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Abstract

Over an infinite field K with char(K) # 2,3, we investigate smoothable Gorenstein K-
points in a punctual Hilbert scheme from a new point of view, which is based on properties
of double-generic initial ideals and of marked schemes. We obtain the following results: (i)
points defined by graded Gorenstein K-algebras with Hilbert function (1,7,7,1) are smooth-
able, in the further hypothesis that K is algebraically closed; (ii) the Hilbert scheme Hilbz6
has at least three irreducible components. The properties of marked schemes give us a simple
method to compute the Zariski tangent space to a Hilbert scheme at a given K-point, which
is very useful in this context. Over an algebraically closed field of characteristic 0, we also
test our tools to find the already known result that points defined by graded Gorenstein
K-algebras with Hilbert function (1,5,5,1) are smoothable. In characteristic zero, all the
results about smoothable points also hold for local Artin Gorenstein K-algebras.

Introduction

Let K be an infinite field of characteristic other than 2 and 3. For any positive integer n and
an admissible Hilbert polynomial p(¢), we denote by Hilb;‘(t) the Hilbert scheme parameterizing
the projective subschemes of P} with Hilbert polynomial p(t). We deal with punctual Hilbert
schemes, hence with constant Hilbert polynomials, and when we take a point we mean a K-
valued point (K-point, for short), i.e. a closed point with residue field K.

Let p(t) = d be the Hilbert polynomial of d points. The smoothable component R} of Hilbg(t)
is the closure of the open set of points corresponding to ideals of d distinct points, i.e. the rational
component of Hilbz(t) containing the point corresponding to the lex-segment ideal.

A zero-dimensional subscheme X is smoothable if it belongs to the smoothable component
R} or, equivalently, the K-algebra A defining X = Proj(A) is isomorphic to the special fiber
of a flat one-parameter family of K-algebras with smooth general point (e.g. [Cartwright et al.,
2009, Lemma 4.1], see also [larrobino and Kanev, 1999, Definitions 5.16 and 6.20]).

As noted in [Cartwright et al., 2009, Remark 1.6] for Hilbert schemes of points, every point
in Hilbz(t) has an open neighborhood that can be studied by suitable “affine” techniques. In
the same context, a similar approach is also used in [Miller and Sturmfels, 2005, Chapter 18].
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So, up to a suitable change of coordinates, we can identify every point of a punctual Hilbert
scheme Hilb}; with an ideal in K{z1,...,z,|, non-necessarily homogeneous, with affine Hilbert
polynomial p(t) = d.

Due to the structure theorem of Artin rings and to the fact that direct sums commute with
limits of flat families, a zero-dimensional subscheme X is smoothable if and only if the same is
true for all its irreducible components (e.g. | , , page 1245], [

, , Section 4]). This observation motivates interest for the so-called elementary compo-
nents of a punctual Hilbert scheme, i.e. components whose points parameterize zero-dimensional
subschemes with support of cardinality one (see | ) | for a very recent contribution
in this context). Hence, the problem of detecting smoothable points is connected to the study
of ideals I such that R/I is a local K-algebra.

This paper is devoted to investigate when Gorenstein points in a punctual Hilbert scheme
are smoothable. In particular, we are interested in studying Gorenstein points defined by graded
(Artin) K-algebras with Hilbert function (1,7,7,1), that is the only case not treated in the range
considered in [ , , Lemma 6.21] for the detection of nonsmoothable
points in a punctual Hilbert scheme in characteristic 0. Observe that a graded Artin K-algebra
is necessarily local, in particular defines a scheme supported on a single point. The vice versa
holds on an algebraically closed field of characteristic zero, that is every local Artin Gorenstein
K-algebra is graded, due to [ , , Theorem 3.3].

The study of Gorenstein smoothable points is strictly related to the study of the irreducibility
of the Gorenstein locus in a Hilbert scheme. In this context, it is well-known that a punctual

Hilbert scheme Hilb}; is irreducible if n = 2 (see | , ]) and if d < 7 for n > 3 (see
[ , ]). Moreover, the Gorenstein locus of Hilb} is irreducible if d < 13 for
every n (see [ , , , : , ] and the references

therein). Other relevant and also more general results about irreducibility in a Hilbert scheme
are due to Ellingsrud and Iarrobino.
We prove the following results:

(i) The graded Gorenstein K-algebras with Hilbert function (1,7,7,1) are smoothable, in the
further hypothesis that K is algebraically closed (see Theorem 3.6).

(ii) There are at least three irreducible components in Hilblg (see Section 4).

Moreover, we show how our arguments apply to prove the now known result that graded Goren-

stein K-algebras with Hilbert function (1,5, 5, 1) are smoothable, on an algebraically closed field
of characterisic 0 (see Theorem 5.7).

An outline of some results of the present paper was described by ansatz in | ,

] as an application of the constructive methods about marked bases in an affine framework

that were lately deeply studied and completely described in | , |. Here, we
give an extensive description of the outcome of our study. Different proofs of the case (1,5,5,1)
were presented in | , ], contemporary to our first version given in | ,
], and later in | , | when char(K) # 2, 3.
We obtain our results facing the problem from a new point of view: we apply the notion
of double-generic initial ideal (see | , ]) and constructive methods that are
based on marked schemes (see [ , ] and the references therein). These methods

are also useful to compute the Zariski tangent space to a Hilbert scheme at a given point (see
Corollary 1.6 and Remark 1.7). Essentially, step by step we alternate experimental results and
theoretical properties of our tools, which have been applied in this context for the first time.
The paper is organized in the following way. In Section 1, we describe the results about
marked schemes that we need in our arguments. These results also give information on the



computation of the Zariski tangent space to a Hilbert scheme via marked schemes (Corollary
1.6). In Section 2, we focus on Gorenstein schemes and their relation with double-generic initial
ideals when the Hilbert function is of type (1,n,n,1) (Proposition 2.5). In Sections 3 and 5
we prove that graded Artin Gorenstein K-algebras with Hilbert function either (1,7,7,1) or
(1,5,5,1) are smoothable. In characteristic 0, this result also holds for local Artin Gorenstein
K-algebras, due to [ , , Theorem 3.3]. In Section 4 we prove the existence
of three different components in Hilbiﬁ that we explicitly describe (in the Appendix, we list the
outputs of some of the computations involved in this proof).

1 Backgroud: marked schemes and Zariski tangent space

In this paper, we work in an affine framework and apply the affine computational techniques
developed in | , ]. Then, in this section, we set some notations and recall
the main notions involved in these techniques. Moreover, we give some new insights for the
computation of the Zariski tangent space to a Hilbert scheme at a given point.

We will consider the rings of polynomials R = K{z1,...,2,] C S = R[xg], with o < 21 <
-+ < xpn. For aterm 2% = zy°z{" ... 20" we set |a] ==, a;, max(z®) := max{z; | a; # 0} and

min(z%) := min{z; | a; # 0}. For a non-null polynomial f we denote by Supp(f) its support,
that is the set of terms that appears in f with a non-null coefficient. If f is a polynomial in R

then we denote by f" := xgeg(f)f(%, cee %) its homogenization, and if F' is a polynomial in S
then we denote by F* := F(1,z1,...,z,) its dehomogenization.

Given a monomial ideal j C R (resp. J C S), we denote by N(j) (resp. N(J)) the set of
terms of R outside j (resp. of S outside J) and by Bj (resp. B) its minimal monomial basis. We
refer to | , ) ; ) ] for results concerning Grébner bases
and Hilbert functions.

The results we are going to recall use the notion of quasi-stable ideal. It is well-known
that a monomial ideal J is quasi-stable if and only if it has a so-called Pommaret basis [ ,

, Definition 4.3 and Proposition 4.4]. In general, a Pommaret basis P(J) strictly contains
the minimal monomial basis B;j. The quasi-stable ideals having P(J) = B are called stable
ideals. Stable ideals have a nice combinatorial characterization: for each term in a stable ideal,
replacing the variable of smallest index with a variable of larger index produces another term in
the ideal. In our setting we will only consider a special set of stable ideals, namely strongly stable
ideals: in each term in a strongly stable ideal, we may replace any variable with a variable of
larger index to get another term in the ideal. In characteristic 0, Borel-fixed ideals are strongly
stable (see for example | ) ]). Although when J is strongly stable we have
P(J) = By, in the following we will use the notation of Pommaret bases, according to papers
[ | 2015 | 20174].

Recall that a marked polynomial is a polynomial F' together with a specified term of Supp(F)
that will be called head term of F and denoted by Ht(F) (see [ , D).

Definition 1.1. | , , Definition 5.1] Let J C S be a quasi-stable ideal.

A P(J)-marked set (or marked set over P(J)) G is a set of homogeneous monic marked
polynomials F,, in S such that the head terms Ht(F,) = z* are pairwise different and form the
Pommaret basis P(J) of J, and Supp(F, — z*) C N(J).

A P(J)-marked basis (or marked basis over P(J)) G is a P(J)-marked set such that N (J)
is a basis of S/(G) as a K-module, i.e. S = (G) ® (N (J)) as a K-module.

Let j C R be a quasi-stable ideal and m a non-negative integer. Setting J :=j -5, we now
recall the affine counterpart of Definition 1.1.



Definition 1.2. | , , Definition 4.1]

A [P(§), m|-marked set & is a set of monic marked polynomials f, of R such that the head
terms Ht(f,) = x® are pairwise different and form the Pommaret basis P(j) of j, and Supp(fa —
%) C N(j)<; with t = max{m, |a|}.

A [P(j), m]-marked set & = {fa}seep; is a [P(j), m]-marked basis if there exists a P(J>m)-
marked basis G such that for every z® € Bj the term xlga f7 belongs to G for a suitable integer
kq.

The [P(j), m]-marked family is the set of all the ideals I C R that are generated by a
[P(j), m]-marked basis.

Lemma 1.3. | , , Lemma 6.1(i) and Definition 6.2] An ideal I C R belongs
to a [P(j), m]-marked family if and only if R<; = I<; N ()<¢), for every t > m.

Theorem 1.4. [ , , Theorem 6.6 and Proposition 6.13] A [P(j), m]-marked
Jamily is parameterized by a locally closed subscheme Mfp() ,, of the Hilbert scheme Hﬂb;(t),
where p(t) is the affine Hilbert polynomial of R/j. If p is the satiety of j and m > p — 1, then

Mfp(j),m s an open subscheme of Hile(t).

