 

evident. However the small inhibition halo is sufficient to give an antibacterial effect. This feature 

can be explained by considering the mechanism of antibacterial activity directly related to the 

particles dimensions and to the surface area vs volume ratio [74]. If the particle size is small, the 

antibacterial effect is more efficient because the surface area vs volume ratio is larger. A nano-

particle size increase, together with the total number of nano-particle decrease occurs with the 

thermal treatment at 600°C, thus reducing the whole antibacterial properties. For the same reasons, 

silver nanoclusters tend to coalesce involving a color change with a gradual shift from dark as 

deposited coatings to light, almost transparent yellow/orange ones heated at 600°C. As explained in 

Refs. [69, 75, 76], the scattering and Localized Surface Plasmon Resonance (LSPR) effects are due 

to the silver nanoclusters embedded in the silica matrix as a function of their  size. The dark colour 



is the effect of small nanoclusters, because of the prevalence of the scattering effect. On the other 

hand, a light colour (yellow/orange) is typical of the larger nanoclusters where the silver LSPR at 

400 nm is predominant. 

The sterilization procedures, performed on both as deposited and heat treated samples with 

EtO (Ethylene Oxide) or gamma rays, both widely used in the biomedical field, do not affect 

antibacterial activity and visual appearance.  

The silver nanoclusters size increase discussed above  is also verified through XRD analysis 

(Figure 3) where the intensity of metallic silver peaks significantly increases.   

 

 
Figure 3: XRD of as deposited and thermal treated silver nanocluster/silica composite coatings on silica 

substrates[n4] 

 

The effect of temperature on the antibacterial behavior of silver nanocluster/silica composite 

coatings on silica are confirmed also through metal ions release (leaching) test. The leaching test 

performed by dipping both as deposited and heat treated coatings into distilled water at 37°C up to a 

month then analyzed by means of a graphite furnace atomic absorption spectroscopy, shows  a 

gradual decrease of the silver ion release with the coating heat treatment temperature increase 

(Figure 4). This behavior confirms what previously discussed about the role of surface vs volume 

ratio on silver nanoclusters properties.  

 



 

Figure 4 Silver ions release in water at 37°C from  as deposited and thermal treated silver nanocluster/silica 

composite coatings on silica substrates 

 

Besides the antibacterial behavior and the chemical stability of the coating, mechanical properties 

have to be considered. In general, silver nanocluster/silica composite coatings show good adhesion 

to silica substrates both as deposited and after treatment up to 450°C [69, 70]. After the tape test 

performed according to the ASTM D3359-97 standard [77], the coatings do not present damage or 

sign of detachment form silica substrates.  

The nano-hardness are measured on as deposited and heat treated coatings and reported in Table 3, 

the results compared with those obtained from the silica substrate. The nano-indentation tests were 

performed by keeping constant either the maximum indentation depth (30nm or 50nm) or the 

maximum applied load (1mN and 5 mN) [71].  

 

Table 3: Nano-hardness results 

Samples 

Hardness (GPa) 

maximum indentation depth maximum applied load 

30nm 50nm 70-80nm 190-200nm 

0.3mN 0.6mN 1mN 5mN 

Silica substrate 51 ± 8 40 ± 3 24 ± 1 12 ± 0.4 

As dep coating 22 ± 4 15 ± 2 12 ± 1 9 ± 0.2 

TT300°C coating 26 ± 3 16 ± 1 12 ± 1 9 ± 0.3 

TT450°C coating 34 ± 6 20 ± 1 17 ± 1 11 ± 2 
 



As expected, the as deposited coating presents a lower nano-hardness than pure silica substrate. 

Increasing the heat treatment temperature the hardness increases: this is more evident  at low loads, 

whose result corresponds to the first nanometer of sputtered coating, comparable to that of the silica 

substrate. 

 

1. APPLICATIONS AND CASE STUDIES [n5] 

1.1 Biomedical devices: Polymers 

 

The bacterial contamination and the infection development of biomedical devices are currently a 

well-known and problematic issues. The use of antibiotics and the introduction of strict hygienic 

protocols have remarkably minimized the risk of infection; however bacterial contamination can 

cause the failure of the implant, increase the hospitalization time , need of a new surgery, thus 

leading to patient’s pain and even death. Moreover bacteria, responsible of infections are 

continuously developing increasing resistance to antibiotics, so new biomaterials with antibacterial 

capability are necessary. 

