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Abstract. We present RAT-OWL, a software system for reasoning about typicality
in preferential Description Logics. It is implemented in the form of a Protégé 4.3
Plugin and it allows the user to reason in a nonmonotonic extension of Description
Logics based on the notion of “rational closure”. This logic extends standard
Description Logics in order to express “typical” properties, that can be directly
specified by means of a typicality operator T: a TBox can contain inclusions
of the form T(C) v D to represent that “typical Cs are also Ds”. We show
experimental results, indicating that the performances of RAT-OWL are promising.

1 Introduction
Description Logics (DLs for short) are an important formalism of knowledge representa-
tion. DLs are reminiscent of the early semantic networks and of frame-based systems.
They have been successfully implemented by many systems, and are at the basis of lan-
guages for the Semantic Web such as OWL. In a DL framework, a knowledge base (KB)
comprises two components: a TBox, containing the definition of concepts (and possibly
roles) and a specification of inclusion relations among them, and an ABox, containing
instances of concepts and roles, in other words, properties and relations of individuals. In
Description Logics one can use concept inclusion in order to express that all the members
of a class have a given property (thus Cat v Mammal expresses the general property
that “cats are mammals”, and Pet v ∃hasOwner .> that “all pets have an owner” (i.e.
they are in the relation “hasOwner” with somebody). One can also use assertions in
order to represent the fact that an individual has a given property, e.g. Cat(tom) (“Tom
is a cat”) or ∃hasOwner .>(tom) (“Tom has an owner”) or hasOwner(tom, andrea)
(“Andrea is Tom’s owner”). A distinguishing quality of Description Logics is their
controlled complexity: the trade-off between expressivity of the languages and good
computational complexities is one of the main reasons justifying the success of DLs.

Since the very objective of a TBox is to formalize a taxonomy of concepts, the needs
of representing properties holding only for typical individuals of a given concept (and not
for all the elements), and thus to reason about defeasible inheritance in the presence of
exceptions easily arise. In order to satisfy these needs, nonmonotonic extensions of DLs
have been investigated since the early 90s [4, 1, 3, 12, 11, 25, 2]. A simple but powerful
nonmonotonic extension of DLs is proposed in [14, 15, 17]: in this approach “typical”
or “normal” properties can be directly specified by means of a “typicality” operator T
enriching the underlying DL. The semantics of T is characterized by the core properties
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of nonmonotonic reasoning axiomatized by either preferential logic [20] or rational
logic [22]. We focus on the Description Logic ALCRT introduced in [17]. In this logic
one can express “defeasible inclusions” such as “normally, athletes are not fat people”,
T(Athlete) v ¬Fat , which do not hold for all individuals, and may have exceptions for
some of them (e.g. for athletes which are sumo wrestlers). For instance, a knowledge
base can consistently express that “normally, athletes are not fat people”, whereas “sumo
wrestlers are athletes that are typically fat” as follows:

SumoWrestler v Athlete
T(Athlete) v ¬Fat
T(SumoWrestler) v Fat

In the Description Logic ALCRT standard models are extended by a function f which
selects the typical/most normal instances of any concept C, i.e. the extension of T(C)
is defined as (T(C))I = f(CI). The function f satisfies a set of postulates that are a
restatement of Kraus, Lehmann and Magidor’s axioms of rational logic R. This allows
the typicality operator to inherit well-established properties of nonmonotonic entailment:
for instance, if in addition “typical sumo wrestlers are strong” T(SumoWrestler) v
Strong , we can conclude that “typical strong sumo wrestlers are fat” T(SumoWrestler
uStrong) v Fat . It turns out that the semantics based on the selection function is
equivalent to a semantics based on a preference relation < among domain elements:
intuitively, x < y means that element x is more “normal” with respect to y, which is in
some sense “exceptional” (such as a sumo wrestler which is not fat).

The logic ALCRT itself is too weak in several application domains. Indeed, al-
though the operator T is nonmonotonic (T(C) v E does not imply T(C uD) v E),
the logic ALCRT is monotonic, in the sense that if the fact F follows from a given
knowledge base KB, then F also follows from any KB’ ⊇ KB. Furthermore, the inclu-
sion T(SumoWrestler u Blond) v Fat cannot be concluded, although being blond
is irrelevant for a sumo wrestler, and we would like to conclude that a blond sumo
wrestler is fat in absence of contrary evidence. In order to overcome this limitation and
perform useful inferences, in [17] a nonmonotonic extension of the logic ALCRT has
been introduced, based on a minimal model semantics, by extending to ALC the notion
of rational closure defined by Lehmann and Magidor in [22] for propositional logic.
The resulting logic, called ALCRRaClT, supports nonmonotonic inference so that, in the
example above, we are able to conclude that “typical strong sumo wrestlers are fat”.
The rational closure construction introduced in [17] retains the same complexity of the
underlying description logic and, for ALC, the problem of deciding whether a typicality
inclusion T(C) v D belongs to the rational closure of the TBox is in EXPTIME.