The scheme Mfpy ,,, of Theorem 1.4 is called [P(j), m]-marked scheme.

j),m
Theorem 1.5. | , , Section 6] The scheme Mfpj) , is the spectrum Spec (K[C]/4L),
where C is the set of parameters corresponding to the possible coefficients in the polynomials of a
[P(3), m]-marked basis, and the ideal L is generated by the relations that are satisfied by these coef-
ficients and which can be computed by [ , , Algorithm MARKEDSCHEME(j, m)]/.

In next statement, we denote by X a point of Hilbg(t) and let Mfp) ,, be a [P(j), m]-marked
scheme containing X up to a suitable change of coordinates, where m > p — 1 and p is the
satiety of j.

Corollary 1.6. The Zariski tangent space to Hilbg(t) at X 1s equal to the Zariski tangent space
to Mip(j)m at X and it can be explicitly computed by marked bases techniques.

Proof. Tt is enough to observe that Mfp) ,,, is an open subscheme of Hile(t) due to Theorem
1.4 and that the Zariski tangent space to Mfp(,, at X can be computed by the generators of
the ideal 4 of Theorem 1.5. O

Remark 1.7. Concerning an effective computation of the Zariski tangent space to a marked
scheme Mfp;) ,,, at the origin j, we can use the same techniques that are described in [

, , Sections 3 and 4] for the so-called Grobner strata. If we want to compute the
Zariski tangent space at another point, we perform the change of coordinates that brings this
point in the origin, as usual.

We end this section with the following result that is inferred from [ ,

] and is analogous to results contained in | , | for the homogeneous
case. We first need to describe an adjustment to the affine case of the notion of segment (for
details on segments see | , -

Definition 1.8. Let j be a strongly stable ideal in R, m a positive integer. The ideal j is an affine
m-segment if there is a weight vector w € N such that for every z® € Bj, deg,,(z%) > deg,(z7)
for every 27 € N(j)<¢, with t = max{m, |a|}.

Theorem 1.9. Ifj C R is an affine m-segment, then every irreducible component M of Mfp;) .,
contains j, hence Mfp() ., is a connected scheme. If moreover the point corresponding to j is
smooth on M, then M is isomorphic to an affine space.



Proof. Let w € N™ be a weight vector with respect to whom j is an affine m-segment. Then,
Mf(j,m) is a w-cone with vertex in j by | , , Corollary 2.7] and the
thesis follows. O

2 Gorenstein points and double-generic initial ideals

In this section, we highlight a relation between the locus of Gorenstein points defined by graded
Gorenstein K-algebras with Hilbert function of type (1,n,n,1) and the notion of double-generic
initial ideal.

A Gorenstein scheme X € Hilb;(t) is a scheme such that the stalk of the ideal sheaf in every
point x € X is Gorenstein. Recall that the locus of points in Hilbg(t) representing Gorenstein
schemes is an open subset | , : , ].

We will consider zero-dimensional Gorenstein schemes in an open neighborhood, which can
be studied by our affine techniques | , |. Hence, following [

, , Definition 2.1] and [ , |, we now recall some main notions
and already known results for Artin K-algebras.

Let A be alocal Artin K-algebra and M its maximal ideal. The socle of A is the annihilator
Soc(A) :=(0:4 M)={h € A|hM = 0}. Then, A is called Gorenstein if dimg Soc(A) = 1. An
Artin K-algebra is Gorenstein if its localization at every maximal ideal is a Gorenstein (local)
K-algebra. The socle degree of a graded Artin Gorenstein K-algebra A is the maximum degree
J such that A; # 0.

The following result is due to Macaulay, as observed in [ ) | which
we refer to.

Lemma 2.1. [ , , Definiton 1.11 and Lemma 2.12] There is a bijection
between the hypersurfaces of degree j in P} and the set of graded Artin Gorenstein quotient
rings of R of socle degree j. This correspondence associates to a form F of degree j the quotient
Ap = R/Ann(F), where Ann(F') is computed by apolarity.

Theorem 2.2. (] , , Theorem 3.31], | , , Theorem 1],
[ , , Theorem 3.1]) The set of cubic hypersurfaces, which determine all the

graded Artin Gorenstein K -algebras with Hilbert function (1,n,n,1) by apolarity, is a non-empty
irreducible subset of P(R3).

Let Gor(T') denote the subset of the projective space consisting of the hypersurfaces F' such
that the Hilbert function of Ap is a given function 7. By Theorem 2.2, Gor(T") can be embedded
in a Hilbert scheme as an irreducible locally closed subset and we denote by Gor(T) its closure.
The following definitions and results are crucial in our study of Gor(1,n,n,1).

Definition 2.3. | , | An irreducible closed subset Y of a Hilbert scheme is
called a GL-stable subset if is invariant under the action of the general linear group.

Every GL-stable subset Y of a Hilbert scheme contains at least one point corresponding to a
strongly stable ideal. Given a term order, among the strongly stable ideals that define points of
Y, we can find a special strongly stable ideal which is the saturation of the generic initial ideal
of the generic (and general) point of YV | , , Proposition 4(b)].

Definition 2.4. | ) , Definition 5] The saturation of the generic initial ideal
of the generic (and general) point of a GL-stable subset Y is called the double-generic initial
ideal of Y and is denoted by Gy.



The notion of double-generic initial ideal has been introduced and investigated for the first
time in | , ], also in the more general setting of Grassmannian, with the
terminology of extensors.

Proposition 2.5. Gor(1,n,n,1) C Hilby, 5 is a GL-stable subset, in particular it has a double-
generic initial ideal.

Proof. Theorem 2.2 implies that the closure Gor(1,n,n,1) in Hilbj,  , is a closed irreducible
subset, hence it is GL-stable because it is also invariant under the action of the general linear
group, by construction. O

Next result contains some of the main properties of a double-generic initial ideal. First, we
need to recall the following definition.

Definition 2.6. | , , Definition 6] Let J and H be monomial ideals in S such
that S/J and S/H have the same Hilbert polynomial p(¢). Let r be the Gotzmann number of
p(t) and consider the set of generators By, = {71,...,7} and By, = {01,...,04} ordered by

a term order >, where ¢ = (”:T) —p(r). We write J > H if 7, > o; for every i € {1,...,q}.

Lemma 2.7. [ , , Propositions 2 and 3, Definition 5, Theorems 8 and 4,
Remark 5] Let > be a term order, Y a GL-stable subset of Hilbg(t) and Gy its double-generic
initial ideal.

(i) For every ideal I defining a point of Y, gin(I) and in(I) define points of Y.

(ii) There exists the mazimum among all the Borel ideals defining points of Y with respect to
the partial order >>, and this maximum is Gy .

(iii) There is a non-empty open subset V' of Y such that gin(I) = in(I) = Gy for every saturated
ideal I defining a point in V.

3 Graded Artin Gorenstein K-algebras with Hilbert function
(1,7,7,1) define smoothable points

In this section, we consider the Hilbert scheme Hilb{ba parameterizing zero-dimensional sub-
schemes of IP’}{ of length 16. Recall that, up to a generic change of coordinates, we can identify
every point of Hilb% with an ideal in R = K[z, ..., 27|, not necessarily homogeneous. Hence,
we consider the polynomial ring R and the ideals in R with affine Hilbert polynomial p(t) = 16.
A double-generic initial ideal J will be considered in its affine version too, that is its dehomog-
enization j := J* = By - R.

The lex-point of Hilb{6 corresponds to the following lex-segment ideal in R:

. 16
Jlex = (%7,$6,x5,$4,x3,$2,$1 )

It is well-known that jiex is a smooth point of the smoothable component RI6 of dimension
7-16 = 112, because the general point of R{G is a reduced scheme of 16 distinct points.

We can compute the complete list of 561 strongly stable ideals of R lying in Hilb% by the
algorithm described in [ ) | (and further developed and implemented in | ,



| and generalized for quasi-stable ideals and Borel-fixed ideals in positive characteristic in
[ ) ]). Among them, we focus on the following one:

. 2 2 2
JJ€: =($77 L7, L7L5, LT7T4, LTL3, TL7L2, L7L1, LGy L6L5, L6L4, L6L3, LeL2, L6L1, L5y L5L4, L5L3,

2 2 3 2 2 2 2 .3 .2 2 4
$5$2,$5$1,$47$4$3,$4$2,334$1a363,$31‘2,333901,$3~’U2,5631‘2561,!13356171‘279025817:32%,551)-

By the constructive tools of | , ] and by theoretical results on the double-
generic initial ideal, we now show that j¢ is the generic initial ideal w.r.t. lex term order of a
general ideal defining a graded (Artin) Gorenstein K-algebra with Hilbert function (1,7,7,1).

Theorem 3.1. The strongly stable ideal j¢ is the double-generic initial ideal of the GL-stable
subset Gor(1,7,7,1) w.r.t. the lex order. In particular, it is the generic initial ideal w.r.t. the
lex order of a general point of Gor(1,7,7,1).

Proof. We explicitly construct a random ideal defining a graded Artin Gorenstein K-algebra with
Hilbert function (1,7,7,1) by apolarity, thanks to the already cited correspondence with cubic
hypersurfaces (see Lemma 2.1). We randomly choose the following cubic form F in K|z1, ..., z7]

F = 23:‘;’ — Bx%xg — 6$%x4 — 6x%$5 — 395%3:7 + 9x1x% 4+ 12x12023 + 12 2021204+
+12 o125 + 12 207126 + 6 T2T 17 + 6$1.7}§ +6x1x304 + 6 212375 + 122120306+
+6 r1x3x7 + 6.%1.75421 + 12 T1X4T5 + 6$1I4$6 + 6x1x4m7 + 6%1%% + 6581.735376+

+6 212507 + 6{[}1$% + 6z1r627 + 3:1:1x$ — x% + 3$%£B3 — 9:5%904 — 6:1:%x5+

-3 :c%x(; — 6:5%3:7 + 3:1:21:?,) — 12292324 — 6 x0T375 — 6 X236 — 12 T2 X307 — nga;i—i-
—12 292425 — 6:323:% — 6xox516 — 6 X257 + 3:E2:B% — 6m§m4 — 3x§$5 — 3:E§3:6—|—
—6 a;%aw — 631475 — 3x3x§ — 6x3T506 — 6 T3T5T7 + 3x3x§ — 53:2 — 6@213:54-

—6 xixﬁ — 33042@7 — 69:4&0% — 647526 — 6 X457 — 6:64(13% — 12 x4x627 — 9x4x%+
-3 acg — 3:(;%306 — 3x§m7 — 3x5m§ — 651877 — 3x5x$ — 2:(}% — 6x§x7+

—6 x()-:cg — 2&0?.