Silver is widely used and studied as antimicrobial agent also in biomedical field, for this reason 

silver nanocluster/silica composite coating were sputtered on different polymeric materials such as 

poly(methyl methacrylate) (PMMA). This recent application, disclosed in a patent by the authors 

[20], involves the deposition of silver nanocluster/silica composite layers on selected critical 

surfaces of orbital implants and ocular prostheses, in order to reduce the risk of postoperative 

infections in enucleated patients.   In order to preserve the polymer thermo-mechanical resistance, 

the parameters of the sputtering process were investigated and adapted to the polymers substrates. 

Moreover, silver content was optimized to avoid possible toxic effect according to the final 

application. 

Figure 5 reports the visual appearance of sputtered PMMA (a), the morphology of the coating 

observed by FESEM (b) and the antibacterial inhibition halo formed by the coated PMMA (c). Both 

the dark color and the morphology of the coating deposited on PMMA is the same one observed on 

the silica substrate (Figure 1) with the typical porous morphology of sputtered silica. The 

antibacterial behavior is demonstrated by means of the formation of an inhibition halo of about 5 

mm around the sample (Figure 5c).   

 



 
 

Figure 5: Silver nanocluster/silica composite coating on PMMA sample : visual appearance (a), FESEM 

image (b) and antibacterial inhibition halo (c) 

 

Similar results were obtained for other kinds of polymers typically used in biomedical fields as 

polyurethane and polypropylene. Also in this case, the antibacterial behavior is successfully 

conferred to the material through the deposition of silver nanocluster/silica composite coating by 

means of the co-sputtering technique.  

 

3.2 Food handling and domestic appliances: cheese molds and  mobile phones  

 

Microbial biofilm formation is a topic of considerable interest in facilities or services daily handled 

as in the food industry or belonging to the every-day human life as mobile telephones. 

Many microorganisms are able to easily form biofilms on food containers, thanks to the suitable 

environment conditions even if cleaning and disinfection procedures of surfaces are accurately 

performed to prevent the microbial colonization. For example, in the case of cheese industry, 

bacteria are present in the the raw milk, milking machines, farm environment, cheese processing 

plants and also from operators [9-11]. Hence, stainless steel for cheese molds was used as substrate 

for silver nanocluster/silica composite coating (Figure 6a). The inhibition halo of about 5 mm 

against S. aureus is formed around the sputtered steel as in Figure 6b.  

 

 

Figure 6: Steel for cheese container: a) coated steel and b) inhibition halo formed against S. aureus 

 



The effect of the thermal treatments is evaluated also with this substrate. The enlargement of 

nanoclusters size and the consequent chromatic change occurs  as observed for the silica substrates. 

In addition, the adhesion of coating to steel is improved after heating. 

Since mobile telephones are manipulated by billions of people every day and they come in 

contact with human body parts, as ear, hand, mouth and hair, they are considered as important 

carriers of bacteria. For this reason, the antibacterial silver nanocluster/silica composite coating was 

sputtered on several polymers (polycarbonate, blend polycarbonate- Acrylonitrile Butadiene 

Styrene ABS, polyester monofilament fibre) typically used in mobile telephone components such as 

screens, covers and microphone felts. Table 4 reports the materials used for the different mobile 

telephone parts. 

Table 4 : Polymers used in mobile telephones 

Mobile telephone part Material 

Protective lenses for screen polycarbonate (Sabic Innovative Plastics, 

LexanTM ) 

Cover polycarbonate yellow cover of Samsung™ 

S3650 

Cover blend polycarbonate-ABS black cover of 

Nokia™ 1616 

Protective tissue felts for 

electro-acoustic transducers 

polyester monofilament fibre Saatifil 

Acoustex™ 

 

Different sputtering conditions were applied to adapt silver concentration and coating thickness in 

order to satisfy strict aesthetical, transmittance requirements and antibacterial properties of each 

mobile telephone part. 