In this work we introduce RAT-OWL, a Protégé 4.3 Plugin for reasoning about
typicality in the logic ALCRRaClT. To the best of our knowledge, this is the first reasoner
for nonmonotonic Description Logics of typicality with rational closure. RAT-OWL
relies on a polynomial encoding of ALCRT in standard ALC introduced in [16], based
on the definition of the typicality operator T in terms of a Gödel-Löb modality 2,
where T(C) is defined as C u 2¬C and the accessibility relation of the modality 2

corresponds to the preference relation < in ALCRT models. This allows us to rely on
existing reasoners for standard DLs for constructing the rational closure.
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The plan of the paper is as follows: in Section 2 we recall the definition of the
description logic of typicality ALCRT, its encoding into ALC as well as the definition
of the rational closure. In Section 3 we describe the implementation of RAT-OWL, and
in Section 4 we present some experimental results witnessing its promising performance.
In Section 5 we conclude by mentioning some related works and highlighting some
pointers to future issues.

2 Preferential description logics
2.1 The monotonic logic ALCRT

The logic ALCRT is obtained by adding to standard ALC the typicality operator T
[14]. The intuitive idea is that T(C) selects the typical instances of a concept C. We
can therefore distinguish between the properties that hold for all instances of concept C
(C v D), and those that only hold for the normal or typical instances of C (T(C) v D).

Definition 1. We consider an alphabet of concept names C, of role names R, and of
individual constants O. Given A ∈ C and R ∈ R, we define:

CR := A | > | ⊥ | ¬CR | CR u CR | CR t CR | ∀R.CR | ∃R.CR

CL := CR | T(CR)

A knowledge base is a pair (T ,A). T contains a finite set of concept inclusionsCL v CR.
A contains assertions of the form CL(a) and R(a, b), where a, b ∈ O.

The semantics of the T operator can be given by means of a set of postulates that
are a reformulation of axioms and rules of nonmonotonic entailment in rational logic R
[22]: in this respect an assertion of the form T(C) v D is equivalent to the conditional
assertion C |∼ D in R. The basic idea is to extend the notion of ALC interpretation with
a selection function. Let 〈∆I , .I〉 be anALC interpretation, where ∆ is a set of elements
(the domain); .I is an extension function that maps each concept C to CI ⊆ ∆I ,
each role R to RI ⊆ ∆I × ∆I and each individual constant a ∈ O to aI ∈ ∆I ;
and, for all concepts of ALC, CI is defined in the usual way. We define function
fT : Pow(∆I) 7−→ Pow(∆I) that selects the typical instances of any S ⊆ ∆I ; for
S = CI , the selection function selects the typical instances of concept C, namely:
(T(C))I = fT(C

I). Function fT has the following properties for all S ⊆ ∆I , that are
essentially a restatement of the properties characterizing rational entailment:

(fT − 1) fT(S) ⊆ S
(fT − 2) if S 6= ∅, then also fT(S) 6= ∅
(fT − 3) if fT(S) ⊆ R, then fT(S) = fT(S ∩R)
(fT − 4) fT(

⋃
Si) ⊆

⋃
fT(Si)

(fT − 5)
⋂
fT(Si) ⊆ fT(

⋃
Si)

(fT − 6) if fT(S) ∩R 6= ∅, then fT(S ∩R) ⊆ fT(S)

Observe these properties are stronger with respect to the properties of “normality con-
cepts” in [6], which do not need to satisfy all the postulates. The semantics of ALCRT
can equivalently be formulated in terms of rational models: ordinary models of ALC
are equipped with a preference relation < on the domain, whose intuitive meaning is
to compare the “typicality” of domain elements, that is to say, x < y means that x is
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more typical than y. Typical members of a concept C, that is members of T(C), are the
members x of C that are minimal with respect to this preference relation (such that there
is no other member of C more typical than x).