Let Ann(F) C K[xz1,...,x7] be the ideal that we obtain by apolarity from F. We check that
Ap = Klz1,...,27]/Ann(F) is a graded Gorenstein K-algebra with Hilbert function (1,7,7,1).
We can also observe that Ap is local as we expected, because Ap is Artin and graded. The
reduced Grobmer basis w.r.t. the lex order of the ideal Ann(F') is given by the following 32
polynomials (in bold the initial term of each polynomial):

f1 = x% —4dxixy — 2303 + xox3 — 22123 — x% + 4129,

fo = XeX7 — L1274 — T2T3 + T172,

f3 = X5X7 + 2174 + 2173 — 7122,

fa = Xax7 + 221204 + 2x§ — 2x0x3 + dx1203 — DT 1T — x%,

fs = x3x7 + 32124 + 2223 + 22123 — 37179,

f6 = XoX7 + 3T124 + 2273 + 22123 — 3T 122,

fr = X1X7 — 1174 — T173 + 2172,

fs = X2 + 1174 + 72 — 3073 — 2173 + T3 + M179 + T3,

fo = X5Xe + T1T4 + T123 — T122,

fl0 = X4Xg — T1T4 — T2T3 + T1T2,

f11 = X3Xe + 4x124 + X273 + 20123 — 4T 122,

f12 = XaXe + 42124 + T2x3 + 20123 — 42122,

f13 = x1X6 — 7173,

f1a = x§ + 2x124 + 256% — 3xox3 + 2$% — :c%,
f15 = X4X5 + 2124,

fi6 = X3X5 + T124 + 1173 — T172,



f17 = XaX5 + 1174,

fi8 = X1X5 — 7174,

f19 = XZ —Tx124 — 456% + 2x9x3 — 8x123 — a:% + 1lz129 + 1‘%,

fo0 = X3X4 + 3x124 + X273 + 20123 — 3T 122,

f21 = X2X4 + 35E1.CU4 + xox3 + T173 — 2x1x2,

foo = x3x4 + 23,

fo3 = X3, foa =x2x3 — af, fas =x1x3 —a}, fao = x3x3 — 527,

for = X1XaX3 — 23, fos = X3X3, foo = X3 + 323, f30 = x1x3 — 33,

f31 = x3x2 + %x?l’, fa2 = x7.

Then, the monomial ideal jg is the initial ideal of Ann(F') w.r.t. lex order. Moreover, jg is

the generic initial ideal of Ann(F) by | , , Theorem 3], because jg is the
maximum w.r.t. the order of Definition 2.6 among all the strongly stable ideals with Hilbert
function (1,7,7,1) (see | , , Theorem 15.18]). By | , , Theorem

3], this fact also implies that jg is the double-generic initial ideal of Gor(1,7,7,1). By [
, , Proposition 4] we can now conclude that jg is the generic initial ideal w.r.t. the
lex order of a general point of Gor(1,7,7,1). O

Proposition 3.2. Mfpy 3N Gor(1,7,7,1) # (.

Proof. From the proof of Theorem 3.1 we see that the 32 polynomials f;, which generate the ideal
Ann(F), form a Grobner basis that is also a [P(jg), 3]-marked basis. Thus, Ann(F’) belongs to
the family of ideals defining the [P(jg), 3]-marked scheme Mfp ;) 3. O

With a suitable choice of values for the parameters occurring in the defining ideal il of
Mfp,),3, we obtain that the following polynomials form a [P(jc), 3]-marked basis &, for every
T 6 A}('

=f; — 9m7 + 16724 + Yorag — 7m2 + 2731 — 872,

=fo — Txg +7'ac4—|— TX3 — TIY + TX1 — %7’2
F3—f3—7'{L‘7— 57’.%’5—7’.%4—7‘.%‘3—&-7‘1’2— ;Txl—i-T
Fy=fs+ 117127 — 437334 8Tx3+ 5Ty — 7'1:1 + 1772,

F5—f5—3m4—3m3+3m2—gml+3 2

Fg—f6—57x7—37'x4—g7'x3+ TI2—3T£U1+7 2
Fr=fr—T1x0+ 123 + T4 — T27,
Fg:f8+27'x6—7'x4+%7':1:3+27'a:2+ TL —13472,
F9:f9—7x6—7$4—7'a:3+7'm2—%Txl—l— 72,

1.2

Flozflo—T$6+Tx4+ T.Tg—TxQ—i- 5TX1— 575,
Fii=f11—47z4 — 37x3+47x2—27x1+27
F12=f12— 17'.%'6—47'334— 5T.%'3+47‘$2—2T:U1+27'2,
Fi3 = f13 + 123 — TT6 — T377,

Fly=f14—14725 — 2724 — 5Tx3+67:1:2—47x1+
Fis :f15—1—27'2—7'a:1 — 2724 — TS,

F16—flG—Tx4—2T:E3+T.CE2—57’:614—%7
2

297‘

F17—f17— T$5—T$4—Tx2—7'$1+%7'
FIS—f18+7'1‘4—7'1f57

Fig = fi9 — 2077 + 37 74 + 15723 — 14729 + L 700 — BT,
F20:f20—37'$4—z7':1:3—|—37'm2 §T$1+3 2
FQl:f21—%7'x4—%%7'$3+7'x2—27'$1+

Foo = foo + 473 — 57221 — 47209 + 7214 + 47‘:61302 —27Tx124,
F23=f23—27'3+27'21'1—4T2x2—3T2.%'3+47'2$4+4Tx1332—4T:L'1$4+6T3?2.%‘3—27‘$32,




Foy = foq — 7'3:3 + 47':62303 —67x124 — 672321 +8TT 122 — T3312 + 67224 +
+472 :1:3—87 T2+ 5721 —%T?’,
Fos = fo5 — 573 + 77’ 21 — 127229 + 87223 + 87214 — 1212 + 12 71290 — 8 TH3T] +
- 87‘.7}1:E4 — 7'.7}32,
Fog = fa6 + 37'x2x3 — 6712124 — 6TT371 + 8TT1T9 — %7%12 + 673224 + 717742"”3 +
— 872 :U2+ T ;1:1—%7'5
For —f27—7'x2x3 —8Tx124 — 1—771:33314—1279613:2 — T +87’ 1:44-*7' xr3 +
— 127229 + 77221 — 57,
Fog = fog — 67’3 —|— 67’21'1 - 127’21'2 + 5T2x3 + 12T2x4 + 1272129 — 6 T3 — 127124,
Fog = fo9 + Tx9% — 273114 — 6 TH3T] + 127X X0 + 1/2 7212 + 27224 + 6 7225 +
6174%2 . 13 sz + 51T ’
F30 =30 — sz — 107x1x4 — 6Tx3T) + TTT X9 — 5 Txl + 107224 + 67223 +
—7712%x9 + 55?% - 4377,
F31 = f31 — 1072124 — 6 72371 + 14720120 + 10 7224 4 6 7223 — 157200 + £ 7221 — 73,
F33 =f32 + 45 74— 40732 4+ 327329 — 647324 — 672212 — 32722 20 + 64 T2 24.
From now, for every 7 € Al we denote by i, C K|x1,...,z7] the ideal generated by the [P(ig), 3]-
marked basis &, = {F},..., F32}. Note that for 7 = 0 we obtain the ideal iy = Ann(F’), which
defines a scheme with support in a single point, as we have already observed in the proof of
Theorem 3.1. For every 7 € AL\ {0} we have a different situation because every ideal i, defines
a scheme whose support contains at least the following 8 distinct affine points:

1 1 -7 1 1
(T, 57’, 27, 7,7,0, 27’> , <T, > 7,0,7,7,0, 27’) , ( 37, 7' 0,7,7,0, = 5 ) ,
1 1 —45 1 1 1
il - L _Qr = - 97
(T, 27’,0,7, 7,0, 2T> , < 7T, 5 T, =81, T, T, —8T, 2T> , <T, 27’,0,7’, T, —2T, 27) ,
1 0,7,137,0 1 -7 17 0,97,97,0 1
T, 27‘, , T, 137, ,27' , T, 7' 7,971, ,2

This observation is crucial for next result.

Lemma 3.3. Over an algebraically closed field K with char(K) # 2,3, there exists a flat fam-
ily of ideals which is contained in Mfp(,)3 N RZG such that the special fiber corresponds to a
Gorenstein point defined by a graded K -algebra with Hilbert function (1,7,7,1).

Proof. We prove that the family of ideals {i;},, which are generated by the [P(jg), 3]-marked
bases &, is contained in the smoothable component RIG. By construction, the ideals i, belong
to the marked scheme Mfpj ) 3 which embeds as an open subset in the punctual Hilbert scheme
Hilbz6. So, these ideals define a flat family over A'. As we have already recalled in Section 2, the
locus of points in a Hilbert scheme representing all the Gorenstein schemes is an open subset.
Hence, the intersection of this locus with the flat family {i;},, which is non-empty because ij
represents a Gorenstein point, is an open subset of the family. Thus, we find at least a value
T # 0 such that i represents a Gorenstein point.

By computational tools, we have already found that for every 7 # 0 the ideal i, defines a
scheme whose support contains at least 8 distinct points and hence components of multiplicity
at most 9. So, the ideal iz is smoothable due to the fact that for d < 9 the locus of Gorenstein
points is a Hilbert scheme of d points is irreducible (see | , , Theorem AJ).
Thus, every ideal i, belongs to the smoothable component RIG because the family is irreducible.
In particular, the special fiber iy belongs to RIG, because RIG is closed and irreducible. O



Remark 3.4. Although the ideal iy corresponds to a Gorenstein point in Gor(1,7,7,1), for every
7 # 0 the ideal i, corresponds to a point which does not belong to Gor(1,7,7,1) because its
support consists of more than one point. We constructed the family of ideals {i,}, with this
property letting the term x7 have a non-null coefficient in the polynomial Fig. Indeed, the term
w7 is higher than the head term 22 of Fjg with respect to lex term order. This fact implies that
the initial ideal of i, is not jg and is not comparable with jg w.r.t. the order of Definition 2.6
(see [ ) , Theorem 3 and Proposition 8]). Thus, the generic initial ideal of
i, is different from jg. Recalling that jg is the double-generic initial ideal of Gor(1,7,7,1), we
obtain our claim. We can also observe that the initial ideal of i, is closer to the lex-segment
ideal than jg w.r.t. the order of Definition 2.6.

