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Abstract

Over an infinite field K with char(K) 6= 2, 3, we investigate smoothable Gorenstein K-
points in a punctual Hilbert scheme from a new point of view, which is based on properties
of double-generic initial ideals and of marked schemes. We obtain the following results: (i)
points defined by graded Gorenstein K-algebras with Hilbert function (1, 7, 7, 1) are smooth-
able, in the further hypothesis that K is algebraically closed; (ii) the Hilbert scheme Hilb7

16

has at least three irreducible components. The properties of marked schemes give us a simple
method to compute the Zariski tangent space to a Hilbert scheme at a given K-point, which
is very useful in this context. Over an algebraically closed field of characteristic 0, we also
test our tools to find the already known result that points defined by graded Gorenstein
K-algebras with Hilbert function (1, 5, 5, 1) are smoothable. In characteristic zero, all the
results about smoothable points also hold for local Artin Gorenstein K-algebras.

Introduction

Let K be an infinite field of characteristic other than 2 and 3. For any positive integer n and
an admissible Hilbert polynomial p(t), we denote by Hilbnp(t) the Hilbert scheme parameterizing
the projective subschemes of PnK with Hilbert polynomial p(t). We deal with punctual Hilbert
schemes, hence with constant Hilbert polynomials, and when we take a point we mean a K-
valued point (K-point, for short), i.e. a closed point with residue field K.

Let p(t) = d be the Hilbert polynomial of d points. The smoothable component Rnd of Hilbnp(t)
is the closure of the open set of points corresponding to ideals of d distinct points, i.e. the rational
component of Hilbnp(t) containing the point corresponding to the lex-segment ideal.

A zero-dimensional subscheme X is smoothable if it belongs to the smoothable component
Rnd or, equivalently, the K-algebra A defining X = Proj (A) is isomorphic to the special fiber
of a flat one-parameter family of K-algebras with smooth general point (e.g. [Cartwright et al.,
2009, Lemma 4.1], see also [Iarrobino and Kanev, 1999, Definitions 5.16 and 6.20]).

As noted in [Cartwright et al., 2009, Remark 1.6] for Hilbert schemes of points, every point
in Hilbnp(t) has an open neighborhood that can be studied by suitable “affine” techniques. In
the same context, a similar approach is also used in [Miller and Sturmfels, 2005, Chapter 18].
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So, up to a suitable change of coordinates, we can identify every point of a punctual Hilbert
scheme Hilbnd with an ideal in K[x1, . . . , xn], non-necessarily homogeneous, with affine Hilbert
polynomial p(t) = d.

Due to the structure theorem of Artin rings and to the fact that direct sums commute with
limits of flat families, a zero-dimensional subscheme X is smoothable if and only if the same is
true for all its irreducible components (e.g. [Casnati and Notari, 2011, page 1245], [Cartwright
et al., 2009, Section 4]). This observation motivates interest for the so-called elementary compo-
nents of a punctual Hilbert scheme, i.e. components whose points parameterize zero-dimensional
subschemes with support of cardinality one (see [Jelisiejew, 2017] for a very recent contribution
in this context). Hence, the problem of detecting smoothable points is connected to the study
of ideals I such that R/I is a local K-algebra.

This paper is devoted to investigate when Gorenstein points in a punctual Hilbert scheme
are smoothable. In particular, we are interested in studying Gorenstein points defined by graded
(Artin) K-algebras with Hilbert function (1, 7, 7, 1), that is the only case not treated in the range
considered in [Iarrobino and Kanev, 1999, Lemma 6.21] for the detection of nonsmoothable
points in a punctual Hilbert scheme in characteristic 0. Observe that a graded Artin K-algebra
is necessarily local, in particular defines a scheme supported on a single point. The vice versa
holds on an algebraically closed field of characteristic zero, that is every local Artin Gorenstein
K-algebra is graded, due to [Elias and Rossi, 2012, Theorem 3.3].

The study of Gorenstein smoothable points is strictly related to the study of the irreducibility
of the Gorenstein locus in a Hilbert scheme. In this context, it is well-known that a punctual
Hilbert scheme Hilbnd is irreducible if n = 2 (see [Fogarty, 1968]) and if d ≤ 7 for n ≥ 3 (see
[Cartwright et al., 2009]). Moreover, the Gorenstein locus of Hilbnd is irreducible if d ≤ 13 for
every n (see [Casnati and Notari, 2009, 2011, 2014; Casnati et al., 2015] and the references
therein). Other relevant and also more general results about irreducibility in a Hilbert scheme
are due to Ellingsrud and Iarrobino.

We prove the following results:

(i) The graded Gorenstein K-algebras with Hilbert function (1, 7, 7, 1) are smoothable, in the
further hypothesis that K is algebraically closed (see Theorem 3.6).

(ii) There are at least three irreducible components in Hilb7
16 (see Section 4).

Moreover, we show how our arguments apply to prove the now known result that graded Goren-
stein K-algebras with Hilbert function (1, 5, 5, 1) are smoothable, on an algebraically closed field
of characterisic 0 (see Theorem 5.7).

An outline of some results of the present paper was described by ansatz in [Bertone et al.,
2012] as an application of the constructive methods about marked bases in an affine framework
that were lately deeply studied and completely described in [Bertone et al., 2017a]. Here, we
give an extensive description of the outcome of our study. Different proofs of the case (1, 5, 5, 1)
were presented in [Jelisiejew, 2014], contemporary to our first version given in [Bertone et al.,
2012], and later in [Casnati et al., 2015] when char(K) 6= 2, 3.

We obtain our results facing the problem from a new point of view: we apply the notion
of double-generic initial ideal (see [Bertone et al., 2017b]) and constructive methods that are
based on marked schemes (see [Bertone et al., 2017a] and the references therein). These methods
are also useful to compute the Zariski tangent space to a Hilbert scheme at a given point (see
Corollary 1.6 and Remark 1.7). Essentially, step by step we alternate experimental results and
theoretical properties of our tools, which have been applied in this context for the first time.

The paper is organized in the following way. In Section 1, we describe the results about
marked schemes that we need in our arguments. These results also give information on the
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computation of the Zariski tangent space to a Hilbert scheme via marked schemes (Corollary
1.6). In Section 2, we focus on Gorenstein schemes and their relation with double-generic initial
ideals when the Hilbert function is of type (1, n, n, 1) (Proposition 2.5). In Sections 3 and 5
we prove that graded Artin Gorenstein K-algebras with Hilbert function either (1, 7, 7, 1) or
(1, 5, 5, 1) are smoothable. In characteristic 0, this result also holds for local Artin Gorenstein
K-algebras, due to [Elias and Rossi, 2012, Theorem 3.3]. In Section 4 we prove the existence
of three different components in Hilb7

16 that we explicitly describe (in the Appendix, we list the
outputs of some of the computations involved in this proof).

1 Backgroud: marked schemes and Zariski tangent space

In this paper, we work in an affine framework and apply the affine computational techniques
developed in [Bertone et al., 2017a]. Then, in this section, we set some notations and recall
the main notions involved in these techniques. Moreover, we give some new insights for the
computation of the Zariski tangent space to a Hilbert scheme at a given point.

We will consider the rings of polynomials R = K[x1, . . . , xn] ⊂ S = R[x0], with x0 < x1 <
· · · < xn. For a term xα = xα0

0 xα1
1 . . . xαnn we set |α| :=

∑
i αi, max(xα) := max{xi | αi 6= 0} and

min(xα) := min{xi | αi 6= 0}. For a non-null polynomial f we denote by Supp(f) its support,
that is the set of terms that appears in f with a non-null coefficient. If f is a polynomial in R

then we denote by fh := x
deg(f)
0 f(x1x0 , . . . ,

xn
x0

) its homogenization, and if F is a polynomial in S
then we denote by F a := F (1, x1, . . . , xn) its dehomogenization.

Given a monomial ideal j ⊂ R (resp. J ⊂ S), we denote by N (j) (resp. N (J)) the set of
terms of R outside j (resp. of S outside J) and by Bj (resp. BJ) its minimal monomial basis. We
refer to [Kreuzer and Robbiano, 2000, 2005; Mora, 2005] for results concerning Gröbner bases
and Hilbert functions.

The results we are going to recall use the notion of quasi-stable ideal. It is well-known
that a monomial ideal J is quasi-stable if and only if it has a so-called Pommaret basis [Seiler,
2009, Definition 4.3 and Proposition 4.4]. In general, a Pommaret basis P(J) strictly contains
the minimal monomial basis BJ . The quasi-stable ideals having P(J) = BJ are called stable
ideals. Stable ideals have a nice combinatorial characterization: for each term in a stable ideal,
replacing the variable of smallest index with a variable of larger index produces another term in
the ideal. In our setting we will only consider a special set of stable ideals, namely strongly stable
ideals: in each term in a strongly stable ideal, we may replace any variable with a variable of
larger index to get another term in the ideal. In characteristic 0, Borel-fixed ideals are strongly
stable (see for example [Bayer and Stillman, 1987]). Although when J is strongly stable we have
P(J) = BJ , in the following we will use the notation of Pommaret bases, according to papers
[Ceria et al., 2015; Bertone et al., 2017a].

Recall that a marked polynomial is a polynomial F together with a specified term of Supp(F )
that will be called head term of F and denoted by Ht(F ) (see [Reeves and Sturmfels, 1993]).

Definition 1.1. [Ceria et al., 2015, Definition 5.1] Let J ⊂ S be a quasi-stable ideal.
A P(J)-marked set (or marked set over P(J)) G is a set of homogeneous monic marked

polynomials Fα in S such that the head terms Ht(Fα) = xα are pairwise different and form the
Pommaret basis P(J) of J , and Supp(Fα − xα) ⊂ N (J).

A P(J)-marked basis (or marked basis over P(J)) G is a P(J)-marked set such that N (J)
is a basis of S/(G) as a K-module, i.e. S = (G)⊕ 〈N (J)〉 as a K-module.

Let j ⊂ R be a quasi-stable ideal and m a non-negative integer. Setting J := j · S, we now
recall the affine counterpart of Definition 1.1.
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Definition 1.2. [Bertone et al., 2017a, Definition 4.1]
A [P(j),m]-marked set G is a set of monic marked polynomials fα of R such that the head

terms Ht(fα) = xα are pairwise different and form the Pommaret basis P(j) of j, and Supp(fα−
xα) ⊆ N (j)≤t with t = max{m, |α|}.

A [P(j),m]-marked set G = {fα}xα∈Bj
is a [P(j),m]-marked basis if there exists a P(J≥m)-

marked basis G such that for every xα ∈ Bj the term xkα0 fhα belongs to G for a suitable integer
kα.

The [P(j),m]-marked family is the set of all the ideals I ⊆ R that are generated by a
[P(j),m]-marked basis.

Lemma 1.3. [Bertone et al., 2017a, Lemma 6.1(i) and Definition 6.2] An ideal I ⊂ R belongs
to a [P(j),m]-marked family if and only if R≤t = I≤t

⊕
〈N (j)≤t〉, for every t ≥ m.

Theorem 1.4. [Bertone et al., 2017a, Theorem 6.6 and Proposition 6.13] A [P(j),m]-marked
family is parameterized by a locally closed subscheme MfP(j),m of the Hilbert scheme Hilbnp(t),
where p(t) is the affine Hilbert polynomial of R/j. If ρ is the satiety of j and m ≥ ρ − 1, then
MfP(j),m is an open subscheme of Hilbnp(t).

The scheme MfP(j),m of Theorem 1.4 is called [P(j),m]-marked scheme.

Theorem 1.5. [Bertone et al., 2017a, Section 6] The scheme MfP(j),m is the spectrum Spec (K[C]/U),
where C is the set of parameters corresponding to the possible coefficients in the polynomials of a
[P(j),m]-marked basis, and the ideal U is generated by the relations that are satisfied by these coef-
ficients and which can be computed by [Bertone et al., 2017a, Algorithm MarkedScheme(j,m)].