Definition 2 (Semantics ofALCRT). A modelM ofALCRT is any structure 〈∆I , <
, .I〉 where: ∆ and .I are defined as in ALC interpretations and < is an irreflexive,
transitive and modular (if x < y then either x < z or z < y) binary relation over ∆I;
For the T operator, we let (T(C))I = Min<(C

I), where Min<(S) = {u : u ∈ S
and @z ∈ S s.t. z < u}. Also, < satisfies the Well -Foundedness Condition , i.e., for
all S ⊆ ∆I , for all x ∈ S, either x ∈Min<(S) or ∃y ∈Min<(S) such that y < x.

Definition 3 (Model satisfying a knowledge base). Given a modelM= 〈∆I , <, .I〉,
we say that: (i) a modelM satisfies an inclusion C v D (writtenM |=ALCRRaClT

C v
D) if it holds CI ⊆ DI; (ii)M satisfies an assertion C(a) (writtenM |=ALCRT C(a))
if aI ∈ CI; (iii) M satisfies an assertion R(a, b) (written M |=ALCRT R(a, b)) if
(aI , bI) ∈ RI . Given a knowledge base K=(T ,A), we say that:M satisfies T ifM
satisfies all inclusions in T ;M satisfiesA ifM satisfies all assertions inA;M satisfies
K if it satisfies both T and A; a concept C is satisfiable with respect to K, if there is
M = 〈∆I , <, .I〉 satisfying K and such that CI 6= ∅.

Let us define entailment of an inclusion in ALCRT:

Definition 4. Given a knowledge base K, an inclusion CL v CR is entailed from K,
written K |=ALCRT CL v CR, if CL

I ⊆ CR
I holds in all modelsM =〈∆I , <, .I〉

satisfying K.

Definition 5 (Rank of a domain element kM(x)). Given a modelM =〈∆I , <, .I〉,
the rank kM of a domain element x ∈ ∆I , is the length of the longest chain x0 < · · · < x
from x to a minimal x0 (i.e. such that there is no x′ such that x′ < x0).

The rank function kM and < can be defined from each other by letting x < y if and
only if kM(x) < kM(y).

Definition 6 (Rank of a concept kM(CR) inM). Given a modelM =〈∆I , <, .I〉, the
rank kM(CR) of a concept CR in the modelM is defined as kM(CR) = min{kM(x) |
x ∈ CR

I}. If CR
I = ∅, then CR has no rank and we write kM(CR) =∞.

It is immediate to see that, for anyM, we have thatM satisfies T(C) v D if and only
if kM(C uD) < kM(C u ¬D).

2.2 Reasoning in ALCRT

In order to reason in ALCRT, we exploit the following polynomial encoding of a KB in
standardALC. The encoding was originally defined in [18] for the more expressive logic
SHIQ, but it works for ALC as well. The idea is to exploit a definition of the typicality
operator T in terms of a Gödel-Löb modality 2 by defining T(C) as C u2¬C, where
the accessibility relation of the modality 2 is the preference relation < in ALCRT
models (2¬C meaning that more preferred domain elements are instances of ¬C).



RAT-OWL: Reasoning with rational closure in description logics of typicality

Let KB=(T ,A) be a knowledge base where A does not contain positive typicality
assertions on individuals of the form T(C)(a). We define the encoding KB’=(T ′,A′)
of KB in ALC as follows. First of all, we let A′ = A. Then, for each C v D ∈ T , not
containing T, we introduce C v D in T ′. For each T(C) occurring in T , we introduce
a new atomic concept 2¬C and, for each inclusion T(C) vn D ∈ T , we add to T ′
the inclusion C u2¬C v D. To capture the properties of 2 modality, a new role R is
introduced to represent the relation < and the following inclusions are introduced in T ′:

2¬C v ∀R.(¬C u2¬C) ¬2¬C v ∃R.(C u2¬C)

The first inclusion accounts for the transitivity of <. The second inclusion accounts for
the well-foundedness, namely the fact that if an element is not a typical C element then
there must be a typical C element preferred to it. For the encoding of a query, CL v CR,
if CL v CR is not a typicality inclusion, then C ′L = CL and C ′R = CR; if CL v CR is
a typicality inclusion T(C) v CR, then C ′L = C u2¬C and C ′R = CR.

The size of KB’ is polynomial in the size of the KB. The same for the encoding of a
query CL v CR, assuming its size is polynomial in the size of K.