Lemma 3.5. Ouver an algebraically closed field K with char(K) # 2,3, there exists a smooth
Gorenstein point defined by a graded K-algebra with Hilbert function (1,7,7,1) belonging to the
smoothable component Rig.

Proof. We prove that the ideal iy defines a smooth Gorenstein point in the smoothable compo-
nent Rs. We already know that iy defines a Gorenstein point with Hilbert function (1,7,7,1).
Moreover, by Lemma 3.3 and by construction, the ideal iy represents a point that belongs to
RN Mfp),3- Due to Corollary 1.6, we can compute the Zariski tangent space to Hilb, at
igp from the polynomials of the [P(jq), 3]-marked basis of ip, obtaining that the dimension of
the Zariski tangent space to Hilb{G at the point ig is 112 = 16 x 7, i.e. the dimension of the
smoothable component. O

Theorem 3.6. Over an algebraically closed field K with char(K) # 2,3, every Gorenstein point
defined by a graded K -algebra with Hilbert function (1,7,7,1) is smoothable.

Proof. By Lemmas 3.3 and 3.5, there exists a smooth Gorenstein point with Hilbert function
(1,7,7,1) in the smoothable component Rgﬁ. These facts imply that also all the other Gorenstein
points with the same Hilbert function belong to RZG, i.e. are smoothable, because the locus
Gor(1,n,n,1) in Hilbz(t) of the schemes parameterizing homogeneous Gorenstein ideals with
Hilbert function (1,n,n,1) is irreducible (see Theorem 2.2 and Proposition 2.5). O

Remark 3.7. Recall that Theorem 3.6 covers the unique case not treated in the range considered
by [ , , Lemma 6.21] about the study of non-smoothable Gorenstein
points.

Corollary 3.8. Owver an algebraically closed field K of characteristic 0, every local Gorenstein
K -algebra with Hilbert function (1,7,7,1) is smoothable.

Proof. This is a consequence of Theorem 3.6 and [ , , Theorem 3.3]. O

4 Hilb!; has at least three irreducible components

In this section, we now obtain interesting information about the components of Hilbzﬁ from a
study of the irreducible components of Mfp,) 3. Indeed, by construction the marked scheme
Mfp),3 is the open subscheme of Hilb where the Pliicker coordinate corresponding to the
monomial ideal j¢" is invertible. So, the closures of the components of Mfp,),3 are irreducible
components of Hilb&. Our first result is a consequence of Theorem 1.9.

Proposition 4.1. The marked scheme Mfp(.y 3 is a connected open subset of Hilbzﬁ with irre-
ducible components containing jg.
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Proof. The marked scheme Mfp) 3 is an open subset of HilbTg due to [ , ,
Proposition 6.12(ii)]. Furthermore, the ideal j¢ is an affine 3-segment with respect to the weight
vector w = [11,10,9,8,6,5,4]. Hence, by Theorem 1.9, Mfp( )3 is connected and every its
irreducible component contains jg. ]

Remark 4.2. From the fact that jg is an affine 3-segment with respect to the weight vector
w = [11,10,9,8,6,5,4] we obtain that My is a cone, with vertex in jg, with respect to a
positive non-standard grading (see [ , , Corollary 2.7]). Thus, there is
a projection in the Zariski tangente space to My at the origin which induces an isomorphism of
My with its image (see [ , , Theorem 3.2]). This projection identifies a
set of eliminable variables which is very useful, for example, in order to enhance the performance
of the computations in this context.

We denote by M := Mfp,) 3 NRI4 the irreducible component of Mfp ()3 that is obtained
by intersecting Mfp,) s with the smoothable component R7;. Thus, the dimension of M;
is 112. We now highlight the existence of other two components of Mfp(.y3. The result of
Proposition 4.1 suggests us to look for the irreducible components other that M; containing the
ideal jq.

By the techniques described in [ , | and briefly recalled in Section 1, we
obtain Mfpj,) 3 as the affine scheme defined by an ideal 2 generated by 2160 polynomials of
degrees d = 3, 4,5 in the polynomial ring K[C] in 512 variables. The computation of a primary
decomposition of the ideal 2 is unaffordable with Grobner bases techniques. Thus, we look for
other strategies.

Recalling the construction of a [P(jg), 3]-marked set, we consider the terms outside jg of
degree up to 3 in the following order:

3 .2 2 2
L1,X3,X3L2, Lo, T4L1,L3XL1, X2L1, L1, L7, X6, L5, L4, L3, T2, L1, 1.

For example, the polynomial of a [P(jg), 3]-marked set with head term 22 has the following
shape:

IL‘% - (61,130‘;’ + C1,2$§ + c1,32273 + 61,4:70% + 152174 + €1 67123 + C17X1T2 + 01,833% + c1927+
+c1,10%6 + €1,1125 + C1,12%4 + €1,1323 + €1,14%2 + €1,15Z1 + C1,16),

and, observing that (jg)s = R4, the polynomial with head term z7 is

90% - (032,136? + 032,21’§ +c32,30273 + 632,4963 +C32,5T1%4 + C32,67123 + C32,72122 + C32,8$%+ €32,9T7 +
32,1026 + €32,11T5 + 32,1224 + €32,13%3 + €32,14T2 + C32.15%1 + €32,16)-

Theorem 4.3. There is an irreducible component My of the marked scheme Mip(.y 3 that is
rational and has dimension 161.

Proof. Let C be the set of the parameters ¢; j that are coefficients in a [P(j¢), 3]-marked set and
have indexes j > 9 or i > 22 and j > 2. Note that the parameters in C are the coefficients of the
terms of degree lower than the degree of the corresponding head term, except for i = 32. Consider
the family of [P(jg),3]-marked sets in which the parameters in C are null. The remaining
parameters are 179 = 8 - 21 + 11 and have indexes either ¢ <21 and j < 8 or¢ > 22 and j = 1.
This choice guarantees that we are considering points of the Hilbert scheme corresponding to
schemes with a singularity in [0,...,0,1] € P%

Intersecting the marked scheme Mfp; ) 3 with the linear variety L defined by the vanishing
of the parameters in C, we obtain that the generators of the ideal defining Mfp(,),3 become
polynomials, many of which are divisible by c32,1. Removing this factor, we obtain a set of poly-
nomials defining a particular family /3 of ideals in Mfp; ) 3N L. Interreducing the polynomials

11



defining F» we obtain 25 polynomials u; ;, which are listed in the Appendix and form a complete
intersection of dimension 154 = 179 — 25 in K[C]/(C), hence the family F» has dimension 154.
We can observe that by these 25 polynomials the following 25 parameters are eliminable, in the
sense that they can be replaced by polynomials in the remaining parameters:
C1,8,C2,8, C3,8, C4,8; C5,8, C6,85 C8,8, C9,8, C10,8, C11,8, C12,8, C14,8, C15,8, C16,8, C17,8, C19,8, €20,8, C21,8, €23,1,
€24,1, 25,1, €26,1, C27,1, €29,1, C30,1-
We denote by Cj the set of the remaining 154 = 179 — 25 parameters. Of course, all the
polynomials u; ; defining the family /> vanish after the elimination of the above 25 parameters.
Allowing translations on the variables x1, ..., 7, the family F» spreads to a larger family ]?2
which depends on 161 = 154 + 7 parameters and is still contained in Mfp(.) 3. Denote by Mo

the subscheme of points corresponding to the ideals in Fo. By construction, Ms is a complete
intesection too and has dimension 161. Moreover, it is rational because it depends on exactly
161 parameters.

Now, we observe that My is an irreducible component of Mfp(;.) 3. We randomly choose
particular values for the 154 parameters in Cy in order to obtain the [P(jg), 3]-marked basis of
an ideal a corresponding to a points of My (please, see the Appendix for a possible choice of
the values for the 154 parameters in Cp, the consequent values for the 25 eliminable variables
and the generators of the ideal a).

Due to Corollary 1.6, we compute the Zariski tangent space to Hilb{G at the point corre-
sponding to a finding that it has dimension 161, that is the dimension of M. Thus, My is an
irreducible component of HilbTg. O

Remark 4.4. The ideal a of Theorem 4.3 defines a general point of My and the corresponding
scheme is the union of a simple point and of a non-reduced structure of multiplicity 15 on a
different point. Observe that the ideal a is only one of the possible points we can consider in
order to check that the dimension of My is 161.

Theorem 4.5. There is an irreducible component Mg of Mip ;) 3 which is different from My
and Ma. This component M3 ha dimension > 116 and contains a subscheme of Mfp,) 3 which
s 1somorphic to an affine space of dimension 116.

Proof. Referring to the construction of a [P(ji), 3]-marked set, consider the family F3 of [P(ja), 3]-
marked sets in which the parameters ¢; ; are null if they are outside the set C of remaining 109
parameters that is listed in the Appendix.

The marked sets that we obtain with the above setting are actually marked bases for every
value of the remaining 109 parameters (see the Appendix for details about these marked bases).
Thus, allowing translations on the variables z1,...,z7 the family F3 spreads to a larger family
.7-'3 depending on 116 = 109 4 7 free parameters, Wthh is still contained in pr( ),3- Denote by

./\/13 the subscheme of points corresponding to the ideals in ]-"3 Thus Mg is isomorphic to an
affine space of dimension 116 and then it is different from M; which has dimension 112.

We choose a particular point of Mg at which the dimension of the Zariski tangent space
to the Hilbert scheme HilbzG is 153 (see the Appendix for the explicit description of one of
these possible points which defines a scheme with support in the origin). Thus, the dimension
of Mvg is < 153 and, above all, there is a point of Mv3 which cannot belong to Ms, because
the dimension of My is 161 > 153. This observation proves the existence of an irreducible

component Mz D Mvg of Mfp,) 3 other than M; and M. O

Remark 4.6. In the proof of Theorem 4.5 the family 3 is constructed by setting c3z 1 = 0, where
c32,1 is the parameter already considered in the proof of Theorem 4.3. Note that the ideals of
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F3 do not belong to Gor(1,7,7,1) because a general point of qu corresponds to a non-reduced
structure over a point. Otherwise, M3 should be a second component containing Gor(1,7,7,1),
that is impossible by the irreducibility of the locus of these points.