In next statement, we denote by X a point of Hilbnp(t) and let MfP(j),m be a [P(j),m]-marked
scheme containing X up to a suitable change of coordinates, where m ≥ ρ − 1 and ρ is the
satiety of j.

Corollary 1.6. The Zariski tangent space to Hilbnp(t) at X is equal to the Zariski tangent space
to MfP(j),m at X and it can be explicitly computed by marked bases techniques.

Proof. It is enough to observe that MfP(j),m is an open subscheme of Hilbnp(t) due to Theorem
1.4 and that the Zariski tangent space to MfP(j),m at X can be computed by the generators of
the ideal U of Theorem 1.5.

Remark 1.7. Concerning an effective computation of the Zariski tangent space to a marked
scheme MfP(j),m at the origin j, we can use the same techniques that are described in [Lella and
Roggero, 2011, Sections 3 and 4] for the so-called Gröbner strata. If we want to compute the
Zariski tangent space at another point, we perform the change of coordinates that brings this
point in the origin, as usual.

We end this section with the following result that is inferred from [Ferrarese and Roggero,
2009] and is analogous to results contained in [Lella and Roggero, 2011] for the homogeneous
case. We first need to describe an adjustment to the affine case of the notion of segment (for
details on segments see [Cioffi et al., 2011]).

Definition 1.8. Let j be a strongly stable ideal in R, m a positive integer. The ideal j is an affine
m-segment if there is a weight vector ω ∈ Nn such that for every xα ∈ Bj, degω(xα) > degω(xγ)
for every xγ ∈ N (j)≤t, with t = max{m, |α|}.

Theorem 1.9. If j ⊂ R is an affine m-segment, then every irreducible componentM of MfP(j),m
contains j, hence MfP(j),m is a connected scheme. If moreover the point corresponding to j is
smooth on M, then M is isomorphic to an affine space.
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Proof. Let ω ∈ Nn be a weight vector with respect to whom j is an affine m-segment. Then,
Mf(j,m) is a ω-cone with vertex in j by [Ferrarese and Roggero, 2009, Corollary 2.7] and the
thesis follows.

2 Gorenstein points and double-generic initial ideals

In this section, we highlight a relation between the locus of Gorenstein points defined by graded
Gorenstein K-algebras with Hilbert function of type (1, n, n, 1) and the notion of double-generic
initial ideal.

A Gorenstein scheme X ∈ Hilbnp(t) is a scheme such that the stalk of the ideal sheaf in every
point x ∈ X is Gorenstein. Recall that the locus of points in Hilbnp(t) representing Gorenstein
schemes is an open subset [Stoia, 1975; Greco and Marinari, 1978].

We will consider zero-dimensional Gorenstein schemes in an open neighborhood, which can
be studied by our affine techniques [Bertone et al., 2017a]. Hence, following [Iarrobino and
Kanev, 1999, Definition 2.1] and [Bruns and Herzog, 1993], we now recall some main notions
and already known results for Artin K-algebras.

Let A be a local Artin K-algebra and M its maximal ideal. The socle of A is the annihilator
Soc(A) := (0 :A M) = {h ∈ A | hM = 0}. Then, A is called Gorenstein if dimK Soc(A) = 1. An
Artin K-algebra is Gorenstein if its localization at every maximal ideal is a Gorenstein (local)
K-algebra. The socle degree of a graded Artin Gorenstein K-algebra A is the maximum degree
j such that Aj 6= 0.

The following result is due to Macaulay, as observed in [Iarrobino and Kanev, 1999] which
we refer to.

Lemma 2.1. [Iarrobino and Kanev, 1999, Definiton 1.11 and Lemma 2.12] There is a bijection
between the hypersurfaces of degree j in PnK and the set of graded Artin Gorenstein quotient
rings of R of socle degree j. This correspondence associates to a form F of degree j the quotient
AF := R/Ann(F ), where Ann(F ) is computed by apolarity.

Theorem 2.2. ([Iarrobino and Emsalem, 1978, Theorem 3.31], [Iarrobino, 1984, Theorem I],
[Casnati and Notari, 2011, Theorem 3.1]) The set of cubic hypersurfaces, which determine all the
graded Artin Gorenstein K-algebras with Hilbert function (1, n, n, 1) by apolarity, is a non-empty
irreducible subset of P(R3).

Let Gor(T ) denote the subset of the projective space consisting of the hypersurfaces F such
that the Hilbert function of AF is a given function T . By Theorem 2.2, Gor(T ) can be embedded
in a Hilbert scheme as an irreducible locally closed subset and we denote by Gor(T ) its closure.
The following definitions and results are crucial in our study of Gor(1, n, n, 1).

Definition 2.3. [Bertone et al., 2017b] An irreducible closed subset Y of a Hilbert scheme is
called a GL-stable subset if is invariant under the action of the general linear group.

Every GL-stable subset Y of a Hilbert scheme contains at least one point corresponding to a
strongly stable ideal. Given a term order, among the strongly stable ideals that define points of
Y , we can find a special strongly stable ideal which is the saturation of the generic initial ideal
of the generic (and general) point of Y [Bertone et al., 2017b, Proposition 4(b)].

Definition 2.4. [Bertone et al., 2017b, Definition 5] The saturation of the generic initial ideal
of the generic (and general) point of a GL-stable subset Y is called the double-generic initial
ideal of Y and is denoted by GY .
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The notion of double-generic initial ideal has been introduced and investigated for the first
time in [Bertone et al., 2017b], also in the more general setting of Grassmannian, with the
terminology of extensors.

Proposition 2.5. Gor(1, n, n, 1) ⊆ Hilbn2n+2 is a GL-stable subset, in particular it has a double-
generic initial ideal.

Proof. Theorem 2.2 implies that the closure Gor(1, n, n, 1) in Hilbn2n+2 is a closed irreducible
subset, hence it is GL-stable because it is also invariant under the action of the general linear
group, by construction.

Next result contains some of the main properties of a double-generic initial ideal. First, we
need to recall the following definition.

Definition 2.6. [Bertone et al., 2017b, Definition 6] Let J and H be monomial ideals in S such
that S/J and S/H have the same Hilbert polynomial p(t). Let r be the Gotzmann number of
p(t) and consider the set of generators BJ≥r = {τ1, . . . , τq} and BI≥r = {σ1, . . . , σq} ordered by

a term order >, where q =
(
n+r
n

)
− p(r). We write J >> H if τi ≥ σi for every i ∈ {1, . . . , q}.

Lemma 2.7. [Bertone et al., 2017a, Propositions 2 and 3, Definition 5, Theorems 3 and 4,
Remark 5] Let > be a term order, Y a GL-stable subset of Hilbnp(t) and GY its double-generic
initial ideal.

(i) For every ideal I defining a point of Y , gin(I) and in(I) define points of Y .

(ii) There exists the maximum among all the Borel ideals defining points of Y with respect to
the partial order >>, and this maximum is GY .

(iii) There is a non-empty open subset V of Y such that gin(I) = in(I) = GY for every saturated
ideal I defining a point in V .

3 Graded Artin Gorenstein K-algebras with Hilbert function
(1, 7, 7, 1) define smoothable points

In this section, we consider the Hilbert scheme Hilb7
16 parameterizing zero-dimensional sub-

schemes of P7
K of length 16. Recall that, up to a generic change of coordinates, we can identify

every point of Hilb7
16 with an ideal in R = K[x1, . . . , x7], not necessarily homogeneous. Hence,

we consider the polynomial ring R and the ideals in R with affine Hilbert polynomial p(t) = 16.
A double-generic initial ideal J will be considered in its affine version too, that is its dehomog-
enization j := Ja = BJ ·R.

The lex-point of Hilb7
16 corresponds to the following lex-segment ideal in R:

jlex = (x7, x6, x5, x4, x3, x2, x
16
1 ).

It is well-known that jlex is a smooth point of the smoothable component R7
16 of dimension

7 · 16 = 112, because the general point of R7
16 is a reduced scheme of 16 distinct points.

We can compute the complete list of 561 strongly stable ideals of R lying in Hilb7
16 by the

algorithm described in [Cioffi et al., 2011] (and further developed and implemented in [Lella,
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2012] and generalized for quasi-stable ideals and Borel-fixed ideals in positive characteristic in
[Bertone, 2015]). Among them, we focus on the following one:

jG =(x27, x7x6, x7x5, x7x4, x7x3, x7x2, x7x1, x
2
6, x6x5, x6x4, x6x3, x6x2, x6x1, x

2
5, x5x4, x5x3,

x5x2, x5x1, x
2
4, x4x3, x4x2, x4x

2
1, x

3
3, x

2
3x2, x

2
3x1, x3x

2
2, x3x2x1, x3x

2
1, x

3
2, x

2
2x1, x2x

2
1, x

4
1).

By the constructive tools of [Bertone et al., 2017a] and by theoretical results on the double-
generic initial ideal, we now show that jG is the generic initial ideal w.r.t. lex term order of a
general ideal defining a graded (Artin) Gorenstein K-algebra with Hilbert function (1, 7, 7, 1).

Theorem 3.1. The strongly stable ideal jG is the double-generic initial ideal of the GL-stable
subset Gor(1, 7, 7, 1) w.r.t. the lex order. In particular, it is the generic initial ideal w.r.t. the
lex order of a general point of Gor(1, 7, 7, 1).

Proof. We explicitly construct a random ideal defining a graded Artin GorensteinK-algebra with
Hilbert function (1, 7, 7, 1) by apolarity, thanks to the already cited correspondence with cubic
hypersurfaces (see Lemma 2.1). We randomly choose the following cubic form F in K[x1, . . . , x7]

F = 2x31 − 3x21x2 − 6x21x4 − 6x21x5 − 3x21x7 + 9x1x
2
2 + 12x1x2x3 + 12x2x1x4+

+12x2x1x5 + 12x2x1x6 + 6x2x1x7 + 6x1x
2
3 + 6x1x3x4 + 6x1x3x5 + 12x1x3x6+

+6x1x3x7 + 6x1x
2
4 + 12x1x4x5 + 6x1x4x6 + 6x1x4x7 + 6x1x

2
5 + 6x1x5x6+

+6x1x5x7 + 6x1x
2
6 + 6x1x6x7 + 3x1x

2
7 − x32 + 3x22x3 − 9x22x4 − 6x22x5+

−3x22x6 − 6x22x7 + 3x2x
2
3 − 12x2x3x4 − 6x2x3x5 − 6x2x3x6 − 12x2x3x7 − 3x2x

2
4+

−12x2x4x5 − 6x2x
2
5 − 6x2x5x6 − 6x2x5x7 + 3x2x

2
6 − 6x23x4 − 3x23x5 − 3x23x6+

−6x23x7 − 6x3x4x5 − 3x3x
2
5 − 6x3x5x6 − 6x3x5x7 + 3x3x

2
6 − 5x34 − 6x24x5+

−6x24x6 − 3x24x7 − 6x4x
2
5 − 6x4x5x6 − 6x4x5x7 − 6x4x

2
6 − 12x4x6x7 − 9x4x

2
7+

−3x35 − 3x25x6 − 3x25x7 − 3x5x
2
6 − 6x5x6x7 − 3x5x

2
7 − 2x36 − 6x26x7+

−6x6x
2
7 − 2x37.