Given the above encoding, in [16] it is shown that:

KB |=ALCRT CL v CR if and only if KB’ |=ALC C ′L v C ′R

and, as a consequence, that the problem of deciding entailment in ALCRT is in EXP-
TIME, since reasoning inALC is in EXPTIME. EXPTIME-hardness follows from the fact
that entailment in ALC is EXPTIME-hard, so that the problem of deciding entailment in
ALCRT is EXPTIME-complete.

2.3 The nonmonotonic logic ALCR
RaClT

As mentioned above, although the typicality operator T itself is nonmonotonic, the logic
ALCRT is monotonic: what is inferred from K can still be inferred from any K ′ with
K ⊆ K ′. This is a clear limitation in DLs. As a consequence of the monotonicity of
ALCRT, one cannot deal with irrelevance, for instance. So one cannot derive from
K = {SumoWrestler v Athlete, T(Athlete) v ¬Fat , T(SumoWrestler) v Fat}
that K |=ALCRT T(SumoWrestler u Bald) v Fat , even if the property of being bald
is irrelevant with respect to being fat or not. In order to perform useful nonmonotonic
inferences, in [17] the authors have strengthened the above semantics by restricting
entailment to a class of minimal models. Intuitively, the idea is to restrict entailment to
minimal models which minimize the atypicality of concepts. For ease of notation, we
call the resulting logic ALCRRaClT, as minimally entailed inclusions are those belonging
to the rational closure of the KB [17]. In the following we recall the definition of the
rational closure for ALC, which is a natural extension of the rational closure in [22]. We
first recall the notion of exceptionality of concepts and inclusions w.r.t. a KB.

Definition 7 (Exceptionality of concepts and inclusions). Let K=(T ,A) be a knowl-
edge base. A concept C is said to be exceptional for K if and only if K |=ALCRT

T(>) v ¬C. A T-inclusion T(C) v D is exceptional for K if C is exceptional for K.
The set of T-inclusions of K which are exceptional in K will be denoted as E(K).
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Definition 8. Given a knowledge base K=(T ,A), it is possible to define a sequence of
knowledge bases E0, . . . , Ei, . . . , En by letting E0 = (T0,A) where T0 = T and for
i > 0, Ei = (Ti,A) where Ti = E(Ei−1) ∪ {C v D ∈ T | T does not occur in C}.
Clearly T0 ⊇ T1 ⊇ T2, . . . . Observe that, being K finite, there is a least n ≥ 0 such that,
for all m > n, Tm = Tn or Tm = ∅. We take (Tn,A) as the last element of the sequence
of knowledge bases starting from K.

Definition 9 (Rank of a concept). A concept C has rank i (denoted by rank(C) = i)
for K=(T ,A), if and only if i is the least natural number for which C is not exceptional
for Ei. If C is exceptional for all Ei then rank(C) =∞, and we say that C has no rank.

From the above definition it follows that if a concept C has a rank, its highest possible
value is n. The notion of rank of a formula allows one to define the rational closure of a
knowledge base K with respect to TBox .

Definition 10 (Rational closure of TBox). Let K=(T ,A) be a knowledge base. We
define T , the rational closure of T , as T = {T(C) v D | either rank(C) < rank(C u
¬D) or rank(C) =∞} ∪ {C v D | K |=ALCRT C v D}.
The nonmonotonic semantics of ALCRRaClT relies on minimal rational models that
minimize the rank of domain elements. Informally, given two models of a KB, one in
which a given domain element x has rank 2 (because for instance z < y < x), and
another in which it has rank 1 (because only y < x), we prefer the latter, as in this model
the element x is assumed to be “more typical” than in the former. More precisely, we
have thatM <M′ if, for all x ∈ ∆I , it holds that kM(x) ≤ kM′(x) whereas there
exists y ∈ ∆I such that kM(y) < kM′(y). Given a knowledge base K, we say thatM
is a minimal model of K with respect to < if it is a model satisfying K and there is no
M′ model satisfying K such thatM′ <M. For technical reasons, we further need to
restrict our attention to canonical models (we refer to [17] for the definition). Query
entailment in ALCRRaClT is then restricted to minimal canonical models: an inclusion
CL v CR is entailed from K in ALCRRaClT, written K |=ALCRRaClT

CL v CR, if
CL v CR holds in all minimal canonical models of K with respect to T . In [17] it is
shown that minimal entailment provides a semantic characterization of rational closure,
so that a query CL v CR is in T if and only if K |=ALCRRaClT

CL v CR, and that the

problem of deciding whether T(C) v D ∈ T is in EXPTIME, the same complexity
upper bound of entailment in the underlying description logic ALC [13].