Corollary 4.7. There are at least the three irreducible components M1, Mo and Ms of Hilbz6
passing through the point corresponding to the ideal jc.

Proof. This is an immediate consequence of Proposition 4.1 and Theorems 4.3 and 4.5. 0

5 Graded Artin Gorenstein K-algebras with Hilbert function
(1,5,5,1) define smoothable points

In this section we apply the same techniques of Section 3 to prove the smoothability of graded
Gorenstein K-algebras with Hilbert function (1,5, 5,1) over an algebraically closed field of char-
acteristic 0. We recall that different proofs of this case (1,5,5,1) were presented in | ,
], contemporary to our first version given in | , ], and later in |
, | when char(K) # 2, 3.

We consider the Hilbert scheme Hilb}, parameterizing zero-dimensional subschemes of P°
of length 12. As before, we identify every point of Hilb}, with an ideal in R = K[z1,...,zs),
non-necessarily homogeneous, with affine Hilbert polynomial p(t) = 12. The lex-point of Hilb3,
corresponds to the following lex-segment ideal in R:

. 12
Jex = (135,£U4,!E375U275E1 )~

It is well-known that jiex is a smooth point of the smoothable component RIG of dimension
5-12 = 60, because the general poin of RLS is the reduced scheme of 12 distinct points.

As in Section 3, we compute the complete list of 92 strongly stable ideals of R lying on
Hilb?,. Among them, we focus on the following one:

I 2 2 2 2 2 3 2 2 4
JG - (x5,$4$57.’173$5,$2$5,x5$1, $4,x3$4,x2$4, 1‘11‘4,303, $2$3, ‘Tl.’L'QfIJS,x1$3,$27x1x2,$1$2,x1)

By the constructive tools of | ) ] and by theoretical results on the double-
generic initial ideal, we now show that jo is the generic initial ideal w.r.t. lex term order of a
general ideal defining a graded Gorenstein K-algebra with Hilbert function (1,5,5,1).

Theorem 5.1. The ideal iy is the generic initial ideal w.r.t. the lex term order of a general
ideal defining a graded Gorenstein K -algebra with Hilbert function (1,5,5,1).

Proof. We explicitly construct a random ideal defining a graded Gorenstein K-algebra with
Hilbert function (1,5,5,1) by apolarity, thanks to the already cited correspondence with cubic
hypersurfaces (see | ) , Lemma 2.12]). We randomly choose a cubic
form F in K[z1,...,25] and from F compute the ideal Ann(F) C K|[x1,...,x5] by apolarity.
The reduced Grobner basis w.r.t. the lex order of the ideal Ann(F) is given by the following 17
polynomials (in bold the initial term of each polynomial):

fl = Xg + 41’% + L;wle — %xlltg — 24*3 xrox3,

fo 1= XaX5 — 2 2ow3 — 2 X133 + T122,

fa 1= xi + %5:@1‘3 + $% + %1‘1.7)3 — %fclxg — 53}%,

fi = XgX5 — 2 2ow3 + ST123 — T122,

f5 := x3xq — Tow3,

o2 8 317 71 2
fo 1= X3 — 57 Taw3 — H5 T1T3 + gT1T2 + 227,
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fr :=xox5 — 2 wows — 2 w123 + 2129,

fg 1= X2X4 — Tox3 — X173 + T1T2,

fo 1= X1X5 — TToT3 + FT1T3 — T1T2,

fio = X1X4 — 2122, f11 := x3x3 + 2, f12 1= x3 + 323, fi3 1= xox1x3 — Ya?,
f14 = xlxg — %xi’, f15 = X%Xg + l“?, f16 = X%Xz + %$?, f17 = Xil.

Then, we check that Ap := Klz1,...,z5]/Ann(F) is a (graded) Gorenstein K-algebra with
Hilbert function (1,5,5,1). We can also observe that A is local as we expected, because Ar is

Artin and graded. By further computations, we obtain that:
e ji is the initial ideal of Ann(F') w.r.t. lex

® ji is the maximum w.r.t. the order of Definition 2.6 among all the strongly stable ideals
with Hilbert function (1,5,5,1).

Then, by Lemma 2.7, j¢ is the double-generic initial ideal of Gor(1,5,5,1) and, hence, is the
generic initial ideal of a general point of Gor(1,5,5,1) by | ) , Proposition 4].

Moreover, we can observe that the spectrum of R/Ann(F') is supported on a single point
which is Gorenstein with Hilbert function (1,5,5,1) and hence R/Ann(F) is a local Gorenstein
algebra with Hilbert function (1,5,5,1). O

Remark 5.2. The strongly stable ideal jg is an affine 3-segment with respect to the weight vector
w=[8,7,5,4,3]. Hence, we can apply Theorem 1.9 to jg.

The following straightforward consequence of Theorem 5.1 suggests that the marked scheme
Mf(P(jg), 3) is the right place in which smoothable Gorenstein points can be.

Proposition 5.3. Mfp;,) 3N Gor(1,5,5, 1) is a non-empty open subset.

Proof. From the proof of Theorem 5.1 we deduce that the ideal Ann(F') belongs to the family
of ideals having a [P(j¢), 3]-marked basis, hence to the family of ideals defining the [P(js), 3]-
scheme Mfp ;) 3. O

By the techniques described in | , ], we obtain Mfp;,, 3 as the affine scheme
defined by an ideal 4 generated by 576 polynomials in the polynomial ring K[C] in 204 = 12-17
variables. By a suitable choice of values for the parameters C, we find a family {&p}p of
[P(ic), 3]-marked bases consisting of the following polynomials whose coefficients depend on the
parameter T
F1 = fl, F2 = fg, F3 = f3 - T:L'4 +$2T, F4 = f4, F5 = f5, F6 = f@, F7 = f7, Fg = fg,

Fy == fg, Fio := 10, F11 := f11, Fi2 := f12 — wox3T — w3211 + Ta3 + xom1 T, Fi3 == f13,

Fiy := 14, F15 := f15, Fig := f16, F17 := f17.

From now, for every T & A}( we denote by ip C Klz1,...,x7| the ideal generated by the
[P(jc), 3]-marked basis &p. For T' = 0 we obtain the ideal iy = Ann(F') that we considered in
the proof of Theorem 5.1 and which defines a scheme with support in a single point. For every
T € AL\ {0} we have a different situation because every ideal it defines a scheme whose support
contains at least the following 3 distinct affine points:

(0,0,0,7,0),  (0,0,0,0,0),  (0,—T,0,0,0).

Lemma 5.4. Qver an algebraically closed field K of characteristic 0, there exists a flat family of
ideals which is contained in Mfp ) 3 NR3y such that the special fiber corresponds to a Gorenstein
point defined by a graded K -algebra with Hilbert function (1,5,5,1).
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Proof. We prove that the family of ideals {i;},, which are generated by the [P(jg), 3]-marked
bases &, is contained in the smoothable component R3,.

By construction, the ideals jr belong to the marked scheme Mfp(;,) 3 which embeds as an
open subset in the punctual Hilbert scheme Hilbj,. Hence, these ideals define a flat family over
A'. As we have already recalled in Section 2, the locus of points in a Hilbert scheme representing
all the Gorenstein schemes is an open subset. Hence, the intersection of this locus with the flat
family {ip}7, which is non-empty because jy represents a Gorenstein point, is an open subset of
the family. So, we find at least a value T # 0 such that i7 represents a Gorenstein point.

By computational tools, we find that for every T # 0 the ideal ip defines a scheme whose
supports contain at least 3 distinct points and hence components of multiplicity at most 10. So,
the ideal i7 is smoothable by the fact that for d < 10 the locus of Gorenstein points is a Hilbert

scheme of d points is irreducible (see | , |). Thus, every ideal i belongs
to the smoothable component R, because the family is irreducible. In particular, the limit of
this family, that is the ideal jo, belongs to RJ, too. 0

Remark 5.5. We now highlight the following fact, which is analogous to that described in Re-
mark 3.4. The ideal ig is the ideal Ann(F') of the proof of Theorem 5.1, hence it defines a
Gorenstein point in Gor(1,5,5,1). Nevertheless, for every T # 0, the ideal iy defines a Goren-
stein point which does not belong to Gor(1,5,5,1) because it is supported on more than one
point. Moreover, in the polynomial fi4 the term z3z2 has a non-null coefficient and is higher
than x3 with respect to lex term order. This fact implies that the initial ideal of iz with respect
to lex order is not jg.

Lemma 5.6. Over an algebraically closed field K of characteristic 0, there exists a smooth
Gorenstein point defined by a graded K-algebra with Hilbert function (1,5,5,1) belonging to the
smoothable component R3,.

Proof. We prove that the ideal iy defines a smooth Gorenstein point in the smoothable com-
ponent RY,. We already know that iy defines a Gorenstein point. Moreover, by Lemma 5.4
and by construction, the ideal iy represents a point that belongs to R3y N Mfp),3- Due to
Corollary 1.6, we can compute the tangent space from the polynomials of its [P(jg), 3]-marked
basis obtaining that the dimension of the Zariski tangent space to Hilb?Q at the point jg is 60,
i.e. the dimension of the smoothable component. O

Theorem 5.7. Over an algebraically closed field K of characteristic 0, every Gorenstein point
defined by a graded K -algebra with Hilbert function (1,5,5,1) is smoothable.

Proof. By Lemmas 5.4 and 5.6, we have a Gorenstein point of Gor(1,5,5,1) that belongs to the
smoothable component R3, and that is smooth in the Hilbert scheme. These facts imply that
also all the other points of Gor(1,5,5,1) belong to RJ,, i.e. are smoothable, because the locus
Gor(1,n,n,1) is irreducible, as we have already recalled. O

Corollary 5.8. QOuver an algebraically closed field K of characteristic 0, every local Gorenstein
K -algebra with Hilbert function (1,5,5,1) is smoothable.

Proof. This is a consequence of Theorem 5.7 and | , , Theorem 3.3]. O
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Appendix

The computations supporting our results often produce huge polynomials. In this Appendix we list the
polynomials that are involved in the proofs described in Section 4.