Let Ann(F ) ⊂ K[x1, . . . , x7] be the ideal that we obtain by apolarity from F . We check that
AF := K[x1, . . . , x7]/Ann(F ) is a graded Gorenstein K-algebra with Hilbert function (1, 7, 7, 1).
We can also observe that AF is local as we expected, because AF is Artin and graded. The
reduced Gröbner basis w.r.t. the lex order of the ideal Ann(F ) is given by the following 32
polynomials (in bold the initial term of each polynomial):
f1 = x2

7 − 4x1x4 − 2x23 + x2x3 − 2x1x3 − x22 + 4x1x2,
f2 = x6x7 − x1x4 − x2x3 + x1x2,
f3 = x5x7 + x1x4 + x1x3 − x1x2,
f4 = x4x7 + 2x1x4 + 2x23 − 2x2x3 + 5x1x3 − 5x1x2 − x21,
f5 = x3x7 + 3x1x4 + x2x3 + 2x1x3 − 3x1x2,
f6 = x2x7 + 3x1x4 + x2x3 + 2x1x3 − 3x1x2,
f7 = x1x7 − x1x4 − x1x3 + x1x2,
f8 = x2

6 + x1x4 + x23 − 3x2x3 − x1x3 + x22 + x1x2 + x21,
f9 = x5x6 + x1x4 + x1x3 − x1x2,
f10 = x4x6 − x1x4 − x2x3 + x1x2,
f11 = x3x6 + 4x1x4 + x2x3 + 2x1x3 − 4x1x2,
f12 = x2x6 + 4x1x4 + x2x3 + 2x1x3 − 4x1x2,
f13 = x1x6 − x1x3,
f14 = x2

5 + 2x1x4 + 2x23 − 3x2x3 + 2x22 − x21,
f15 = x4x5 + x1x4,
f16 = x3x5 + x1x4 + x1x3 − x1x2,
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f17 = x2x5 + x1x4,
f18 = x1x5 − x1x4,
f19 = x2

4 − 7x1x4 − 4x23 + 2x2x3 − 8x1x3 − x22 + 11x1x2 + x21,
f20 = x3x4 + 3x1x4 + x2x3 + 2x1x3 − 3x1x2,
f21 = x2x4 + 3x1x4 + x2x3 + x1x3 − 2x1x2,
f22 = x2

1x4 + x31,
f23 = x3

3, f24 = x2x2
3 − 1

2x
3
1, f25 = x1x2

3 − x31, f26 = x2
2x3 − 1

2x
3
1,

f27 = x1x2x3 − x31, f28 = x2
1x3, f29 = x3

2 + 1
2x

3
1, f30 = x1x2

2 − 3
2x

3
1,

f31 = x2
1x2 + 1

2x
3
1, f32 = x4

1.
Then, the monomial ideal jG is the initial ideal of Ann(F ) w.r.t. lex order. Moreover, jG is
the generic initial ideal of Ann(F ) by [Bertone et al., 2017b, Theorem 3], because jG is the
maximum w.r.t. the order of Definition 2.6 among all the strongly stable ideals with Hilbert
function (1, 7, 7, 1) (see [Eisenbud, 1995, Theorem 15.18]). By [Bertone et al., 2017b, Theorem
3], this fact also implies that jG is the double-generic initial ideal of Gor(1, 7, 7, 1). By [Bertone
et al., 2017b, Proposition 4] we can now conclude that jG is the generic initial ideal w.r.t. the
lex order of a general point of Gor(1, 7, 7, 1).

Proposition 3.2. MfP(jG),3 ∩Gor(1, 7, 7, 1) 6= ∅.

Proof. From the proof of Theorem 3.1 we see that the 32 polynomials fi, which generate the ideal
Ann(F ), form a Gröbner basis that is also a [P(jG), 3]-marked basis. Thus, Ann(F ) belongs to
the family of ideals defining the [P(jG), 3]-marked scheme MfP(jG),3.

With a suitable choice of values for the parameters occurring in the defining ideal U of
MfP(jG),3, we obtain that the following polynomials form a [P(jG), 3]-marked basis Gτ , for every
τ ∈ A1

K :
F1 = f1 − 9 τx7 + 16 τx4 + 11

2 τx3 − 7 τx2 + 2 τx1 − 8 τ2,
F2 = f2 − 1

2 τx6 + τx4 + 1
2 τx3 − τx2 + 1

2 τx1 −
1
2 τ

2,
F3 = f3 − τx7 − 1

2 τx5 − τx4 − τx3 + τx2 − 1
2 τx1 + τ2,

F4 = f5 + 11 τx7 − 45 τ
2 x4 − 8 τx3 + 5 τx2 − 3

2 τx1 + 17 τ2,
F5 = f5 − 3 τx4 − 3 τx3 + 3 τx2 − 3

2 τx1 + 3
2 τ

2,
F6 = f6 − 1

2 τx7 − 3 τx4 − 5
2 τx3 + 5

2 τx2 −
3
2 τx1 + 7

4 τ
2,

F7 = f7 − τx2 + τx3 + τx4 − τx7,
F8 = f8 + 2 τx6 − τx4 + 1

2 τx3 + 2 τx2 + 1
2 τx1 −

13 τ2

4 ,
F9 = f9 − τx6 − τx4 − τx3 + τx2 − 1

2 τx1 + 1
2 τ

2,
F10 = f10 − τx6 + τx4 + 1

2 τx3 − τx2 + 1
2 τx1 −

1
2 τ

2,
F11 = f11 − 4 τx4 − 5

2 τx3 + 4 τx2 − 2 τx1 + 2 τ2,
F12 = f12 − 1

2 τx6 − 4 τx4 − 5
2 τx3 + 4 τx2 − 2 τx1 + 2 τ2,

F13 = f13 + τx3 − τx6 − x3x1,
F14 = f14 − 14 τx5 − 2 τx4 − 5

2 τx3 + 6 τx2 − 4 τx1 + 29 τ2

2 ,
F15 = f15 + 2 τ2 − τx1 − 2 τx4 − τx5,
F16 = f16 − τx4 − 2 τx3 + τx2 − 1

2 τx1 + 1
2 τ

2,
F17 = f17 − 1

2 τx5 − τx4 − τx2 − τx1 + 3
2 τ

2,
F18 = f18 + τx4 − τx5,
F19 = f19 − 20 τx7 + 37 τx4 + 15 τx3 − 14 τx2 + 7

2 τx1 −
95 τ2

4 ,
F20 = f20 − 3 τx4 − 7

2 τx3 + 3 τx2 − 3
2 τx1 + 3

2 τ
2,

F21 = f21 − 7
2 τx4 −

3
2 τx3 + τx2 − 2 τx1 + 5

2 τ
2,

F22 = f22 + 4 τ3 − 5 τ2x1 − 4 τ2x2 + τ2x4 + 4 τx1x2 − 2 τx1x4,
F23 = f23 − 2 τ3 + 2 τ2x1 − 4 τ2x2 − 3 τ2x3 + 4 τ2x4 + 4 τx1x2 − 4 τx1x4 + 6 τx2x3 − 2 τx3

2,
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F24 = f24 − 1
2 τx3

2 + 4 τx2x3 − 6 τx1x4 − 6 τx3x1 + 8 τx1x2 − 1
2 τx1

2 + 6 τ2x4 +
+ 4 τ2x3 − 8 τ2x2 + 9

2 τ
2x1 − 7

2 τ
3,

F25 = f25 − 5 τ3 + 7 τ2x1 − 12 τ2x2 + 8 τ2x3 + 8 τ2x4 − τx12 + 12 τx1x2 − 8 τx3x1 +
− 8 τx1x4 − τx32,
F26 = f26 + 3 τx2x3 − 6 τx1x4 − 6 τx3x1 + 8 τx1x2 − 1

2 τx1
2 + 6 τ2x4 + 17 τ2x3

4 +
− 8 τ2x2 + 9

2 τ
2x1 − 7

2 τ
3,

F27 = f27 − τx2x3 − 8 τx1x4 − 17
2 τx3x1 + 12 τx1x2 − τx12 + 8 τ2x4 + 17

2 τ
2x3 +

− 12 τ2x2 + 7 τ2x1 − 5 τ3,
F28 = f28 − 6 τ3 + 6 τ2x1 − 12 τ2x2 + 5 τ2x3 + 12 τ2x4 + 12 τx1x2 − 6 τx3x1 − 12 τx1x4,
F29 = f29 + 5

2 τx2
2 − 2 τx1x4 − 6 τx3x1 + 12 τx1x2 + 1/2 τx1

2 + 2 τ2x4 + 6 τ2x3 +

− 61 τ2x2
4 − 13

2 τ
2x1 + 51 τ3

8 ,
F30 = f30 − τx22 − 10 τx1x4 − 6 τx3x1 + 7 τx1x2 − 3

2 τx1
2 + 10 τ2x4 + 6 τ2x3 +

− 7 τ2x2 + 55 τ2x1
4 − 43 τ3

4 ,
F31 = f31 − 10 τx1x4 − 6 τx3x1 + 14 τx1x2 + 10 τ2x4 + 6 τ2x3 − 15 τ2x2 + 1

2 τ
2x1 − τ3,

F32 = f32 + 45 τ4 − 40 τ3x1 + 32 τ3x2 − 64 τ3x4 − 6 τ2x1
2 − 32 τ2x1x2 + 64 τ2x1x4.

From now, for every τ ∈ A1
K we denote by iτ ⊂ K[x1, . . . , x7] the ideal generated by the [P(jG), 3]-

marked basis Gτ = {F1, . . . , F32}. Note that for τ = 0 we obtain the ideal i0 = Ann(F ), which
defines a scheme with support in a single point, as we have already observed in the proof of
Theorem 3.1. For every τ ∈ A1

K \ {0} we have a different situation because every ideal iτ defines
a scheme whose support contains at least the following 8 distinct affine points:(

τ,
1

2
τ, 2τ, τ, τ, 0,

1

2
τ

)
,

(
τ,
−7

2
τ, 0, τ, τ, 0,

1

2
τ

)
,

(
−3τ,

1

2
τ, 0, τ, τ, 0,

1

2
τ

)
,(

τ,
1

2
τ, 0, τ, τ, 0,

1

2
τ

)
,

(
−7τ,

−45

6
τ,−8τ, τ, τ,−8τ,

1

2
τ

)
,

(
τ,

1

2
τ, 0, τ, τ,−2τ,

1

2
τ

)
,(

τ,
1

2
τ, 0, τ, 13τ, 0,

1

2
τ

)
,

(
−7τ,

17

2
τ, 0, 9τ, 9τ, 0,

1

2
τ

)
.

This observation is crucial for next result.

Lemma 3.3. Over an algebraically closed field K with char(K) 6= 2, 3, there exists a flat fam-
ily of ideals which is contained in MfP(jG),3 ∩ R

7
16 such that the special fiber corresponds to a

Gorenstein point defined by a graded K-algebra with Hilbert function (1, 7, 7, 1).

Proof. We prove that the family of ideals {iτ}τ , which are generated by the [P(jG), 3]-marked
bases Gτ , is contained in the smoothable component R7

16. By construction, the ideals iτ belong
to the marked scheme MfP(jG),3 which embeds as an open subset in the punctual Hilbert scheme

Hilb7
16. So, these ideals define a flat family over A1. As we have already recalled in Section 2, the

locus of points in a Hilbert scheme representing all the Gorenstein schemes is an open subset.
Hence, the intersection of this locus with the flat family {iτ}τ , which is non-empty because i0
represents a Gorenstein point, is an open subset of the family. Thus, we find at least a value
τ 6= 0 such that iτ represents a Gorenstein point.

By computational tools, we have already found that for every τ 6= 0 the ideal iτ defines a
scheme whose support contains at least 8 distinct points and hence components of multiplicity
at most 9. So, the ideal iτ is smoothable due to the fact that for d ≤ 9 the locus of Gorenstein
points is a Hilbert scheme of d points is irreducible (see [Casnati and Notari, 2009, Theorem A]).
Thus, every ideal iτ belongs to the smoothable component R7

16 because the family is irreducible.
In particular, the special fiber i0 belongs to R7

16, because R7
16 is closed and irreducible.
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Remark 3.4. Although the ideal i0 corresponds to a Gorenstein point in Gor(1, 7, 7, 1), for every
τ 6= 0 the ideal iτ corresponds to a point which does not belong to Gor(1, 7, 7, 1) because its
support consists of more than one point. We constructed the family of ideals {iτ}τ with this
property letting the term x7 have a non-null coefficient in the polynomial F19. Indeed, the term
x7 is higher than the head term x24 of F19 with respect to lex term order. This fact implies that
the initial ideal of iτ is not jG and is not comparable with jG w.r.t. the order of Definition 2.6
(see [Bertone et al., 2017b, Theorem 3 and Proposition 8]). Thus, the generic initial ideal of
iτ is different from jG. Recalling that jG is the double-generic initial ideal of Gor(1, 7, 7, 1), we
obtain our claim. We can also observe that the initial ideal of iτ is closer to the lex-segment
ideal than jG w.r.t. the order of Definition 2.6.