3 Design of RAT-OWL
As mentioned in the Introduction, since the main aim of Description Logics is to build
taxonomies, the need of representing inheritance with exceptions, prototypical and
defeasible properties easily arises. Protégé does not allow users to reason directly about
these features. Thus, RAT-OWL, which stands for RAtional closure with Typicality in
OWL, is intended to meet these needs.

RAT-OWL3 is a Protégé 4.3 Plugin and it is written in Java and heavily uses OWL
API 3.4 to manipulate OWL ontologies. It is based on the ALCRRaClT logic, in detail

3
https://drive.google.com/folderview?id=0BzebarfrIf_kc3RqcmR4T1BwVzg
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ALCRT extended with the notion of rational closure of the TBox in order to perform
nonmonotonic inferences. RAT-OWL makes use of the polynomial encoding into ALC
described in Section 2.2. As an example, let the TBox contain:

1. T(Bird) v Fly
2. T(Penguin) v ¬Fly
3. Penguin v Bird

so, the encoding KB’4 contains:

1. Bird uBird1 v Fly
Bird1 v ∀R.(¬Bird uBird1)
¬Bird1 v ∃R.(Bird uBird1)

2. Penguin u Penguin1 v ¬Fly
Penguin1 v ∀R.(¬Penguin u Penguin1)
¬Penguin1 v ∃R.(Penguin u Penguin1)

3. Penguin v Bird

and in Manchester OWL syntax5:

1. Bird and Bird1 SubClassOf Fly
Bird1 SubClassOf (R only (not Bird and Bird1))
not Bird1 SubClassOf (R some (Bird and Bird1))

2. Penguin and Penguin1 SubClassOf not Fly
Penguin1 SubClassOf (R only (not Penguin and Penguin1))
not Penguin1 SubClassOf (R some (Penguin and Penguin1))

3. Penguin SubClassOf Bird

In order to reason about typicality in Protégé, one could in principle manually do the
above encoding. However, RAT-OWL does the same encoding in an automatic way.
Once a class has been added in the active ontology, it is possible to add the corresponding
typical class just by selecting the class and then clicking on the T icon, next to the sibling
icon, in the Typical Class Hierarchy View on the left hand side. As a result, the typical
class is created and the encoding is done automatically. For instance, if one wants to
reason about typical birds, the following axioms are added to the ontology:

1. T(Bird) EquivalentTo (Bird and Bird1)
2. NotBird1 EquivalentTo (not (Bird1))
3. Bird1 SubClassOf (R only (not Bird and Bird1))
4. NotBird1 SubClassOf (R some (T(Bird)))
5. T(Bird) comment A typical class for reasoning about typicality
6. Bird1 comment An auxiliary class for reasoning about typicality@en
7. NotBird1 comment An auxiliary class for reasoning about typicality@en

Notice that, given a class A, classes NotA1 and A1 are added to the ontology too. In order
to improve the readability of the resulting hierarchy, the “auxiliary” classes NotA1 and
A1 are hidden in the hierarchy. This is implemented by means of OWLAnnotations.
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Fig. 1. RAT-OWL tab

Figure 1 illustrates the plugin interface. On the left hand side of the window there is
the hierarchy. On the right hand side there is the Rational Closure Query View where
the user can write both classical queries such as C v D and typicality queries such as
T(C ) v D . In the former case, calling directly the reasoner selected from the Protégé
user interface is enough whereas, in the latter case, first rational closure construction
is needed, then rank(C) and rank(C u ¬D) are computed; as illustred in Definition
10, T(C ) v D is entailed by T if and only if rank(C) < rank(C u¬D). The rational
closure of the TBox of the active ontology is computed once and for all when the first
query is considered. If the knowledge base does not change, the same construction is
kept in order to answer subsequent queries.

RAT-OWL is accessible through the Protégé user interface in the Window menu
and it can be used as any other Protégé plugin. Below is the abstract description of the
algorithm RationalClosureSetup for computing the ranking of the knowledge base.

From an implementation point of view, in order to save memory space during the
computation of rational closure levels, as can be seen in Listing 1.1, first commonOntol-
ogy is computed, i.e. the ontology including the strict inclusions which are common to
all the levels; then, for each level, only the set of exceptional concepts is recorded, rather
then the set of rules in Ei.