Concerning the proof of Theorem 4.3

Here are the 25 polynomials u; ; which highlight the presence of 25 eliminable parameters for the ideal

defining the family F> that is contained in Mf(jg,3) and is constructed in the cited proof:

u1s = c1,8—(c72%Co8,11+2 7207 3028 13¢31,1+2 C7.207, 4028 12¢31,1%+ 7 32028 1% 31,12 +2 7 3C7 4C28,1C31,1° +
C7,42031,14-i-2 C7,1C7,2628,12632,1+2 C7,1C7,3C28,1C31,1C32,1 +2 C7,1C7,4631,12632,1+2 C7,207,5022,1628,12+2 C7,267,GC28,13+
27907 70281231112 €7 3C7 5C22. 102813112 €7 307 6C28.12C31,1+2 C7.3C7 7Ca8 1C31.12+2 €7.4C7 5C22.1C31 12+

2 37,407,6028,1031,12+2 07,407,7631,13+C7,12632,12+2 €7,1C7,5C22,1C32,1+2 C7,1C7,6C28,1C32,1+2 C7,1C7 7¢31,1C32,1+
27907802812 + 27307 8C28.1C31,1 +27.407.8C31.1° + C7.52C22.1% + 2 C7 507 6C22.1C28.1 + 2 €7 5C7.7C22.1C31.1 +
C7,62028,12+2 07,607,7028,1631,1+C7,72031,12*61,2628,12*01,3028,1031,1*61,4631,12+2 €7,1C7,8C32,1+2 C7 5C7 8C22 1+
207,607,8C28,1 + 2C7,707,8C31,1 — €1,1C32,1 — C1,5C22,1 — C1,6C28,1 — C1,7C31,1 + C7.82),

Ug,8 = Cz,s*(07,5013,5022,12*02,3028,1031,1 +C7,2013,6028,13+C7,6013,6028,12+013,2628,14C7,2+Cl3,2028,1307,6+
013,202871207,8+C774013,7031713+C777013,7031712+013,403171407,4“‘013,403171307,7“‘013,403171207,8“‘0774013,8031712“‘
C7,2cl3,8028,12_02,4031,12_02,2028,12+032,107,1013,3028,1031,1+C7,3013,5022,1628,1031,1+C7,5613,3022,1028,1031,1+
C7,1C13,1032,12+C7,3C13,8028,1631,1+C7,3C13,7028,1C31,12+C7,5013,7622,1C31,1+C7,6013,7628,1C31,1+C13,4831,1267,2628,12+
013,4031,1367,3628,1+013,4C:31,1207,5022,1+013,4631,12C7,6628,1+C7,5013,6022,1628,1+C7,7613,6028,1031,1+C7,2013,3028,13031,1+
€7,35C13,3C28,1°C31,12 + €7,4C13,3C28,1C31,1° + €7,6C13,3C28,1°C31,1 + C7,7€13,3C28,1C31,1° + €7,8€13,3C28,1C31,1 +
C13,2028,1°C7,3¢31,1 + C13,2C28,1%C7,4¢31,1% + C13,2€2817C7,5C22,1 + C13,2€281°C7,7C31,1 + C7,2C13,7C281°C31,1 +
C7,4C13,5022,1631,12+C7,6013,5622,1028,1+C7,7013,5622,1C31,1+C7,3013,6828,12631,1+C7,4813,6028,1631,12+C7,2013,5622,1028,12—
€2,1C32,1 — C2,5C22,1 — C2 6C28,1 — C2,7C31,1 T C32,1C7,3C13,1C28,1C31,1 + 032,107,4013,1631,12 + 013,4631,1207,1032,1 +
613,2028,1207,1032,1+632,1C7,2613,1028,12+C7,8613,7031,1+C7,1013,8632,1+C7,8013,1C32,1+C7,8013,5022,1+C7,8013,6628,1+
€7,5C13,1C22,1C32,11+C7,6C13,1C28,1C32,1+C7,7C13,1C31,1C32,1+C7,1C13,5C22,1C32,1+C7,1C13,6C28,1C32,1+C7,1C13,7C31,1C32,1+
€7,8C13.8 + €7.5C13,8C22,1 + C7.6C13,8C28 1 + C7,7C13.8C31,1),

ugg = C3,8_(C7,501875022,12_03,3028,1031,1 +C7,2018,6028,13+C7,601876028,12+01872028,14C7,2+018,2028,1307,6+
018,2028,1207,8+C7,4018,7C31,13+C7,7018,7031,12+018,4031,1407,4+C18,4031,13C7,7+C18,4031,1207,8+C7,4C18,8031,12—
63,4631,12 - 03,2028,12 + €7,3C18,5C22,1C28,1C31,1 + C7,5C18,3C22,1C28,1C31,1 + C7,2C18,8028,12 + c7,1C18,8C32,1 +
C7,8C18,1C32,1 +C7,8C18,5C22,1 1 €7,8C18,6C28,1 T C7,8C18,7C31,1 + C7,1018,1C32,12 —C3,1C32,1 —C3,5C22,1 —C3,6C281 —
C3,7C31,1+C7,3818,8028,1C31,1+C18,2628,1207,4031,12+618,2028,1207,5022,1+018,2628,1267,7031,1+C7,2C18,7C28,12031,1+
07,3018,7628,1031,12+C7,5C18,7C22,1031,1+C7,6618,7028,1631,1+C18,4031,1207,2028,12+C18,4031,1307,3028,1+C18,4631,1207,5022,1+
618,4031,1207,6828,1+C7,6018,5022,1028,1+C7,7018,5622,1C31,1+C7,3018,6C2&12631,1+C7,4818,6628,1631,12+C7,5018,6822,1028,1+
C7,7C18,6C28,1C31,1 + C7,2C18,3028,13031,1 + 07,3018,3028,12031,12 + C7,4C18,3028,1031,13 + C7,6C18,3028,12031,1 +
C7,7618,3028,1C31,12+C7,8018,3628,1031,1+C18,2628,1367,3C31,1+C7,4C18,5622,1C31,12+C7,2618,5622,1028,12+C7,1618,5622,1632,1+
€7,1€18,6C28,1C32,1 +C7,1C18,7C31,1C32,1 T C7,8C18,8 + C7,5C18,1C22,1C32,1 + C7,6C18,1C28,1C32,1 + C7,7C18,1C31,1C32,1 T
C32,107,1018,3628,1031,1+032,1C7,3018,1028,1031,1+C32,1C7,4018,1C31,12+018,2028,1207,1032,1+018,4C31,12C7,1C32,1+
032,107,201871028,12 + c75C18,8C22,1 + C7,6C18,8C28,1 + C7,7C18,8C31,1),

Ug8 = Ca8 — (07,2022,102&12 + €7,3C22,1€28,1C31,1 + C7,4C22,103.1,12 - C4,2C28,12 — C4,3C28,1C31,1 — 04,4031,12 +
€7,1C22,1C32,1 +C7,5C22,12 +¢7,6C22,1C28,1 +C7,7C22,1C31,1 — C4,1C32,1 — C4,5C22.1 — C4,6C28,1 — C4,7C31,1 +C7,8C22.1),

Us,8 = C5,s—(07,2028,13+C7,3028,12031,1+C7,4028,1C31,12—05,2028,12—05,3028,1031,1—65,4631,12+C7,1628,1032,1+
C7,5C22,1C28,1 + C7,6828,12 + C7,7C28,1C31,1 — C5,1C32,1 — C5,5C22,1 — C5,6C28,1 — C5,7C31,1 + C7,8028,1)a

ugs = ce,8—(C7,2¢28,12¢31,1+C7,3C28,1¢31,1°+C7,4C31,1° —C6,2C28,1> —C6,3C8,1C31,1 —C6,4C31,1 2 +C7,1C31,1C32,1+
C7,5C22,1C31,1 + C7,6C28,1C31,1 + C7,7C31,12 — €6,1C32,1 — C6,5C22,1 — C6,6C28,1 — C6,7C31,1 + C7,SC31,1),

ugg = Cs,s—(C13,22028,14+2 013,2013,3028,13031,1+2 013,2013,4028,12031,12+C13,32628,12031,12+2 013,3013,4028,1031,13+
C13,42031,14+2 613,1613,2028,12032,1 +2c13,1€13,3¢28,1€31,1C32,1+2 013,1013,4031,12032,1 +2 013,2013,5622,1628,12+
2¢13,2C13,6C28.1°+2 €13 .2C13,7C28,1°C31,1+2 €13 3C13.5C22,1C28 1C31.1+2 €13 3C13,6C28 1°C31,1+2 €13 3C13,7C28,1C31,1 >+
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2013,4€13,5C22,131,12+2 €13,4C13,6C28,1C31,12+2 C13,.4€13,7¢31,1°+C13,12¢32.12+2 €13,1€13,5C22,1¢32,1+2 €13,1C13,6C28,1C32,1+
2¢13,1C13,7C31,1C32,1+2 €13,2C13 8C28.12+2 €13 3C13,8C28,1C31,1 T2 €13 4C13,8C31,1°+C13,5°C22,1°+2 €13 5C13,6C22,1C28 1+
2¢13,5€13,7C22,1C31,1 -|-613,62028,12 +2c13,6C13,7C28,1C31,1 +C13,72C31,12 —08,2028,12 —(8,3C28,1C31,1 —08,4031,12 +
2¢13,1€13,8C32,1 + 2€13,5C13,8C22,1 + 2€13,6C13,8C28,1 + 2€13,7C13,8C31,1 — €8,1C32,1 — €8,5C22,1 — C8,6C28,1 —
cs,7C31,1 + C13,8%),