Lemma 3.5. Over an algebraically closed field K with char(K) 6= 2, 3, there exists a smooth
Gorenstein point defined by a graded K-algebra with Hilbert function (1, 7, 7, 1) belonging to the
smoothable component R7

16.

Proof. We prove that the ideal i0 defines a smooth Gorenstein point in the smoothable compo-
nent R7

16. We already know that i0 defines a Gorenstein point with Hilbert function (1, 7, 7, 1).
Moreover, by Lemma 3.3 and by construction, the ideal i0 represents a point that belongs to
R7

16 ∩MfP(jG),3. Due to Corollary 1.6, we can compute the Zariski tangent space to Hilb7
16 at

i0 from the polynomials of the [P(jG), 3]-marked basis of i0, obtaining that the dimension of
the Zariski tangent space to Hilb7

16 at the point i0 is 112 = 16 × 7, i.e. the dimension of the
smoothable component.

Theorem 3.6. Over an algebraically closed field K with char(K) 6= 2, 3, every Gorenstein point
defined by a graded K-algebra with Hilbert function (1, 7, 7, 1) is smoothable.

Proof. By Lemmas 3.3 and 3.5, there exists a smooth Gorenstein point with Hilbert function
(1, 7, 7, 1) in the smoothable componentR7

16. These facts imply that also all the other Gorenstein
points with the same Hilbert function belong to R7

16, i.e. are smoothable, because the locus
Gor(1, n, n, 1) in Hilbnp(t) of the schemes parameterizing homogeneous Gorenstein ideals with
Hilbert function (1, n, n, 1) is irreducible (see Theorem 2.2 and Proposition 2.5).

Remark 3.7. Recall that Theorem 3.6 covers the unique case not treated in the range considered
by [Iarrobino and Kanev, 1999, Lemma 6.21] about the study of non-smoothable Gorenstein
points.

Corollary 3.8. Over an algebraically closed field K of characteristic 0, every local Gorenstein
K-algebra with Hilbert function (1, 7, 7, 1) is smoothable.

Proof. This is a consequence of Theorem 3.6 and [Elias and Rossi, 2012, Theorem 3.3].

4 Hilb7
16 has at least three irreducible components

In this section, we now obtain interesting information about the components of Hilb7
16 from a

study of the irreducible components of MfP(jG),3. Indeed, by construction the marked scheme

MfP(jG),3 is the open subscheme of Hilb7
16 where the Plücker coordinate corresponding to the

monomial ideal jG
h is invertible. So, the closures of the components of MfP(jG),3 are irreducible

components of Hilb7
16. Our first result is a consequence of Theorem 1.9.

Proposition 4.1. The marked scheme MfP(jG),3 is a connected open subset of Hilb7
16 with irre-

ducible components containing jG.
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Proof. The marked scheme MfP(jG),3 is an open subset of Hilb7
16 due to [Bertone et al., 2017b,

Proposition 6.12(ii)]. Furthermore, the ideal jG is an affine 3-segment with respect to the weight
vector ω = [11, 10, 9, 8, 6, 5, 4]. Hence, by Theorem 1.9, MfP(jG),3 is connected and every its
irreducible component contains jG.

Remark 4.2. From the fact that jG is an affine 3-segment with respect to the weight vector
ω := [11, 10, 9, 8, 6, 5, 4] we obtain that M2 is a cone, with vertex in jG, with respect to a
positive non-standard grading (see [Ferrarese and Roggero, 2009, Corollary 2.7]). Thus, there is
a projection in the Zariski tangente space toM2 at the origin which induces an isomorphism of
M2 with its image (see [Ferrarese and Roggero, 2009, Theorem 3.2]). This projection identifies a
set of eliminable variables which is very useful, for example, in order to enhance the performance
of the computations in this context.

We denote byM1 := MfP(jG),3∩R
7
16 the irreducible component of MfP(jG),3 that is obtained

by intersecting MfP(jG),3 with the smoothable component R7
16. Thus, the dimension of M1

is 112. We now highlight the existence of other two components of MfP(jG),3. The result of
Proposition 4.1 suggests us to look for the irreducible components other thatM1 containing the
ideal jG.

By the techniques described in [Bertone et al., 2017a] and briefly recalled in Section 1, we
obtain MfP(jG),3 as the affine scheme defined by an ideal A generated by 2160 polynomials of
degrees d = 3, 4, 5 in the polynomial ring K[C] in 512 variables. The computation of a primary
decomposition of the ideal A is unaffordable with Gröbner bases techniques. Thus, we look for
other strategies.

Recalling the construction of a [P(jG), 3]-marked set, we consider the terms outside jG of
degree up to 3 in the following order:

x31, x
2
3, x3x2, x

2
2, x4x1, x3x1, x2x1, x

2
1, x7, x6, x5, x4, x3, x2, x1, 1.

For example, the polynomial of a [P(jG), 3]-marked set with head term x27 has the following
shape:
x27 − (c1,1x

3
1 + c1,2x

2
3 + c1,3x2x3 + c1,4x

2
2 + c1,5x1x4 + c1,6x1x3 + c1,7x1x2 + c1,8x

2
1 + c1,9x7+

+c1,10x6 + c1,11x5 + c1,12x4 + c1,13x3 + c1,14x2 + c1,15x1 + c1,16),
and, observing that (jG)4 = R4, the polynomial with head term x41 is
x41− (c32,1x

3
1 + c32,2x

2
3 + c32,3x2x3 + c32,4x

2
2 + c32,5x1x4 + c32,6x1x3 + c32,7x1x2 + c32,8x

2
1+ c32,9x7 +

c32,10x6 + c32,11x5 + c32,12x4 + c32,13x3 + c32,14x2 + c32,15x1 + c32,16).

Theorem 4.3. There is an irreducible component M2 of the marked scheme MfP(jG),3 that is
rational and has dimension 161.

Proof. Let C be the set of the parameters ci,j that are coefficients in a [P(jG), 3]-marked set and
have indexes j ≥ 9 or i ≥ 22 and j ≥ 2. Note that the parameters in C are the coefficients of the
terms of degree lower than the degree of the corresponding head term, except for i = 32. Consider
the family of [P(jG), 3]-marked sets in which the parameters in C are null. The remaining
parameters are 179 = 8 · 21 + 11 and have indexes either i ≤ 21 and j ≤ 8 or i ≥ 22 and j = 1.
This choice guarantees that we are considering points of the Hilbert scheme corresponding to
schemes with a singularity in [0, . . . , 0, 1] ∈ P7

K

Intersecting the marked scheme MfP(jG),3 with the linear variety L defined by the vanishing

of the parameters in C, we obtain that the generators of the ideal defining MfP(jG),3 become
polynomials, many of which are divisible by c32,1. Removing this factor, we obtain a set of poly-
nomials defining a particular family F2 of ideals in MfP(jG),3∩L. Interreducing the polynomials
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defining F2 we obtain 25 polynomials ui,j , which are listed in the Appendix and form a complete
intersection of dimension 154 = 179− 25 in K[C]/(C), hence the family F2 has dimension 154.
We can observe that by these 25 polynomials the following 25 parameters are eliminable, in the
sense that they can be replaced by polynomials in the remaining parameters:
c1,8, c2,8, c3,8, c4,8, c5,8, c6,8, c8,8, c9,8, c10,8, c11,8, c12,8, c14,8, c15,8, c16,8, c17,8, c19,8, c20,8, c21,8, c23,1,
c24,1, c25,1, c26,1, c27,1, c29,1, c30,1.

We denote by C0 the set of the remaining 154 = 179 − 25 parameters. Of course, all the
polynomials ui,j defining the family F2 vanish after the elimination of the above 25 parameters.

Allowing translations on the variables x1, . . . , x7, the family F2 spreads to a larger family F̃2

which depends on 161 = 154 + 7 parameters and is still contained in MfP(jG),3. Denote by M2

the subscheme of points corresponding to the ideals in F̃2. By construction, M2 is a complete
intesection too and has dimension 161. Moreover, it is rational because it depends on exactly
161 parameters.

Now, we observe that M2 is an irreducible component of MfP(jG),3. We randomly choose
particular values for the 154 parameters in C0 in order to obtain the [P(jG), 3]-marked basis of
an ideal a corresponding to a points of M2 (please, see the Appendix for a possible choice of
the values for the 154 parameters in C0, the consequent values for the 25 eliminable variables
and the generators of the ideal a).

Due to Corollary 1.6, we compute the Zariski tangent space to Hilb7
16 at the point corre-

sponding to a finding that it has dimension 161, that is the dimension of M2. Thus, M2 is an
irreducible component of Hilb7

16.

Remark 4.4. The ideal a of Theorem 4.3 defines a general point of M2 and the corresponding
scheme is the union of a simple point and of a non-reduced structure of multiplicity 15 on a
different point. Observe that the ideal a is only one of the possible points we can consider in
order to check that the dimension of M2 is 161.

Theorem 4.5. There is an irreducible component M3 of MfP(jG),3 which is different from M1

andM2. This componentM3 ha dimension ≥ 116 and contains a subscheme of MfP(jG),3 which
is isomorphic to an affine space of dimension 116.

Proof. Referring to the construction of a [P(jG), 3]-marked set, consider the family F3 of [P(jG), 3]-
marked sets in which the parameters ci,j are null if they are outside the set C̃ of remaining 109
parameters that is listed in the Appendix.

The marked sets that we obtain with the above setting are actually marked bases for every
value of the remaining 109 parameters (see the Appendix for details about these marked bases).
Thus, allowing translations on the variables x1, . . . , x7 the family F3 spreads to a larger family
F̃3 depending on 116 = 109 + 7 free parameters, which is still contained in MfP(jG),3. Denote by

M̃3 the subscheme of points corresponding to the ideals in F̃3. Thus M̃3 is isomorphic to an
affine space of dimension 116 and then it is different from M1 which has dimension 112.

We choose a particular point of M̃3 at which the dimension of the Zariski tangent space
to the Hilbert scheme Hilb7

16 is 153 (see the Appendix for the explicit description of one of
these possible points which defines a scheme with support in the origin). Thus, the dimension

of M̃3 is ≤ 153 and, above all, there is a point of M̃3 which cannot belong to M2, because
the dimension of M2 is 161 > 153. This observation proves the existence of an irreducible
component M3 ⊇ M̃3 of MfP(jG),3 other than M1 and M2.

Remark 4.6. In the proof of Theorem 4.5 the family F3 is constructed by setting c32,1 = 0, where
c32,1 is the parameter already considered in the proof of Theorem 4.3. Note that the ideals of
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F3 do not belong to Gor(1, 7, 7, 1) because a general point of M̃3 corresponds to a non-reduced
structure over a point. Otherwise,M3 should be a second component containing Gor(1, 7, 7, 1),
that is impossible by the irreducibility of the locus of these points.

Corollary 4.7. There are at least the three irreducible components M1, M2 and M3 of Hilb7
16

passing through the point corresponding to the ideal jG.

Proof. This is an immediate consequence of Proposition 4.1 and Theorems 4.3 and 4.5.