The cycle in Listing 1.1 computes rational closure levels and, for each level, the
method exceptionalConceptsAndInclusions is called in which concept ranks are updated
in rankMap, exceptional axioms are saved as OWLOntology and finally they are added

4 In this implementation auxiliary concepts of a concept C are called C1 instead of 2¬C.
5 Manchester OWL syntax is a user-friendly syntax for OWL DL that is fundamentally based on

collecting all information about a particular class, property, or individual into a single construct,
called a frame.
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Algorithm 1 RationalClosureSetup(T )
1: Input: A TBox T
2: Output: A list of sets of exceptional concepts C0,C1,...,Cn
3: S ← {C v D ∈ T | T does not occur in C} . Let S be the set of strict inclusions in T
4: W ← T 2 \ S . T 2 is the ALC encoding of T
5: C ← {C | T(C) v D ∈ W}
6: C0 ← EXCEPTIONALCONCEPTS(W , S, C)
7: E0 ← {T(C) v D ∈ W | C ∈ C0}
8: i← 0
9: repeat

10: Ci+1 ← EXCEPTIONALCONCEPTS(Ei, S, Ci)
11: Ei+1 ← {T(C) v D ∈ W | C ∈ Ci+1}
12: i← i+ 1
13: until (Ci = ∅ or Ci = Ci−1)
14: if Ci = Ci−1 then
15: return (C0,C1,...,Ci−1)
16: else
17: return (C0,C1,...,Ci)

Algorithm 2 ExceptionalConcepts(E ,S,C)
1: Input: Encoding of a set of typicality inclusions E , a set of strict inclusions S, a set of

concepts C
2: Output: The set of exceptional concepts w.r.t. E ∪ S
3: C1 ← {C ∈ C | E ∪ S |=ALC T(Thing) v ¬C}
4: return C1

to subsets. Notice that in this implementation E(Ei) contains all T-inclusion T(C) v D
such that C is exceptional for Ei in addition to C1 and NotC1 referring axioms.
Furthermore, the rank of auxiliary concepts C1 and NotC1 are not calculated.

The reasoner used by default in our plugin is the one selected by the user in the
Protégé user interface and its root ontology is exactly commonOntology. In order to take
advantage of inferences already predicted by the reasoner, all levels will be imported in
the root ontology every time it is needed.

public class RationalClosure {

private ArrayList<OWLOntology> subsets;
private HashMap<String,Integer> rankMap;
private OWLReasonerFactory reasonerFactory;
private OWLReasoner reasoner;
private OWLOntology ontology;
private OWLOntology commonOntology;
private OWLOntologyManager manager;
private OWLDataFactory dataFactory;
private long timeOut;
private boolean full;
...
public void setup() throws OWLOntologyCreationException {

long start = System.currentTimeMillis();
int level = 0;
Set<OWLAxiom> tAxioms = getTypicalAxioms();
this.commonOntology = getCommonOntology(tAxioms);
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//Example: reasonerFactory = new FaCTPlusPlusReasonerFactory();
this.reasoner = reasonerFactory.createNonBufferingReasoner(commonOntology);
this.rankMap = initialiseRankMap();
Set<OWLAxiom> e0 = exceptionalConceptsAndInclusions(tAxioms,level);
Set<OWLAxiom> e0copy = null;
Set<OWLAxiom> e1 = new HashSet<OWLAxiom>();

if (!e0.isEmpty()) {
subsets.add(manager.createOntology(e0));
do {

level++;
e0copy = new HashSet<OWLAxiom>(e0);
e1 = exceptionalConceptsAndInclusions(e0, level);
e0 = new HashSet<OWLAxiom>(e1);
e0copy.removeAll(e1);
if (!e1.isEmpty() && !e0copy.isEmpty())
subsets.add(manager.createOntology(e1));

} while (!e0copy.isEmpty());
}

//set rank of concepts which are exceptionals in all levels
for (Map.Entry<String, Integer> entry : rankMap.entrySet()) {

if(entry.getValue() > level)
entry.setValue(Integer.MAX_VALUE);

}

subsets.add(null);
timeOut = System.currentTimeMillis() - start;

}
...
}

Listing 1.1. RationalClosure.java

When the user writes a typicality query such as T(C ) v D , as can be seen in Listing
1.2, if rank(C) is already present in rankMap, it is not calculated again from level 0.
For example this is the case when T(C ) is already contained in the KB. Furthermore, it
is evident that rank(C u ¬D) is at least equal to rank(C), and we do not need to start
from level 0, but from level rank(C) to check the exceptionality of C u ¬D.