Ug.8 = C9,8—(013,5018,5022,12—69,3028,1031,1+C13,6C18,2628,13+Cl3,6618,6c28,12+C13,2828,14618,2+C13,2628,13018,6+
013,2028,12018,8 + 013,8018,2028,12 + C13,8018,4C31,12 + 013,7618,4031,13 + 013,7018,7031,12 + C13,4031,14C18,4 +
013,4031,13818,7 + C13,4C31,12818,8 - 69,4631,12 - 09,2028,12 +€13,5C18,3C22,1C28,1€31,1 T €13,3C18,5C22,1C28,1C31,1 +
013,5018,2022,1028,12+C13,1C18,8032,1+C13,8018,1032,1+C13,8018,5022,1+013,SC18,6028,1+C13,8618,7031,1+C13,8018,3028,1C31,1+
613,7018,2028,12031,1 + 013,7018,3028,1031,12 + €13,7C18,5C22,1€31,1 + C13,7C18,6C28,1C31,1 + 613,4031,12018,2028,12 +
013,4031,13018,3028,1 +013,4031712018,5022,1 +C13,4031,12018,6C28,1 +013,6018,3028,12031,1 -i-013,6(?18,40223‘5,1031,12 +
€13,6C18,5C22,1C28,1 1+ C13,6€18,7C28,1C31,1 + 013,3018,2028,13031,1 + 013,3018,3628,12031,12 + 013,3018,4628,103.1,13 +
013,301876028,12031,1 +013,301877C28,1031712 +€13,3€18,8C28,1C31,1 +013,2028,13018,303171 +013,2028,12018,4C31712 +
C13,2028,12618,5022,1 + 013,2628,12018,7031,1 + C13,5C18,6C22,1C28,1 + C13,5C18,7C22,1C31,1 + 013,5018,4622,1(331,12 +
613,5018,8622,1+C13,6018,8628,1+613,7C18,8C31,1+632,1C13,3C18,1C28,1C31,1+832,1C13,1618,3028,1C31,1+C13,4C31,12018,1C32,1+
013,2028,12618,1032,1 + 032,1613,1018,2028,12 + 632,1013,1018,4031,12 + €13,5C18,1€22,1€32,1 1+ €13,6C18,1€28,1C32,1 +
C13,7C18,1C31,1032,1+C13,1618,1032,12—69,1632,1—69,5622,1—69,6628,1—09,7031,1+C13,8818,8+C13,1(318,5822,1C32,1+
€13,1C18,6C28,1C32,1 + €13,1€18,7C31,1C32,1),

U10,8 = Clo,s—(013,2622,1828,12+613,3022,1628,1831,1+013,4622,1C31,12—610,2828,12—610,3028,1631,1—010,4031,124-
€13,122,1C32,1 + C13,5C22,1% + C13,6C22,1C28,1 + €13,7€22,1C31,1 — €10,1C32,1 — €10,5C22,1 — €10,6C28,1 — €10,7€31,1 +
613,8022,1)7

u11,8 = 11,8 — (C13,2¢28,1° + C13,3¢28,12¢31,1 + €13,4C28,1€31,17 — €11,2C281° — €11,3C28,1C31,1 — C11,4C31,1° +
€13,1C28,1C32,1 1 C13,5C22,1C28,1 + 613,6028,12 +c13,7C28,1€31,1 — €11,1€32,1 — C11,5C22,1 — C11,6C28,1 — €11,7C31,1 +
€13,8C28,1)

Ui2,8 = C12,8 — (613,2028,12031,1 + C13.,3028,1031,12 + 013,4631,13 - 012,2028,12 — C12,3C28,1C31,1 — 012,4031,12 +
€13,1C31,1C32,1 + C13,5C22,1C31,1 + C13,6C28,1C31,1 + C13,7C31,12 —C12,1C32,1 — C12,5C22,1 — C12,6C28,1 — C12,7C31,1 +
013,8031,1)7

Ui4,8 = 014,8—(018,22628,14+2 618,2018,3628,13031,1+2 C18,2018,4828,12631,12+018,32028,12631,12+2 618,3018,4628,1031,13+
c1s,4%c311%+2 ¢18 10182028 1%C32,1+2 C18.1C18,3C28.1C31.1C32,1 +2 C18,1C18.4C31,12C32,1+2 C18 2C18.5C22,1Ca8 12+

2 018,2018,6028,13+2 618,2018,7028,12631,14-2 01873018,5322,1628,1331,1+2 618,3818,6028,12031,1 +2 C18,3018,7028,1031,12+
2¢18,4C18 5C22.1C31,1°+2 C18,4C18,6C28.1C31,1°+2 C18.4C18,7C31,1°+C18.1°C32.12+2 C18.1C18,5C22,1C32.1+2 C18.1C18,6C28,1C32,1
2c18,1€18,7¢31,1€32,1 12 618,2018,8028,12+2 €18,3C18,8C28,1C31,1+2 618,4018,8031,12+018,52022,12+2 €18,5C18,6C22,1C28,11
2C18,5C18,7C22,1C31,1+C18,62C28,12+2 C18,6C18,7C28,1C31,1+C18,72C31,12 —C14,2C28,12 —C14,3C28,1C31,1 —C14,4C31,1 >+

2 €18,1C18,8C32,1 T 2 €18,5C18,8C22,1 1 2618,6018,8028,1 + 2018,7018,8031,1 — C14,1C32,1 — C14,5C22,1 — C14,6C28,1 —
c14,7¢31,1 + C18,8%),

Uis,8 = 015,8—(618,2022,1028,12+C18,3C22,1C28,1C31,1+018,4022,1631,12—015,2628,12—015,3028,1031,1—015,4031,12+
€18,1€22,1C32,1 + 018,5022,12 + €18,6C22,1C28,1 + €18,7C22,1C31,1 — C15,1C32,1 — C15,5C22,1 — C15,6C28,1 — C15,7C31,1 +
018,8022,1)7

Ui6,8 = C16,8 — (018,2628,13 + 018,3828,12631,1 + 018,4628,1031,12 - 016,2028,12 — C16,3C28,1C31,1 — 616,4031,12 +
C18,1C28,1C32,1 + C18,5C22,1C28,1 + C18,6C28,1° + C18,7€28,1C31,1 — €16,1C32,1 — C16,5C22,1 — C16,6C28,1 — C16,7C31,1 +
618,8028,1)7

U178 = 17,8 — (C18,2C28,1%C31,1 + C18,3C28,1C31,1% + C18,4C31,1° — C17,2C281% — C17,3C28,1C31,1 — C17,4C31,1° +
€18,1€31,1€32,1 + C18,5C22,1C31,1 + €18,6C28,1C31,1 + 018,7631,12 —€17,1€32,1 — C17,5C22,1 — C17,6C28,1 — C17,7C31,1 +
C18,8C31,1),

u19,8 = C19,8 — (*019,2628,12 — €19,3C28,1C31,1 — 619,4031,12 — €19,1C32,1 — €19,5C22,1 — €19,6C28,1 — €19,7C31,1 +

22,1%),

U20,8 = €20,8 — (—020,202&12 — €20,3C28,1€31,1 — 020,4031,12 — €20,1C32,1 — €20,5C22,1 — €20,6C28,1 — €20,7C31,1 +
€22,1C28,1),
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U21,8 = C21,8 — (*021,2628,12 — €21,3C28,1C31,1 — 621,4031,12 — €21,1C32,1 — C21,5C22,1 — €21,6C28,1 — C21,7C31,1 +
022,1031,1),

U23,1 = €C23,1 — (028 1 )a

U24,1 = C24,1 — (C28 17C31, 1)

U25,1 = C25,1 — (028 1 )7

U26,1 = C26,1 — (628 1C31,1 )7

U271 = C27,1 — (028 1C31 1)

U29,1 = €C29,1 — (03 )

u30,1 = €30,1 — (031 )

Here are the values we choose for the 154 parameters in Cy and the consequent values for
the 25 variables that are eliminable variables due to the shape of the polynomials u; ;, in order
to obtain the generators of a particular ideal a in Mf(jg, 3):

values for the parameters in Cy

ci1=-3,c12=2,c13=-3,c14=0,c15=1,c16=—-2,c17=-3,¢c21=-1,c20=-1,¢c23=-1,
Co4 = =2, C5 = —1,c06 = =3, ca7 = —3,¢c31 =0, c32=—2,¢c33 =-1,c34=—2,c35=—1,
36 =2, c37=lL g1 =1,cuo=—-1,cu3=-2,c4u=1,c45=-1,c46=-1,c47=-3,¢c51= -2,
cs2 = 2,053 =2,¢c54=—-2,¢55=0,c56=1,¢57=-1,¢61=—1,¢62=-3,¢63=—2, c,4 =2,
Ce5 = —2,¢C66 = —3,¢C67=—2,¢c11=-2,¢c720=-1,¢c73=0,c74=0,¢c75=-1,¢cr6 =1, c77 = -2,
crg=1,c81=1,¢c82=2,¢c83=0,¢c84=0,c85=-3,c86=—1,c87=-2,c91=1,co2=-3,
c93=0,c94=0,c95=0,co96=—2,c97=0,ci01=0, cio2 =—2, c10,3 = —2, c10,4 = —1, ci05 = —3,
€106 = —3, clo,7 = 2, c111 = 2, c112 = =3, c113 =0, c114 = 0, 115 = =1, c116 = =2, c11,7 = 1,
ci21 = —1, cio2 = 2, c123 = —3, ci124 = —2, c125 = 2, c126 = 1, ci27 = =2, c131 = 1, c132 = 0,
c133 =0, c134 = 2, c135 = 0, c136 = 0, c137 = —1, c138 = 2, c14;1 = 2, c1a2 = —2, clu3 = —3,
claa = 1lc1a5 = 0, clu6 = =1, clar = =2, c151 = 1, ci52 = =1, c153 = 0, ci54 = —1, ¢c155 = =3,
€156 = —2, C15,7 = —2, C16,1 = —2, C162 = 2, c16,3 = —1, c16,4 = —2, c16,5 = —3, c16,6 = —3, 16,7 = —3,
cir1=—1,cir2=-2,c173=-2,c174= -3, c175 = =3, cire = =2, c177 = —1, c181 = —3, c182 = —3,
€183 = 2, c184 = —3, c185 = —2, c186 = 1, c18;7 = —2, c1gg = 1, c19,1 = 0, c192 = —1, c193 = =3,
c194 =0, c195 =0, c196 = =3, c19,7 = 2, c20,1 = 1, c20,2 =0, €20,3 = —3, 204 = —2, 205 = 2, c20,6 = 0,
c20,7 = 2,011 =1,¢c012 =0, 013 =2,¢14 =0, 015 =0, co16 =0, co1,7 = —1, ca21 = =3, 281 = 1,
c31,1 = —3, 321 = —1;

values for the 25 eliminable variables
18 = 126, C2,8 = 270, C38 = —209, C48 = —60, C58 = 28, Ce,8 = —67, g8 = 469, Cog = —412,

€10,8

= —61, c118 = 29, c128 = —61, c148 = 342, c158 = 55, ci168 = —23, c178 = 69, ci9g = 10,