5 Graded Artin Gorenstein K-algebras with Hilbert function
(1, 5, 5, 1) define smoothable points

In this section we apply the same techniques of Section 3 to prove the smoothability of graded
Gorenstein K-algebras with Hilbert function (1, 5, 5, 1) over an algebraically closed field of char-
acteristic 0. We recall that different proofs of this case (1, 5, 5, 1) were presented in [Jelisiejew,
2014], contemporary to our first version given in [Bertone et al., 2012], and later in [Casnati
et al., 2015] when char(K) 6= 2, 3.

We consider the Hilbert scheme Hilb5
12 parameterizing zero-dimensional subschemes of P5

of length 12. As before, we identify every point of Hilb5
12 with an ideal in R = K[x1, . . . , x5],

non-necessarily homogeneous, with affine Hilbert polynomial p(t) = 12. The lex-point of Hilb5
12

corresponds to the following lex-segment ideal in R:

jlex = (x5, x4, x3, x2, x
12
1 ).

It is well-known that jlex is a smooth point of the smoothable component R7
16 of dimension

5 · 12 = 60, because the general poin of R7
16 is the reduced scheme of 12 distinct points.

As in Section 3, we compute the complete list of 92 strongly stable ideals of R lying on
Hilb5

12. Among them, we focus on the following one:

jG = (x25, x4x5, x3x5, x2x5, x5x1, x
2
4, x3x4, x2x4, x1x4, x

2
3, x

2
2x3, x1x2x3, x

2
1x3, x

3
2, x1x

2
2, x

2
1x2, x

4
1)

By the constructive tools of [Bertone et al., 2017a] and by theoretical results on the double-
generic initial ideal, we now show that jG is the generic initial ideal w.r.t. lex term order of a
general ideal defining a graded Gorenstein K-algebra with Hilbert function (1, 5, 5, 1).

Theorem 5.1. The ideal jG is the generic initial ideal w.r.t. the lex term order of a general
ideal defining a graded Gorenstein K-algebra with Hilbert function (1, 5, 5, 1).

Proof. We explicitly construct a random ideal defining a graded Gorenstein K-algebra with
Hilbert function (1, 5, 5, 1) by apolarity, thanks to the already cited correspondence with cubic
hypersurfaces (see [Iarrobino and Kanev, 1999, Lemma 2.12]). We randomly choose a cubic
form F in K[x1, . . . , x5] and from F compute the ideal Ann(F ) ⊂ K[x1, . . . , x5] by apolarity.
The reduced Gröbner basis w.r.t. the lex order of the ideal Ann(F ) is given by the following 17
polynomials (in bold the initial term of each polynomial):
f1 := x2

5 + 4x21 + 17
3 x1x2 −

83
12x1x3 −

23
4 x2x3,

f2 := x4x5 − 3
4 x2x3 −

5
4 x1x3 + x1x2,

f3 := x2
4 + 25

6 x2x3 + x22 + 71
18x1x3 −

28
9 x1x2 − 5x21,

f4 := x3x5 − 3
4 x2x3 + 3

4x1x3 − x1x2,
f5 := x3x4 − x2x3,
f6 := x2

3 − 85
24 x2x3 −

317
72 x1x3 + 71

18x1x2 + 2x21,
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f7 := x2x5 − 3
4 x2x3 −

5
4 x1x3 + x1x2,

f8 := x2x4 − x2x3 − x1x3 + x1x2,
f9 := x1x5 − 1

4x2x3 + 1
4x1x3 − x1x2,

f10 := x1x4 − x1x2, f11 := x2
2x3 + x31, f12 := x3

2 + 5
9x

3
1, f13 := x2x1x3 − 11

9 x
3
1,

f14 := x1x2
2 − 8

9x
3
1, f15 := x2

1x3 + x31, f16 := x2
1x2 + 2

3x
3
1, f17 := x4

1.
Then, we check that AF := K[x1, . . . , x5]/Ann(F ) is a (graded) Gorenstein K-algebra with
Hilbert function (1, 5, 5, 1). We can also observe that AF is local as we expected, because AF is
Artin and graded. By further computations, we obtain that:

• jG is the initial ideal of Ann(F ) w.r.t. lex

• jG is the maximum w.r.t. the order of Definition 2.6 among all the strongly stable ideals
with Hilbert function (1, 5, 5, 1).

Then, by Lemma 2.7, jG is the double-generic initial ideal of Gor(1, 5, 5, 1) and, hence, is the
generic initial ideal of a general point of Gor(1, 5, 5, 1) by [Bertone et al., 2017b, Proposition 4].

Moreover, we can observe that the spectrum of R/Ann(F ) is supported on a single point
which is Gorenstein with Hilbert function (1, 5, 5, 1) and hence R/Ann(F ) is a local Gorenstein
algebra with Hilbert function (1, 5, 5, 1).

Remark 5.2. The strongly stable ideal jG is an affine 3-segment with respect to the weight vector
ω = [8, 7, 5, 4, 3]. Hence, we can apply Theorem 1.9 to jG.

The following straightforward consequence of Theorem 5.1 suggests that the marked scheme
Mf(P(jG), 3) is the right place in which smoothable Gorenstein points can be.

Proposition 5.3. MfP(jG),3 ∩Gor(1, 5, 5, 1) is a non-empty open subset.

Proof. From the proof of Theorem 5.1 we deduce that the ideal Ann(F ) belongs to the family
of ideals having a [P(jG), 3]-marked basis, hence to the family of ideals defining the [P(jG), 3]-
scheme MfP(jG),3.

By the techniques described in [Bertone et al., 2017a], we obtain MfP(jG),3 as the affine scheme
defined by an ideal U generated by 576 polynomials in the polynomial ring K[C] in 204 = 12 ·17
variables. By a suitable choice of values for the parameters C, we find a family {GT }T of
[P(jG), 3]-marked bases consisting of the following polynomials whose coefficients depend on the
parameter T :
F1 := f1, F2 := f2, F3 := f3 − Tx4 + x2T , F4 := f4, F5 := f5, F6 := f6, F7 := f7, F8 := f8,
F9 := f9, F10 := f10, F11 := f11, F12 := f12 − x2x3T − x3x1T + Tx22 + x2x1T , F13 := f13,
F14 := f14, F15 := f15, F16 := f16, F17 := f17.
From now, for every T ∈ A1

K we denote by iT ⊂ K[x1, . . . , x7] the ideal generated by the
[P(jG), 3]-marked basis GT . For T = 0 we obtain the ideal i0 = Ann(F ) that we considered in
the proof of Theorem 5.1 and which defines a scheme with support in a single point. For every
T ∈ A1

K \{0} we have a different situation because every ideal iT defines a scheme whose support
contains at least the following 3 distinct affine points:

(0, 0, 0, T, 0), (0, 0, 0, 0, 0), (0,−T, 0, 0, 0).

Lemma 5.4. Over an algebraically closed field K of characteristic 0, there exists a flat family of
ideals which is contained in MfP(jG),3∩R

5
12 such that the special fiber corresponds to a Gorenstein

point defined by a graded K-algebra with Hilbert function (1, 5, 5, 1).
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Proof. We prove that the family of ideals {iτ}τ , which are generated by the [P(jG), 3]-marked
bases Gτ , is contained in the smoothable component R5

12.
By construction, the ideals jT belong to the marked scheme MfP(jG),3 which embeds as an

open subset in the punctual Hilbert scheme Hilb5
12. Hence, these ideals define a flat family over

A1. As we have already recalled in Section 2, the locus of points in a Hilbert scheme representing
all the Gorenstein schemes is an open subset. Hence, the intersection of this locus with the flat
family {iT }T , which is non-empty because j0 represents a Gorenstein point, is an open subset of
the family. So, we find at least a value T 6= 0 such that iT represents a Gorenstein point.

By computational tools, we find that for every T 6= 0 the ideal iT defines a scheme whose
supports contain at least 3 distinct points and hence components of multiplicity at most 10. So,
the ideal iT is smoothable by the fact that for d ≤ 10 the locus of Gorenstein points is a Hilbert
scheme of d points is irreducible (see [Casnati and Notari, 2011]). Thus, every ideal iT belongs
to the smoothable component R5

12 because the family is irreducible. In particular, the limit of
this family, that is the ideal j0, belongs to R5

12 too.

Remark 5.5. We now highlight the following fact, which is analogous to that described in Re-
mark 3.4. The ideal i0 is the ideal Ann(F ) of the proof of Theorem 5.1, hence it defines a
Gorenstein point in Gor(1, 5, 5, 1). Nevertheless, for every T 6= 0, the ideal iT defines a Goren-
stein point which does not belong to Gor(1, 5, 5, 1) because it is supported on more than one
point. Moreover, in the polynomial f14 the term x3x2 has a non-null coefficient and is higher
than x32 with respect to lex term order. This fact implies that the initial ideal of iT with respect
to lex order is not jG.

Lemma 5.6. Over an algebraically closed field K of characteristic 0, there exists a smooth
Gorenstein point defined by a graded K-algebra with Hilbert function (1, 5, 5, 1) belonging to the
smoothable component R5

12.

Proof. We prove that the ideal i0 defines a smooth Gorenstein point in the smoothable com-
ponent R5

12. We already know that i0 defines a Gorenstein point. Moreover, by Lemma 5.4
and by construction, the ideal i0 represents a point that belongs to R5

12 ∩ MfP(jG),3. Due to
Corollary 1.6, we can compute the tangent space from the polynomials of its [P(jG), 3]-marked
basis obtaining that the dimension of the Zariski tangent space to Hilb5

12 at the point j0 is 60,
i.e. the dimension of the smoothable component.

Theorem 5.7. Over an algebraically closed field K of characteristic 0, every Gorenstein point
defined by a graded K-algebra with Hilbert function (1, 5, 5, 1) is smoothable.

Proof. By Lemmas 5.4 and 5.6, we have a Gorenstein point of Gor(1, 5, 5, 1) that belongs to the
smoothable component R5

12 and that is smooth in the Hilbert scheme. These facts imply that
also all the other points of Gor(1, 5, 5, 1) belong to R5

12, i.e. are smoothable, because the locus
Gor(1, n, n, 1) is irreducible, as we have already recalled.

Corollary 5.8. Over an algebraically closed field K of characteristic 0, every local Gorenstein
K-algebra with Hilbert function (1, 5, 5, 1) is smoothable.

Proof. This is a consequence of Theorem 5.7 and [Elias and Rossi, 2012, Theorem 3.3].
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Appendix

The computations supporting our results often produce huge polynomials. In this Appendix we list the
polynomials that are involved in the proofs described in Section 4.