On the other hand, if rank(C) was not already calculated, then method calculat-
eRank is called, in which subsets.get(i) is imported in the commonOntology in order
to check if C is exceptional at level i, for all i ∈ [0, subsets.size() - 1]. Notice that
OWLTypicalClass is a class which extends OWLClass and it is introduced by us in order
to simplify the manipulation of typical classes in OWL. We will see in the next section
how rational closure can be built up in two different ways.
private RationalClosureQueryResult executeRationalClosureQuery(OWLSubClassOfAxiom

axiom) {
RationalClosureQueryResult result = new RationalClosureQueryResult();

OWLClassExpression exprSubClass = axiom.getSubClass();
OWLClassExpression exprSuperClass = axiom.getSuperClass();
Integer rankLeft = null;

OWLTypicalClass subClass = (OWLTypicalClass) exprSubClass.asOWLClass();
OWLClassExpression innerExpr = subClass.getInnerClassExpression();

if (!innerExpr.isAnonymous()) {
rankLeft = rClosure.getRankMap().get(innerExpr.asOWLClass().toStringID());
if (rankLeft == null)

rankLeft = rClosure.calculateRank(innerExpr, 0);
} else {

rankLeft = rClosure.calculateRank(innerExpr, 0);
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}

int rankRight = rClosure.calculateRank(rClosure.getOWLDataFactory().
getOWLObjectIntersectionOf(innerExpr,

rClosure.getOWLDataFactory().getOWLObjectComplementOf(exprSuperClass)),rankLeft);

result.setQuery(axiom.toString());
result.setRankLeft(rankLeft);
result.setRankRight(rankRight);
result.setResult(rankLeft < rankRight);

return result;
}

Listing 1.2. RationalClosureQuery.java

4 Performances of RAT-OWL

We tested rational closure construction and query entailment on some test suites kindly
provided by Bonatti et al. [5]. These test suites were obtained by modifying a version of
the Gene Ontology (GO) published in 2006, which contains 20465 atomic concepts and
28896 concept inclusions. Test suites differ in CI-to-DI-rate and DA-rate parameters.
The former controls the percentage of strict inclusions transformed into defeasible ones
(in our case C v D is transformed into T(C ) v D), and hence the overall percentage of
defeasible inclusions in the KB. The latter controls the percentage of random disjointness
axioms injected in order to increase the number of conflicts between defeasible inclusions.
The experiments were performed on an Intel i7-5500U CPU 2.4 GHz with 8 GB RAM
and Ubuntu 16.04 LTS in Java 8 with the options -Xms3G -Xmx6G. For each parameter
configuration we report the execution time of the rational closure construction and of
query entailment. The reported values are obtained by averaging execution times over
ten nonmonotonic ontologies and fifty queries on each ontology.

As reasoners HermiT 1.3.8 and Fact++ 1.6.3 were used. For each parameter configu-
ration we report the average execution time of the rational closure contruction (Figure 2)
and of query entailment (Figure 3). It can be seen in Figure 2 that HermiT is much slower
than Fact++ in building up the rational closure so the second reasoner was preferred
for the most part of the tests. On the other hand, HermiT is much faster than Fact++ in
query entailment. A possible explanation, to be verified, is that most of the queries are
subsumptions T(C ) v D where T(C ) does not occur in the ontology and the rank of
C needs to be computed from scratch. Furthermore, for each parameter setting, rational
closure was built up in two modalities: full and restricted. With the first one, the rank of
any concept in the ontology is computed, while, with the second one, only the rank of
concepts C such that T(C ) occurs in the ontology is computed. Figures 2 and 3 report
the time needed with the full modality. We observe that, with the restricted modality, as
expected, the rational closure construction time decreases (in Table 1, by a factor of 3
for DA-rate less that 25% and, in Table 2, by a factor of 3.5 for CI-to-DI-rate less then
15%), while query entailment time increases.

Thus, for practical application of the rational closure of the TBox, the restricted
modality may be preferred when the ontology is large but the CI-to-DI-rate (percentage
of defeasible inclusions) is low (below 15%).
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Fig. 2. HermiT and Fact++ rational closure con-
struction time (15% DA-rate, full)

Fig. 3. HermiT and Fact++ query entailment
time (15% DA-rate, full)

DA-rate Rational closure Query

05% 1642.60 8.87
10% 3134.58 12.73
20% 3378.90 22.38
25% 3112.81 22.89
30% 4213.91 23.63

DA-rate Rational closure Query

05% 445.87 18.89
10% 700.56 26.38
20% 905.48 39.57
25% 1046.19 51.09
30% 1226.47 62.24