€208 = 19, co18 =13, ca31 =1, cos;1 = =3, ca5,1 = 1, co6,1 = 9, c271 = —3, 29,1 = —27, 30,1 = 9;

generators of a

— (—Sx‘;’ + 126x% — 32122 — 2x123 + T1T4 — 3 X223 + 2:10%),

TeT7 — (—x:{’ + 270 a:% —3T1x9 — 3X1T3 — T1T4 — 2x§ — ToX3 — J;%),

( 209%1 + 2120 — 22123 — T1X4 — 2962 — ToX3 — 2x3)

(xl — 60 ml —3T1x9 — T1X3 — T1x4 + 172 — 2xox3 — x3),

( 2x1+28m1—mlxg+x1x3—2x2+2x2x3+2x3)

( x1—67:171721:1:6273z11’372:171x4+2x272z2x373:17§),
( 2951 + xl — 21122 + T1T3 — X124 — 363)

‘f+469x1 — 22129 — x1X3 — 3T124 +2x3)

(23 — 41223 — 22123 — 323),

( 61x1+2x1m2—3x1x3—3x1x4—x2—2x2x3—2x3)

( a:1+29$1 +x1x2—2x1x3—x1x4—3x3)
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Tolg — (f:ci{’ —61 x% — 22120 + X123 + 22124 — 293% —3xox3 + 2x§),
T1Tg — (x:f + Qm% —x129 + 290%),

x% — (2:3:{ —|—342x% — 22129 — 2123 +x§ — 3xox3 — ng),

TaTs — (x:f + 55 a:% —2x1x9 — 22123 — 3T1T4 — a:% — x%),

T3T5 — (—Qﬁ — 233:% —3x129 — 32123 — 3T104 — 230% — Xox3 + 2x§),
Tols — (—x? + 69x% —T1x9 — 2x1T3 — 3T1T4 — 3x§ — 2x9x3 — 2x§),
T1T5 — (—3m? + w% — 22122 + X123 — 22124 — 3x§ + 2x013 — 31}%),
1:2 — (10x% +2x129 — 3x123 — 3T2T3 — m%),

T3Ty — (xzf + 193:% + 22129+ 21124 — 237% — 3952:1:3),

Tolg — (x‘f + 13 Q:f — 1o + Zzgxg),

3Ty — (—3 m‘;’), 3 — (I‘I’), Tox3 — (—3 x?), 123 — (x‘;’), 313 — (9:5‘;’), T1T2T3 — (—3 x:{’)7 r3r3 — (sr:‘i’),
tzs — (727:@), 173 — (9:&{’), 279 — (73 x:{’), i — (f:n‘{i”)

Concerning the proof of Theorem 4.5

Here is the list of the non-null parameters forming the set C'
€1,2,€1,3,C1,4,C1,5,C1,6,C2,2,C23,C24,C25,C2.6,C32,C33,C34,C35,C36,C42,C43,C44,C45,C46,C52,
C5,3,C5,4,C5,5,C5,6, C6,25 €6,3, C6,4, C6,5, C6,6, C7,2, C7,3, C7,4, C7 5, C7 6, C7,7, C8,2, C8,3, C8,4, C8 5, C8 6, 9,2,
C9,3,C9.4,C9.5, C9 6, C10,2, 10,3, 10,4, C10,5, 10,6, C11,2, C11,3, C11,4, C11,5, C11,6, C12,2, C12,3, C12,4, C12,5,
C12,6,C13,2,C13,3,C13,4, C13,5, C13,6, C13,7, C14,2, C14,3, C14,4, C14,5, C14,6, C15,2, C15,3, C15,4, C15,5, C15,6»
C16,2, C16,3, C16,4, C16,5, C16,6, C17,2, C17,3, C17,4, C17,5, C17,6, C18,2, C18,3, C18,4, C18,5, C18,6, C18,7, C19,2,
C19,3, C19,4, C19,5, 19,6, €20,2, €20,3, €20,4, €20,5, €20,6, C21,2, C21,3, C21,4, C21,5, C21,6, C31,1-

Here are the polynomials forming the marked bases of the ideals in the family Fj3:
2% — (c1,20% + 13223 + €1,47% + €1 5T124 + €1 6T123),
TeT7 — (02,233§ + C2,3T2x3 + 62,4333 + 257124 + C2,6T123),
T5x7 — (03,2$§ + ¢c3,32223 + 03,430% + c3 52104 + C36T123),
Tak7 — (04,2I§ + c4,37273 + C4,4l’§ + €4 57104 + Ca6T123),
- (05,23312), + ¢5,3T223 + 05,43?3 + ¢5 52104 + C5,67123),
- (06,293:2), + C6,3T223 + 6,473 + C 5L1L4 + C6 6T123),

37
27
r1x7 — (07,23352), + C7,3T2x3 + 07743?% + c75T1%4 + C76T1T3 + C77T1T2),

xg — (08,255% + ¢8,3T2T3 + C8,4T3 + C3 53124 + C3,6T173),

T5Xg — (09,23312), + c9,3273 + 69,4373 + Co5x1T4 + Co6T123),

T4 — (€10,223 + €10,322T3 + €10,423 + C10,52124 + C10,62123),

T3Tg — (011,2333 + Cc11,3T273 + C11,4$5 + €11,5T1%4 + €11,62123),

Toke — (612,2233 + C12,3T273 + C12,4$% + ci2,52124 + C12,62123),

T1Xg — (013,233§ + C13,3T2x3 + 613,433% + €13,5T1%4 + C13,62123 + C13.7T1T2),
z? — (614,296% + 14,3223 + 014,4933 + C14,521%4 + Cl4,62123),

T4k — (015,2!1% + c15,3T2x3 + C15,4I§ + ¢15,5T1%4 + C15,62123),

T3x5 — (016,255% + C16,372T3 + C16,4~T% + C16,5T124 + C16,62123),

Toks — (617,2£E§ + c17,3T2x3 + 017,4965 + 1752124 + C17,62123),

T1X5 — (018,2$§ + C18,3T2T3 + 018,496% + C18,5T124 + C18,6T123 + C18,70122),
z3 — (019,250;% + C19,3%273 + 019,4$§ + C19,521%4 + C19,6T1T3),

T3xy — (020,233% + 20,3273 + 020,433% + €20,5T124 + €20,61%3),

Tokyg — (621,2$§ + c21,3%273 + 021,4963 + C21,52124 + €21, 62123),

22wy, 73, 03, 1123, 2303, 117073, B33, 73, 103, 2270 — (C3117%), 7%,

According to the characteristic of the field K, here are two marked bases generating two
ideals corresponding to points of the family F3 at which we compute the Zariski tangent space
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to Hilbzﬁz for every characteristic different from 2 and 3, the Zariski tangent space to at least
one of these points has dimension 153:
x% — (—x4x1 + 2x§ +4dx3T9 + 22371 + 4x§),
T7Te — (—x4a:1 + 3:1:% — T3To + x3x1),
T7Ts — ( 2x4x1 + 356‘% + 2x37T9 + 2x3x1),
XT7xy — ( T4l — x% + x3x1 — x%),
T7T3 — ( T4 + 223201 — 2 ZE%),
T7To — ( x4 + z% + 2x310 + 3:1:%)
(x4x1 + 49:3 — T3T9 — 22371 + 3x2 + 2x2x1)
x% — (72 r4x1 — 22329 + 3371 + 3:1:2),
TeTs — (4 :vg + 329 + 3371 + 4x§)
TeTy — ( x3 + 4x3:52 + 2x311 + 4x2)
TeT3z — ( 4x1 + x3 + 4x2) TeTo — (—2 T4l — ng — 2x3x0 + 2x3x1),
Tex1 — ( — X3T2 — XT3X] — x% + xgxl)
x% (2;10 x1+4x3—x3x2—2x3x1—2x2)

T5Ty — (2 T4 + 4x3 + x3719 + x2),

T7T1 —

T5T3 — ( T4T1 — x% +4x3T9 + T3T] — 2m%),
T5To — ( 2x421 + 2 x§ + 4 x5 + x%),
T5T1 — ( Tax1 — 2:63 — 2x3%9 — x% + xzml)

mi (3£L' T +4x3+2x3m2+m3m1—2x2)

TaT3 — ( 2x4x1 — 2953 + 4319 + 22371 — x%),

334332 ( 295% —2x3x9 + 223771 + x%),

3?4.’1,‘1, .Tg, l‘%xg, x%:fn, $33’3%, T3T2x1, .’1?3.%%, $g, .’17%5(51, .’172.1'% — (4.’1?1), .’L‘All

m? — (3 Tax1 — $§ + x3x9 + 371 + x%),
TrTg — (—2 T4 — x% + 223719 + 31;33:1),

— 2x3x0 + 4371 + 295%)
T4T1 + 2303 — x3T9 +4x371 + 4332)

T7xly — (
(

Trxy — (x43:1 + 33:3),
(
(

Lrlyg —

T7Lo — 3m§ + x3x9 + T3T1 — 23:%),

2x4x1 + X370 + 4371 + 43:% + 33623;1),
x% ( 2x471 — 23:3 + x3x0 + 21371 — 23:2)

( 2333 — T3x1 —|—4x2)

(2 m3 +4x319 — 22371 + 23:2)

TeT3z — ( 2x4x1 + 4333 + x310 + 21371 + 3x§),

7Ty —

TeTs —
TeTy —
TeTo — (T4 — :53 — 2x3z2 + x311 + 4:1:2)

Ter1 — (—2x421 + 13 — 2x3x9 — 223711 + a:2 + 2z2x1),

zg—( 2z4x1+3x3+x3x1+2x2)

T5X4 — (x4x1 — 2333 — 2x3x9 — X371 + 312)

T5T3 — (4 r4x1 + 4:173 — T3T1 — .’E%)

T5To — ( 421 + 4x3 — T3Ty — 2x3x1)

T5T1 — (x4x1 + 4x3 — T3T9 — 22311 — 2x2)

;Ui — (fx4ac1 — x3 +4x320 + 2321 + 3x2),

T4T3 — (4 T4l — x% +4dx309 — 22321 — ng),

T4To — (3 x% — 2x329 + 2371 + 3x§),

(E4£L’%, (E%, (E%Z’Q, x%wl, xgl'%, T3Xx2X1, .’ng%, (E%, .’E%(El, (EQCL’% — (4 IE%) 7x411
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