Figure 7 shows the visual appearance of a coated screen (a) that maintains the transparency 

requirements, the coated cover (b) and the coated felt (c). 

 

Figure 7: different sputtered parts of a mobile phone : a) screen, b) cover, c) felt 

 

The antibacterial activity is tested through the count of adhered CFU [78] comparing the results of 

sputtered and not sputtered materials (Figure 8). The count of CFU in Figure 8a demonstrates the 



coating ability to reduce the bacterial contamination on the coated screen. The number of bacteria is 

reduced of two orders of magnitude with respect to the uncoated screen. 

 

 
Figure 8 : CFU count for sputtered materials compared with the uncoated ones: a) screen and 

b) cover 

 

Figure 8b demonstrates that also the coated covers decreased the bacteria number by 2–3 orders of 

magnitude if compared to the as received control cover. 

Acoustic felts consist in black fabrics hidden in small holes in the telephone, so they do not require 

specific aesthetical properties. However, it is fundamental that the acoustic performance of the 

material remained unaltered after the coating deposition. In addition, the risk of bacterial 

contamination is very high because they are continuously exposed to mouth and breath and they are 

difficult to clean. Felts coated with the silver nanocluster/silica composite coating are able to 

provide a reproducible and clear inhibition zone (Figure 9) of about 3-4 mm and no alterations of 

acoustic performance were detected. 

 



 
Figure 9: Antibacterial inhibition halo around sputtered felt 

 

The different telephone parts coated with the antibacterial layer were assembled and the obtained 

antibacterial mobile telephone was perfectly working.  

 

3.3 Aerospace: Combitherm ®, Kevlar ®, Aluminium alloys 

During the most recent space voyages, an environmental biocontamination has been discovered on 

board of the International Space Station and Mir orbital station [14, 16, 18]. The space structure 

habitat is characterized by conditions as temperature, humidity and presence of humans in a manned 

place with limited comforts, optimal for an easy microorganisms colonization and incubation of 

surfaces, instruments, potable water containers and air conditioners [14-16]. The development of a 

microbial film induces not only an increment in medical risks and pathogenic effects but also a 

reduction of the structures integrity because of materials deterioration [22, 23, 79]. Polymers and 

metals tend to corrode more quickly for the microorganisms colonization than in normal conditions 

[22]. The bacterial and fungal contamination, studied and controlled during the most recent space 

activity, results delimited and below the acceptable limits, thanks to controlled prevention, 

monitoring and disinfection methods [14]. Anyway, the current procedures could be not enough to 

guarantee crewmembers’ health, safety and wellbeing, especially in prolonged space exploration, 

together with ensuring the structures safety.  

For this purpose, silver nanocluster/silica composite coating is optimized for substrates 

suitable for the realization of a prototype of space inflatable modules [80] without altering gas 

retention and mechanical properties [81]. In particular, the antibacterial coating is deposited on the 

polymers (Combitherm®, a multilayer polymeric film with polyethylene as the most external layer, 

and aramidic fabric) used for building the most internal wall, strictly close to the crewmembers, and 

on aluminum alloy selected for the structural block. Figure 10 reports the photographs of the two 

polymers before and after coating deposition and the inhibition halo formed against Staphylococcus 

aureus.  



  

Figure 10: Polymers used in the realization of inflatable space structure, Combitherm® and aramidic fabric, 

before and after deposition and the antibacterial inhibition halo 

 

After the coating deposition, the surface of both polymers becomes of dark brown color due to the 

LSPR effect of metallic silver, as previously explained. The Combitherm® film is susceptible to the 

exposition for long time at temperature about 80°C as that reached into the sputtering chamber. 

Hence, a “softer” deposition process (deposition time 15 min, coating thickness 60 nm) than that 

applied to the aramidic fabric (80 min) is needed to avoid substrate deterioration. Both the coated 

samples induce the formation of an inhibition halo which demonstrates the antibacterial behavior of 

the silver nanocluster/silica composite coating also on these substrates (in Figure10- the aramidic 

fabric is not transparent and the coated side of the aramidic fabric in contact with the bacteria agar 

is not visible). The bacteria free zone around aramidic fabric results more evident thanks to a 

thicker coating and consequently to a higher amount of available silver.  