Concerning the proof of Theorem 4.3

Here are the 25 polynomials ui,j which highlight the presence of 25 eliminable parameters for the ideal
defining the family F2 that is contained in Mf(jG, 3) and is constructed in the cited proof:

u1,8 = c1,8−(c7,2
2c28,1

4+2 c7,2c7,3c28,1
3c31,1+2 c7,2c7,4c28,1

2c31,1
2+c7,3

2c28,1
2c31,1

2+2 c7,3c7,4c28,1c31,1
3+

c7,4
2c31,1

4+2 c7,1c7,2c28,1
2c32,1+2 c7,1c7,3c28,1c31,1c32,1+2 c7,1c7,4c31,1

2c32,1+2 c7,2c7,5c22,1c28,1
2+2 c7,2c7,6c28,1

3+

2 c7,2c7,7c28,1
2c31,1+2 c7,3c7,5c22,1c28,1c31,1+2 c7,3c7,6c28,1

2c31,1+2 c7,3c7,7c28,1c31,1
2+2 c7,4c7,5c22,1c31,1

2+

2 c7,4c7,6c28,1c31,1
2+2 c7,4c7,7c31,1

3+c7,1
2c32,1

2+2 c7,1c7,5c22,1c32,1+2 c7,1c7,6c28,1c32,1+2 c7,1c7,7c31,1c32,1+

2 c7,2c7,8c28,1
2 + 2 c7,3c7,8c28,1c31,1 + 2 c7,4c7,8c31,1

2 + c7,5
2c22,1

2 + 2 c7,5c7,6c22,1c28,1 + 2 c7,5c7,7c22,1c31,1 +

c7,6
2c28,1

2+2 c7,6c7,7c28,1c31,1+c7,7
2c31,1

2−c1,2c28,12−c1,3c28,1c31,1−c1,4c31,12+2 c7,1c7,8c32,1+2 c7,5c7,8c22,1+

2 c7,6c7,8c28,1 + 2 c7,7c7,8c31,1 − c1,1c32,1 − c1,5c22,1 − c1,6c28,1 − c1,7c31,1 + c7,8
2),

u2,8 = c2,8−(c7,5c13,5c22,1
2−c2,3c28,1c31,1+c7,2c13,6c28,1

3+c7,6c13,6c28,1
2+c13,2c28,1

4c7,2+c13,2c28,1
3c7,6+

c13,2c28,1
2c7,8+c7,4c13,7c31,1

3+c7,7c13,7c31,1
2+c13,4c31,1

4c7,4+c13,4c31,1
3c7,7+c13,4c31,1

2c7,8+c7,4c13,8c31,1
2+

c7,2c13,8c28,1
2−c2,4c31,12−c2,2c28,12+c32,1c7,1c13,3c28,1c31,1+c7,3c13,5c22,1c28,1c31,1+c7,5c13,3c22,1c28,1c31,1+

c7,1c13,1c32,1
2+c7,3c13,8c28,1c31,1+c7,3c13,7c28,1c31,1

2+c7,5c13,7c22,1c31,1+c7,6c13,7c28,1c31,1+c13,4c31,1
2c7,2c28,1

2+

c13,4c31,1
3c7,3c28,1+c13,4c31,1

2c7,5c22,1+c13,4c31,1
2c7,6c28,1+c7,5c13,6c22,1c28,1+c7,7c13,6c28,1c31,1+c7,2c13,3c28,1

3c31,1+

c7,3c13,3c28,1
2c31,1

2 + c7,4c13,3c28,1c31,1
3 + c7,6c13,3c28,1

2c31,1 + c7,7c13,3c28,1c31,1
2 + c7,8c13,3c28,1c31,1 +

c13,2c28,1
3c7,3c31,1 + c13,2c28,1

2c7,4c31,1
2 + c13,2c28,1

2c7,5c22,1 + c13,2c28,1
2c7,7c31,1 + c7,2c13,7c28,1

2c31,1 +

c7,4c13,5c22,1c31,1
2+c7,6c13,5c22,1c28,1+c7,7c13,5c22,1c31,1+c7,3c13,6c28,1

2c31,1+c7,4c13,6c28,1c31,1
2+c7,2c13,5c22,1c28,1

2−
c2,1c32,1− c2,5c22,1− c2,6c28,1− c2,7c31,1 + c32,1c7,3c13,1c28,1c31,1 + c32,1c7,4c13,1c31,1

2 + c13,4c31,1
2c7,1c32,1 +

c13,2c28,1
2c7,1c32,1+c32,1c7,2c13,1c28,1

2+c7,8c13,7c31,1+c7,1c13,8c32,1+c7,8c13,1c32,1+c7,8c13,5c22,1+c7,8c13,6c28,1+

c7,5c13,1c22,1c32,1+c7,6c13,1c28,1c32,1+c7,7c13,1c31,1c32,1+c7,1c13,5c22,1c32,1+c7,1c13,6c28,1c32,1+c7,1c13,7c31,1c32,1+

c7,8c13,8 + c7,5c13,8c22,1 + c7,6c13,8c28,1 + c7,7c13,8c31,1),

u3,8 = c3,8−(c7,5c18,5c22,1
2−c3,3c28,1c31,1+c7,2c18,6c28,1

3+c7,6c18,6c28,1
2+c18,2c28,1

4c7,2+c18,2c28,1
3c7,6+

c18,2c28,1
2c7,8+c7,4c18,7c31,1

3+c7,7c18,7c31,1
2+c18,4c31,1

4c7,4+c18,4c31,1
3c7,7+c18,4c31,1

2c7,8+c7,4c18,8c31,1
2−

c3,4c31,1
2 − c3,2c28,1

2 + c7,3c18,5c22,1c28,1c31,1 + c7,5c18,3c22,1c28,1c31,1 + c7,2c18,8c28,1
2 + c7,1c18,8c32,1 +

c7,8c18,1c32,1 +c7,8c18,5c22,1 +c7,8c18,6c28,1 +c7,8c18,7c31,1 +c7,1c18,1c32,1
2−c3,1c32,1−c3,5c22,1−c3,6c28,1−

c3,7c31,1+c7,3c18,8c28,1c31,1+c18,2c28,1
2c7,4c31,1

2+c18,2c28,1
2c7,5c22,1+c18,2c28,1

2c7,7c31,1+c7,2c18,7c28,1
2c31,1+

c7,3c18,7c28,1c31,1
2+c7,5c18,7c22,1c31,1+c7,6c18,7c28,1c31,1+c18,4c31,1

2c7,2c28,1
2+c18,4c31,1

3c7,3c28,1+c18,4c31,1
2c7,5c22,1+

c18,4c31,1
2c7,6c28,1+c7,6c18,5c22,1c28,1+c7,7c18,5c22,1c31,1+c7,3c18,6c28,1

2c31,1+c7,4c18,6c28,1c31,1
2+c7,5c18,6c22,1c28,1+

c7,7c18,6c28,1c31,1 + c7,2c18,3c28,1
3c31,1 + c7,3c18,3c28,1

2c31,1
2 + c7,4c18,3c28,1c31,1

3 + c7,6c18,3c28,1
2c31,1 +

c7,7c18,3c28,1c31,1
2+c7,8c18,3c28,1c31,1+c18,2c28,1

3c7,3c31,1+c7,4c18,5c22,1c31,1
2+c7,2c18,5c22,1c28,1

2+c7,1c18,5c22,1c32,1+

c7,1c18,6c28,1c32,1+c7,1c18,7c31,1c32,1+c7,8c18,8+c7,5c18,1c22,1c32,1+c7,6c18,1c28,1c32,1+c7,7c18,1c31,1c32,1+

c32,1c7,1c18,3c28,1c31,1+c32,1c7,3c18,1c28,1c31,1+c32,1c7,4c18,1c31,1
2+c18,2c28,1

2c7,1c32,1+c18,4c31,1
2c7,1c32,1+

c32,1c7,2c18,1c28,1
2 + c7,5c18,8c22,1 + c7,6c18,8c28,1 + c7,7c18,8c31,1),

u4,8 = c4,8 − (c7,2c22,1c28,1
2 + c7,3c22,1c28,1c31,1 + c7,4c22,1c31,1

2 − c4,2c28,12 − c4,3c28,1c31,1 − c4,4c31,12 +

c7,1c22,1c32,1+c7,5c22,1
2+c7,6c22,1c28,1+c7,7c22,1c31,1−c4,1c32,1−c4,5c22,1−c4,6c28,1−c4,7c31,1+c7,8c22,1),

u5,8 = c5,8−(c7,2c28,1
3+c7,3c28,1

2c31,1+c7,4c28,1c31,1
2−c5,2c28,12−c5,3c28,1c31,1−c5,4c31,12+c7,1c28,1c32,1+

c7,5c22,1c28,1 + c7,6c28,1
2 + c7,7c28,1c31,1 − c5,1c32,1 − c5,5c22,1 − c5,6c28,1 − c5,7c31,1 + c7,8c28,1),

u6,8 = c6,8−(c7,2c28,1
2c31,1+c7,3c28,1c31,1

2+c7,4c31,1
3−c6,2c28,12−c6,3c28,1c31,1−c6,4c31,12+c7,1c31,1c32,1+

c7,5c22,1c31,1 + c7,6c28,1c31,1 + c7,7c31,1
2 − c6,1c32,1 − c6,5c22,1 − c6,6c28,1 − c6,7c31,1 + c7,8c31,1),

u8,8 = c8,8−(c13,2
2c28,1

4+2 c13,2c13,3c28,1
3c31,1+2 c13,2c13,4c28,1

2c31,1
2+c13,3

2c28,1
2c31,1

2+2 c13,3c13,4c28,1c31,1
3+

c13,4
2c31,1

4+2 c13,1c13,2c28,1
2c32,1+2 c13,1c13,3c28,1c31,1c32,1+2 c13,1c13,4c31,1

2c32,1+2 c13,2c13,5c22,1c28,1
2+

2 c13,2c13,6c28,1
3+2 c13,2c13,7c28,1

2c31,1+2 c13,3c13,5c22,1c28,1c31,1+2 c13,3c13,6c28,1
2c31,1+2 c13,3c13,7c28,1c31,1

2+
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2 c13,4c13,5c22,1c31,1
2+2 c13,4c13,6c28,1c31,1

2+2 c13,4c13,7c31,1
3+c13,1

2c32,1
2+2 c13,1c13,5c22,1c32,1+2 c13,1c13,6c28,1c32,1+

2 c13,1c13,7c31,1c32,1+2 c13,2c13,8c28,1
2+2 c13,3c13,8c28,1c31,1+2 c13,4c13,8c31,1

2+c13,5
2c22,1

2+2 c13,5c13,6c22,1c28,1+

2 c13,5c13,7c22,1c31,1+c13,6
2c28,1

2+2 c13,6c13,7c28,1c31,1+c13,7
2c31,1

2−c8,2c28,12−c8,3c28,1c31,1−c8,4c31,12+

2 c13,1c13,8c32,1 + 2 c13,5c13,8c22,1 + 2 c13,6c13,8c28,1 + 2 c13,7c13,8c31,1 − c8,1c32,1 − c8,5c22,1 − c8,6c28,1 −
c8,7c31,1 + c13,8

2),

u9,8 = c9,8−(c13,5c18,5c22,1
2−c9,3c28,1c31,1+c13,6c18,2c28,1

3+c13,6c18,6c28,1
2+c13,2c28,1

4c18,2+c13,2c28,1
3c18,6+

c13,2c28,1
2c18,8 + c13,8c18,2c28,1

2 + c13,8c18,4c31,1
2 + c13,7c18,4c31,1

3 + c13,7c18,7c31,1
2 + c13,4c31,1

4c18,4 +

c13,4c31,1
3c18,7 + c13,4c31,1

2c18,8− c9,4c31,12− c9,2c28,12 + c13,5c18,3c22,1c28,1c31,1 + c13,3c18,5c22,1c28,1c31,1 +

c13,5c18,2c22,1c28,1
2+c13,1c18,8c32,1+c13,8c18,1c32,1+c13,8c18,5c22,1+c13,8c18,6c28,1+c13,8c18,7c31,1+c13,8c18,3c28,1c31,1+

c13,7c18,2c28,1
2c31,1 + c13,7c18,3c28,1c31,1

2 + c13,7c18,5c22,1c31,1 + c13,7c18,6c28,1c31,1 + c13,4c31,1
2c18,2c28,1

2 +

c13,4c31,1
3c18,3c28,1 +c13,4c31,1

2c18,5c22,1 +c13,4c31,1
2c18,6c28,1 +c13,6c18,3c28,1

2c31,1 +c13,6c18,4c28,1c31,1
2 +

c13,6c18,5c22,1c28,1 + c13,6c18,7c28,1c31,1 + c13,3c18,2c28,1
3c31,1 + c13,3c18,3c28,1