Table 1. Fact++ rational closure construction and query time (sec) (15% CI-to-DI-rate, full and
restricted)

CI-to-DI-rate Rational closure Query

05% 200.78 7.51
10% 887.92 12.47
15% 2520.91 17.42
20% 3473.62 22.34
25% 8316.73 39.88

CI-to-DI-rate Rational closure Query

05% 37.81 14.95
10% 191.00 26.25
15% 692.46 35.67
20% 2048.55 50.80
25% 6812.30 81.15

Table 2. Fact++ rational closure construction and query time (sec) (15% DA-rate, full and re-
stricted)

Results in Table 2 also show how the increasing percentage of typicality inclusions
negatively affects the execution time as expected. This is because for each typical class,
as seen in section 3, seven new OWLAxiom are added to the ontology and so the higher
CI-to-DI-rate is, the more expensive the class hierarchy step of an OWLReasoner is.

As a term of comparison we can take Bonatti et al. [5]’s naive method results and
even though we did not use any modularization techniques, our experimental results are
overall better and, thus, very promising. It has to be noted, however, that the approach in
[5] allows for a more sophisticated treatment of inheritance and overriding with respect
to rational closure, which does not allow an independent treatment of different defeasible
properties of a concept. We refer to the conclusions for some discussion.
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5 Conclusions and future works

We have presented RAT-OWL, a software system allowing a user to reason about typical-
ity in Description Logics in an extension of standard DLs based on the well established
nonmonotonic mechanism of rational closure. Experimentation over test suites developed
in [5], which modifies a version of the Gene Ontology making a percentage of inclusions
defeasible, witnesses that performance of RAT-OWL is promising.

The rational closure of a knowledge base has been introduced by Lehmann and
Magidor [22] to allow for stronger inferences with respect to preferential and rational
entailment, and several constructions of rational closure have been proposed for the
description logic ALC [9, 8, 17]. All such constructions are defined for knowledge bases
containing strict or defeasible inclusions, that in our approach are expressed as typicality
inclusions. One major difference between our construction and those is [9, 8] is in the
notion of exceptionality: our definition exploits preferential entailment, while [9, 8]
directly use entailment in ALC over a materialization of the KB. In [24] a Defeasible-
Inference Platform for OWL Ontologies has been proposed for the rational closure in [8]
and in [23] a new algorithm for computing rational closure has been develped for ALC,
exploiting materialization of the KB and reasoning in ALC with a Protégé Plugin, to
identify hidden strict information. Performance of the algorithms is extensively analyzed
exploiting both real world ontologies and artificial ones, demonstrating the feasibility of
preferential reasoning under rational closure.

RAT-OWL exploits an alternative approach for computing rational closure, based
on an encoding of the typicality operator into the standard DL, developed in [18] for
SHIQ. The rational closure construction requires a quadratic number of calls to an
OWL reasoner (in the number of concepts, for the full modality, and in the number of
typicality assertions in the KB, for the restricted modality). In future work we aim at
extending our experimentation to further ontologies, such as those in [23], and at dealing
with more expressive DLs. In this regard, we observe that establishing a correspondence
between the rational closure construction and the minimal model semantics is still an
open issue for expressive DLs including nominals and the universal role.

A further point to be considered is reasoning in stronger variants of the rational
closure. It is well known that the rational closure does not allow independent handling of
the inheritance of different defeasible properties of concepts. To overcome the limitation,
several proposals have been developed. In [10] the lexicographic closure introduced by
Lehmann [21] is extended to DLs, and in [19] a finer grained semantics, with several
preference relations, is shown to correspond to a refinement of the rational closure in [17].
Moodley in [23] studies different kinds of closures and related algorithms, including
algorithms for computing the lexicographic [10] and the relevant [7] closures, identifying
the major bottlenecks for preferential reasoning in comparison with the rational closure.

In [2] a new non monotonic description logics DLN has been proposed, which
supports normality concepts and enjoys good computational properties. In particular,
DLN preserves the tractability of low complexity DLs, including EL⊥++

and DL-lite
[5]. Inheritance of defeasible properties inDLN is based on a notion of overriding, which
builds over the rational closure in [9] to give preference to more specific defeasible
inclusions with respect to less specific ones (and in this respect it has some similarity
with the lexicographic closure). In future work we aim at exploring generalizations of
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the presented approach to deal with refinements of the rational closure, to get a stronger
notion of entailment which overcomes the rational closure limitations.
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