As discussed in [81], the efficiency of this antibacterial coating on Combitherm® substrates  is 

more evident towards other bacterial and fungal species, i.e. E. coli, B. cereus and Candida, which 

are more sensitive to silver ions because of a different structure of their cell’s wall . 

Obviously, the sputtering deposition should not cause substrate deterioration: in the case of 

Combitherm®, the air permeability and the mechanical properties as tensile [82], tear [83] and 

perforation [84] resistance were tested before and after coating deposition [81]. In particular the 

permeability remained unchanged with a value of about 2 ml*mm/m2*day*atm, a result considered 

suitable for the final application of this polymer as air bladder container. The antibacterial coating 

improves the tensile and perforation resistance whereas it does not affect the tear strength. Finally, 

as reported in Ref. [81], the silver nanocluster/silica composite coating results well adherent to the 

Combitherm® substrate without sign of detachment after tape test [77] and it is able to resist up to 

3000 laps during the abrasion test [85]against an aramidic fabric.  



Aluminum alloys for aerospace application are also used as substrates for the deposition of 

the silver nanocluster/silica composite coating. The sputtered alloys are included into two 

international experiments where they are exposed in an environment with conditions suitable for the 

microbial film formation. In the first test, called MARS 500, concerning the simulation of a travel 

to Mars, the samples remained into a close environment for 520 days with the  presence of 

crewmembers and with typical conditions of a space mission (Figure 11) [86]. In the second test 

named VIABLE, the sputtered samples has been sent on the International Space Station for 

evaluating the bacterial contamination for 4 years, together with other antibacterial treated 

materials, prepared by other scientific groups [87]. In both cases, the results of the bacterial biofilm 

formation and proliferation are currently under evaluation. 

 
Figure 11: Sputtered aluminum alloys for MARS 500 experiment 

 

 

 



CONCLUSION 

An innovative antibacterial coating composed of silver nanoclusters embedded into a silica matrix 

was sputtered on several substrates. The coating appears as a brown colored layer with a 

nanostructured morphology. All sputtered materials formed a well visible and reproducible 

inhibition halo or a reduction in the count of colony forming units towards S. aureus and other 

bacterial and fungal strains demonstrating their antibacterial properties. The silver nanocluster/silica 

composite coating results well adherent to all these substrates, also with the most flexible ones, such 

as polymers. Appropriate thermal treatments could be performed in order to improve the cohesion 

and the adhesion of the coating. The coating bleaching due to enlargement of the nanoclusters size 

occurs with the temperature increase. 

Tailoring the parameters of the sputtering process allows the optimization of the coating, according 

to the substrate properties or the application requirements. This degree of freedom of the coating 

process permits the use of this coating in a wide range of application fields, from metals for food 

handling to polymers used in biomedical applications, mobile telephones or for the realization of 

space structures.  

A thermo-sensitive polymer can be thus coated by a suitable sputtering process able to guarantee its 

antimicrobial behavior without being damaged by the process; the silver amount in the coatings can 

be modulated and controlled thus avoiding possible cytotoxic effects which  may occur for devices 

in direct contact with human body fluids.   

Compared to the other antibacterial coatings made of pure metallic silver, this silver 

nanocluster/silica composite reduces the amount of silver necessary to obtain a coating, thus 

reducing toxicity issues and overall cost. It is also stable in air up to 600 °C at least and resistant to 

the most common sterilization procedures. 

In addition, this composite coating can be tailored to an efficient compromise between suitable 

amount of silver to provide antibacterial effect and silver release kinetic safe from a toxicity point 

of view. Recent studies suggest that silver nanoclusters release in form of ions and not nanoparticles 

is a very important aspect considering the demonstrated toxicity of metal nanoparticles in vitro and 

in vivo experiments. Current investigations are being performed in order to study the mechanism of 

silver nanocluster release in this coating.   

Moreover,  durability of this coating in a prolonged contact with fluids is being investigated and 

other materials with higher stability than silica in a wet environment might  be considered.  

Finally, sputtering is potentially applicable on a large scale to substrates with irregular or curved 

geometries. 
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