2c31,1
2 + c13,3c18,4c28,1c31,1

3 +

c13,3c18,6c28,1
2c31,1 +c13,3c18,7c28,1c31,1

2 +c13,3c18,8c28,1c31,1 +c13,2c28,1
3c18,3c31,1 +c13,2c28,1

2c18,4c31,1
2 +

c13,2c28,1
2c18,5c22,1 + c13,2c28,1

2c18,7c31,1 + c13,5c18,6c22,1c28,1 + c13,5c18,7c22,1c31,1 + c13,5c18,4c22,1c31,1
2 +

c13,5c18,8c22,1+c13,6c18,8c28,1+c13,7c18,8c31,1+c32,1c13,3c18,1c28,1c31,1+c32,1c13,1c18,3c28,1c31,1+c13,4c31,1
2c18,1c32,1+

c13,2c28,1
2c18,1c32,1 + c32,1c13,1c18,2c28,1

2 + c32,1c13,1c18,4c31,1
2 + c13,5c18,1c22,1c32,1 + c13,6c18,1c28,1c32,1 +

c13,7c18,1c31,1c32,1+c13,1c18,1c32,1
2−c9,1c32,1−c9,5c22,1−c9,6c28,1−c9,7c31,1+c13,8c18,8+c13,1c18,5c22,1c32,1+

c13,1c18,6c28,1c32,1 + c13,1c18,7c31,1c32,1),

u10,8 = c10,8−(c13,2c22,1c28,1
2+c13,3c22,1c28,1c31,1+c13,4c22,1c31,1

2−c10,2c28,12−c10,3c28,1c31,1−c10,4c31,12+

c13,1c22,1c32,1 + c13,5c22,1
2 + c13,6c22,1c28,1 + c13,7c22,1c31,1− c10,1c32,1− c10,5c22,1− c10,6c28,1− c10,7c31,1 +

c13,8c22,1),

u11,8 = c11,8 − (c13,2c28,1
3 + c13,3c28,1

2c31,1 + c13,4c28,1c31,1
2 − c11,2c28,12 − c11,3c28,1c31,1 − c11,4c31,12 +

c13,1c28,1c32,1 + c13,5c22,1c28,1 + c13,6c28,1
2 + c13,7c28,1c31,1− c11,1c32,1− c11,5c22,1− c11,6c28,1− c11,7c31,1 +

c13,8c28,1),

u12,8 = c12,8 − (c13,2c28,1
2c31,1 + c13,3c28,1c31,1

2 + c13,4c31,1
3 − c12,2c28,12 − c12,3c28,1c31,1 − c12,4c31,12 +

c13,1c31,1c32,1 + c13,5c22,1c31,1 + c13,6c28,1c31,1 + c13,7c31,1
2− c12,1c32,1− c12,5c22,1− c12,6c28,1− c12,7c31,1 +

c13,8c31,1),

u14,8 = c14,8−(c18,2
2c28,1

4+2 c18,2c18,3c28,1
3c31,1+2 c18,2c18,4c28,1

2c31,1
2+c18,3

2c28,1
2c31,1

2+2 c18,3c18,4c28,1c31,1
3+

c18,4
2c31,1

4+2 c18,1c18,2c28,1
2c32,1+2 c18,1c18,3c28,1c31,1c32,1+2 c18,1c18,4c31,1

2c32,1+2 c18,2c18,5c22,1c28,1
2+

2 c18,2c18,6c28,1
3+2 c18,2c18,7c28,1

2c31,1+2 c18,3c18,5c22,1c28,1c31,1+2 c18,3c18,6c28,1
2c31,1+2 c18,3c18,7c28,1c31,1

2+

2 c18,4c18,5c22,1c31,1
2+2 c18,4c18,6c28,1c31,1

2+2 c18,4c18,7c31,1
3+c18,1

2c32,1
2+2 c18,1c18,5c22,1c32,1+2 c18,1c18,6c28,1c32,1+

2 c18,1c18,7c31,1c32,1+2 c18,2c18,8c28,1
2+2 c18,3c18,8c28,1c31,1+2 c18,4c18,8c31,1

2+c18,5
2c22,1

2+2 c18,5c18,6c22,1c28,1+

2 c18,5c18,7c22,1c31,1+c18,6
2c28,1

2+2 c18,6c18,7c28,1c31,1+c18,7
2c31,1

2−c14,2c28,12−c14,3c28,1c31,1−c14,4c31,12+

2 c18,1c18,8c32,1 + 2 c18,5c18,8c22,1 + 2 c18,6c18,8c28,1 + 2 c18,7c18,8c31,1 − c14,1c32,1 − c14,5c22,1 − c14,6c28,1 −
c14,7c31,1 + c18,8

2),

u15,8 = c15,8−(c18,2c22,1c28,1
2+c18,3c22,1c28,1c31,1+c18,4c22,1c31,1

2−c15,2c28,12−c15,3c28,1c31,1−c15,4c31,12+

c18,1c22,1c32,1 + c18,5c22,1
2 + c18,6c22,1c28,1 + c18,7c22,1c31,1− c15,1c32,1− c15,5c22,1− c15,6c28,1− c15,7c31,1 +

c18,8c22,1),

u16,8 = c16,8 − (c18,2c28,1
3 + c18,3c28,1

2c31,1 + c18,4c28,1c31,1
2 − c16,2c28,12 − c16,3c28,1c31,1 − c16,4c31,12 +

c18,1c28,1c32,1 + c18,5c22,1c28,1 + c18,6c28,1
2 + c18,7c28,1c31,1− c16,1c32,1− c16,5c22,1− c16,6c28,1− c16,7c31,1 +

c18,8c28,1),

u17,8 = c17,8 − (c18,2c28,1
2c31,1 + c18,3c28,1c31,1

2 + c18,4c31,1
3 − c17,2c28,12 − c17,3c28,1c31,1 − c17,4c31,12 +

c18,1c31,1c32,1 + c18,5c22,1c31,1 + c18,6c28,1c31,1 + c18,7c31,1
2− c17,1c32,1− c17,5c22,1− c17,6c28,1− c17,7c31,1 +

c18,8c31,1),

u19,8 = c19,8 − (−c19,2c28,12 − c19,3c28,1c31,1 − c19,4c31,12 − c19,1c32,1 − c19,5c22,1 − c19,6c28,1 − c19,7c31,1 +

c22,1
2),

u20,8 = c20,8 − (−c20,2c28,12 − c20,3c28,1c31,1 − c20,4c31,12 − c20,1c32,1 − c20,5c22,1 − c20,6c28,1 − c20,7c31,1 +

c22,1c28,1),
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u21,8 = c21,8 − (−c21,2c28,12 − c21,3c28,1c31,1 − c21,4c31,12 − c21,1c32,1 − c21,5c22,1 − c21,6c28,1 − c21,7c31,1 +

c22,1c31,1),

u23,1 = c23,1 − (c28,1
3),

u24,1 = c24,1 − (c28,1
2c31,1),

u25,1 = c25,1 − (c28,1
2),

u26,1 = c26,1 − (c28,1c31,1
2),

u27,1 = c27,1 − (c28,1c31,1),

u29,1 = c29,1 − (c31,1
3),

u30,1 = c30,1 − (c31,1
2).

Here are the values we choose for the 154 parameters in C0 and the consequent values for
the 25 variables that are eliminable variables due to the shape of the polynomials ui,j , in order
to obtain the generators of a particular ideal a in Mf(jG, 3):

values for the parameters in C0

c1,1 = −3, c1,2 = 2, c1,3 = −3, c1,4 = 0, c1,5 = 1, c1,6 = −2, c1,7 = −3, c2,1 = −1, c2,2 = −1, c2,3 = −1,

c2,4 = −2, c2,5 = −1, c2,6 = −3, c2,7 = −3, c3,1 = 0, c3,2 = −2, c3,3 = −1, c3,4 = −2, c3,5 = −1,

c3,6 = −2, c3,7 = 1, c4,1 = 1, c4,2 = −1, c4,3 = −2, c4,4 = 1, c4,5 = −1, c4,6 = −1, c4,7 = −3, c5,1 = −2,

c5,2 = 2, c5,3 = 2, c5,4 = −2, c5,5 = 0, c5,6 = 1, c5,7 = −1, c6,1 = −1, c6,2 = −3, c6,3 = −2, c6,4 = 2,

c6,5 = −2, c6,6 = −3, c6,7 = −2, c7,1 = −2, c7,2 = −1, c7,3 = 0, c7,4 = 0, c7,5 = −1, c7,6 = 1, c7,7 = −2,

c7,8 = 1, c8,1 = 1, c8,2 = 2, c8,3 = 0, c8,4 = 0, c8,5 = −3, c8,6 = −1, c8,7 = −2, c9,1 = 1, c9,2 = −3,

c9,3 = 0, c9,4 = 0, c9,5 = 0, c9,6 = −2, c9,7 = 0, c10,1 = 0, c10,2 = −2, c10,3 = −2, c10,4 = −1, c10,5 = −3,

c10,6 = −3, c10,7 = 2, c11,1 = 2, c11,2 = −3, c11,3 = 0, c11,4 = 0, c11,5 = −1, c11,6 = −2, c11,7 = 1,

c12,1 = −1, c12,2 = 2, c12,3 = −3, c12,4 = −2, c12,5 = 2, c12,6 = 1, c12,7 = −2, c13,1 = 1, c13,2 = 0,

c13,3 = 0, c13,4 = 2, c13,5 = 0, c13,6 = 0, c13,7 = −1, c13,8 = 2, c14,1 = 2, c14,2 = −2, c14,3 = −3,

c14,4 = 1, c14,5 = 0, c14,6 = −1, c14,7 = −2, c15,1 = 1, c15,2 = −1, c15,3 = 0, c15,4 = −1, c15,5 = −3,

c15,6 = −2, c15,7 = −2, c16,1 = −2, c16,2 = 2, c16,3 = −1, c16,4 = −2, c16,5 = −3, c16,6 = −3, c16,7 = −3,

c17,1 = −1, c17,2 = −2, c17,3 = −2, c17,4 = −3, c17,5 = −3, c17,6 = −2, c17,7 = −1, c18,1 = −3, c18,2 = −3,

c18,3 = 2, c18,4 = −3, c18,5 = −2, c18,6 = 1, c18,7 = −2, c18,8 = 1, c19,1 = 0, c19,2 = −1, c19,3 = −3,

c19,4 = 0, c19,5 = 0, c19,6 = −3, c19,7 = 2, c20,1 = 1, c20,2 = 0, c20,3 = −3, c20,4 = −2, c20,5 = 2, c20,6 = 0,

c20,7 = 2, c21,1 = 1, c21,2 = 0, c21,3 = 2, c21,4 = 0, c21,5 = 0, c21,6 = 0, c21,7 = −1, c22,1 = −3, c28,1 = 1,

c31,1 = −3, c32,1 = −1;

values for the 25 eliminable variables
c1,8 = 126, c2,8 = 270, c3,8 = −209, c4,8 = −60, c5,8 = 28, c6,8 = −67, c8,8 = 469, c9,8 = −412,

c10,8 = −61, c11,8 = 29, c12,8 = −61, c14,8 = 342, c15,8 = 55, c16,8 = −23, c17,8 = 69, c19,8 = 10,

c20,8 = 19, c21,8 = 13, c23,1 = 1, c24,1 = −3, c25,1 = 1, c26,1 = 9, c27,1 = −3, c29,1 = −27, c30,1 = 9;

generators of a
x27 −

(
−3x31 + 126x21 − 3x1x2 − 2x1x3 + x1x4 − 3x2x3 + 2x23

)
,

x6x7 −
(
−x31 + 270x21 − 3x1x2 − 3x1x3 − x1x4 − 2x22 − x2x3 − x23

)
,

x5x7 −
(
−209x21 + x1x2 − 2x1x3 − x1x4 − 2x22 − x2x3 − 2x23

)
,

x4x7 −
(
x31 − 60x21 − 3x1x2 − x1x3 − x1x4 + x22 − 2x2x3 − x23

)
,

x3x7 −
(
−2x31 + 28x21 − x1x2 + x1x3 − 2x22 + 2x2x3 + 2x23

)
,

x2x7 −
(
−x31 − 67x21 − 2x1x2 − 3x1x3 − 2x1x4 + 2x22 − 2x2x3 − 3x23

)
,

x1x7 −
(
−2x31 + x21 − 2x1x2 + x1x3 − x1x4 − x23

)
,

x26 −
(
x31 + 469x21 − 2x1x2 − x1x3 − 3x1x4 + 2x23

)
,

x5x6 −
(
x31 − 412x21 − 2x1x3 − 3x23

)
,

x4x6 −
(
−61x21 + 2x1x2 − 3x1x3 − 3x1x4 − x22 − 2x2x3 − 2x23

)
,

x3x6 −
(
2x31 + 29x21 + x1x2 − 2x1x3 − x1x4 − 3x23

)
,
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x2x6 −
(
−x31 − 61x21 − 2x1x2 + x1x3 + 2x1x4 − 2x22 − 3x2x3 + 2x23

)
,

x1x6 −
(
x31 + 2x21 − x1x2 + 2x22

)
,

x25 −
(
2x31 + 342x21 − 2x1x2 − x1x3 + x22 − 3x2x3 − 2x23

)
,

x4x5 −
(
x31 + 55x21 − 2x1x2 − 2x1x3 − 3x1x4 − x22 − x23

)
,

x3x5 −
(
−2x31 − 23x21 − 3x1x2 − 3x1x3 − 3x1x4 − 2x22 − x2x3 + 2x23

)
,

x2x5 −
(
−x31 + 69x21 − x1x2 − 2x1x3 − 3x1x4 − 3x22 − 2x2x3 − 2x23

)
,

x1x5 −
(
−3x31 + x21 − 2x1x2 + x1x3 − 2x1x4 − 3x22 + 2x2x3 − 3x23

)
,

x24 −
(
10x21 + 2x1x2 − 3x1x3 − 3x2x3 − x23

)
,

x3x4 −
(
x31 + 19x21 + 2x1x2 + 2x1x4 − 2x22 − 3x2x3

)
,

x2x4 −
(
x31 + 13x21 − x1x2 + 2x2x3

)
,

x21x4 −
(
−3x31

)
, x33 −

(
x31
)
, x2x

2
3 −

(
−3x31

)
, x1x

2
3 −

(
x31
)
, x22x3 −

(
9x31

)
, x1x2x3 −

(
−3x31

)
, x21x3 −

(
x31
)
,

tx32 −
(
−27x31

)
, x1x

2
2 −

(
9x31

)
, x21x2 −

(
−3x31

)
, x41 −

(
−x31

)
.

Concerning the proof of Theorem 4.5

Here is the list of the non-null parameters forming the set C̃:
c1,2, c1,3, c1,4, c1,5, c1,6, c2,2, c2,3, c2,4, c2,5, c2,6, c3,2, c3,3, c3,4, c3,5, c3,6, c4,2, c4,3, c4,4, c4,5, c4,6, c5,2,

c5,3, c5,4, c5,5, c5,6, c6,2, c6,3, c6,4, c6,5, c6,6, c7,2, c7,3, c7,4, c7,5, c7,6, c7,7, c8,2, c8,3, c8,4, c8,5, c8,6, c9,2,

c9,3, c9,4, c9,5, c9,6, c10,2, c10,3, c10,4, c10,5, c10,6, c11,2, c11,3, c11,4, c11,5, c11,6, c12,2, c12,3, c12,4, c12,5,

c12,6, c13,2, c13,3, c13,4, c13,5, c13,6, c13,7, c14,2, c14,3, c14,4, c14,5, c14,6, c15,2, c15,3, c15,4, c15,5, c15,6,

c16,2, c16,3, c16,4, c16,5, c16,6, c17,2, c17,3, c17,4, c17,5, c17,6, c18,2, c18,3, c18,4, c18,5, c18,6, c18,7, c19,2,

c19,3, c19,4, c19,5, c19,6, c20,2, c20,3, c20,4, c20,5, c20,6, c21,2, c21,3, c21,4, c21,5, c21,6, c31,1.

Here are the polynomials forming the marked bases of the ideals in the family F3:
x27 − (c1,2x

2
3 + c1,3x2x3 + c1,4x

2
2 + c1,5x1x4 + c1,6x1x3),

x6x7 − (c2,2x
2
3 + c2,3x2x3 + c2,4x

2
2 + c2,5x1x4 + c2,6x1x3),

x5x7 − (c3,2x
2
3 + c3,3x2x3 + c3,4x

2
2 + c3,5x1x4 + c3,6x1x3),

x4x7 − (c4,2x
2
3 + c4,3x2x3 + c4,4x

2
2 + c4,5x1x4 + c4,6x1x3),

x3x7 − (c5,2x
2
3 + c5,3x2x3 + c5,4x

2
2 + c5,5x1x4 + c5,6x1x3),

x2x7 − (c6,2x
2
3 + c6,3x2x3 + c6,4x

2
2 + c6,5x1x4 + c6,6x1x3),

x1x7 − (c7,2x
2
3 + c7,3x2x3 + c7,4x

2
2 + c7,5x1x4 + c7,6x1x3 + c7,7x1x2),

x26 − (c8,2x
2
3 + c8,3x2x3 + c8,4x

2
2 + c8,5x1x4 + c8,6x1x3),

x5x6 − (c9,2x
2
3 + c9,3x2x3 + c9,4x

2
2 + c9,5x1x4 + c9,6x1x3),

x4x6 − (c10,2x
2
3 + c10,3x2x3 + c10,4x

2
2 + c10,5x1x4 + c10,6x1x3),

x3x6 − (c11,2x
2
3 + c11,3x2x3 + c11,4x

2
2 + c11,5x1x4 + c11,6x1x3),

x2x6 − (c12,2x
2
3 + c12,3x2x3 + c12,4x

2
2 + c12,5x1x4 + c12,6x1x3),

x1x6 − (c13,2x
2
3 + c13,3x2x3 + c13,4x

2
2 + c13,5x1x4 + c13,6x1x3 + c13,7x1x2),

x25 − (c14,2x
2
3 + c14,3x2x3 + c14,4x

2
2 + c14,5x1x4 + c14,6x1x3),

x4x5 − (c15,2x
2
3 + c15,3x2x3 + c15,4x

2
2 + c15,5x1x4 + c15,6x1x3),

x3x5 − (c16,2x
2
3 + c16,3x2x3 + c16,4x

2
2 + c16,5x1x4 + c16,6x1x3),

x2x5 − (c17,2x
2
3 + c17,3x2x3 + c17,4x

2
2 + c17,5x1x4 + c17,6x1x3),

x1x5 − (c18,2x
2
3 + c18,3x2x3 + c18,4x

2
2 + c18,5x1x4 + c18,6x1x3 + c18,7x1x2),

x24 − (c19,2x
2
3 + c19,3x2x3 + c19,4x

2
2 + c19,5x1x4 + c19,6x1x3),

x3x4 − (c20,2x
2
3 + c20,3x2x3 + c20,4x

2
2 + c20,5x1x4 + c20,6x1x3),

x2x4 − (c21,2x
2
3 + c21,3x2x3 + c21,4x

2
2 + c21,5x1x4 + c21,6x1x3),

x21x4, x
3
3, x2x

2
3, x1x

2
3, x

2
2x3, x1x2x3, x

2
1x3, x

3
2, x1x

2
2, x

2
1x2 − (c31,1x

3
1), x41.

According to the characteristic of the field K, here are two marked bases generating two
ideals corresponding to points of the family F̃3 at which we compute the Zariski tangent space
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to Hilb7
16: for every characteristic different from 2 and 3, the Zariski tangent space to at least

one of these points has dimension 153:
x27 −

(
−x4x1 + 2x23 + 4x3x2 + 2x3x1 + 4x22

)
,

x7x6 −
(
−x4x1 + 3x23 − x3x2 + x3x1

)
,

x7x5 −
(
−2x4x1 + 3x23 + 2x3x2 + 2x3x1

)
,

x7x4 −
(
−x4x1 − x23 + x3x1 − x22

)
,

x7x3 −
(
−x4x1 + 2x3x1 − 2x22

)
,

x7x2 −
(
−x4x1 + x23 + 2x3x2 + 3x22

)
,

x7x1 −
(
x4x1 + 4x23 − x3x2 − 2x3x1 + 3x22 + 2x2x1

)
,

x26 −
(
−2x4x1 − 2x3x2 + 3x3x1 + 3x22

)
,

x6x5 −
(
4x23 + x3x2 + 3x3x1 + 4x22

)
,

x6x4 −
(
2x23 + 4x3x2 + 2x3x1 + 4x22

)
,

x6x3 −
(
−x4x1 + x23 + 4x22

)
, x6x2 −

(
−2x4x1 − 2x23 − 2x3x2 + 2x3x1

)
,

x6x1 −
(
−x23 − x3x2 − x3x1 − x22 + x2x1

)
,

x25 −
(
2x4x1 + 4x23 − x3x2 − 2x3x1 − 2x22

)
,

x5x4 −
(
2x4x1 + 4x23 + x3x2 + x22

)
,

x5x3 −
(
−x4x1 − x23 + 4x3x2 + x3x1 − 2x22

)
,

x5x2 −
(
−2x4x1 + 2x23 + 4x3x1 + x22

)
,

x5x1 −
(
−x4x1 − 2x23 − 2x3x2 − x22 + x2x1

)
,

x24 −
(
3x4x1 + 4x23 + 2x3x2 + x3x1 − 2x22

)
,

x4x3 −
(
−2x4x1 − 2x23 + 4x3x2 + 2x3x1 − x22

)
,

x4x2 −
(
−2x23 − 2x3x2 + 2x3x1 + x22

)
,

x4x
2
1, x33, x23x2, x23x1, x3x

2
2, x3x2x1, x3x

2
1, x32, x22x1, x2x

2
1 −

(
4x31

)
, x41.

x27 −
(
3x4x1 − x23 + x3x2 + x3x1 + x22

)
,

x7x6 −
(
−2x4x1 − x23 + 2x3x2 + 3x3x1

)
,

x7x5 −
(
x23 − 2x3x2 + 4x3x1 + 2x22

)
,

x7x4 −
(
x4x1 + 2x23 − x3x2 + 4x3x1 + 4x22

)
,

x7x3 −
(
x4x1 + 3x23

)
,

x7x2 −
(
3x23 + x3x2 + x3x1 − 2x22

)
,

x7x1 −
(
2x4x1 + x3x2 + 4x3x1 + 4x22 + 3x2x1

)
,

x26 −
(
−2x4x1 − 2x23 + x3x2 + 2x3x1 − 2x22

)
,

x6x5 −
(
−2x23 − x3x1 + 4x22

)
,

x6x4 −
(
2x23 + 4x3x2 − 2x3x1 + 2x22

)
,

x6x3 −
(
−2x4x1 + 4x23 + x3x2 + 2x3x1 + 3x22

)
,

x6x2 −
(
x4x1 − x23 − 2x3x2 + x3x1 + 4x22

)
,

x6x1 −
(
−2x4x1 + x23 − 2x3x2 − 2x3x1 + x22 + 2x2x1

)
,

x25 −
(
−2x4x1 + 3x23 + x3x1 + 2x22

)
,

x5x4 −
(
x4x1 − 2x23 − 2x3x2 − x3x1 + 3x22

)
,

x5x3 −
(
4x4x1 + 4x23 − x3x1 − x22

)
,

x5x2 −
(
−x4x1 + 4x23 − x3x2 − 2x3x1

)
,

x5x1 −
(
x4x1 + 4x23 − x3x2 − 2x3x1 − 2x22

)
,

x24 −
(
−x4x1 − x23 + 4x3x2 + x3x1 + 3x22

)
,

x4x3 −
(
4x4x1 − x23 + 4x3x2 − 2x3x1 − 2x22

)
,

x4x2 −
(
3x23 − 2x3x2 + x3x1 + 3x22

)
,

x4x
2
1, x

3
3, x

2
3x2, x

2
3x1, x3x

2
2, x3x2x1, x3x

2
1, x

3
2, x

2
2x1, x2x

2
1 −

(
4x31

)
, x41
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