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A B S T R A C T

Type-1 diabetes incidence is increasing during the last decades. Recently, a role of microbiota alteration is
proposed as pre-diabetic and diabetic risk factor. A bicentric case-control study is in progress in Northern Italy.
Here preliminary results are shown. The microbiome clusterization showed a division between cases and con-
trols even if fingerprint profiles are heterogenic. Methanobrevibacter smithii is highly present only in few patients.
The diversity index and the microorganism sequenced in cases and controls, seems to be quite dissimilar. The
conclusive results could show a significant predictive value for the bio-indicators evaluated.

Introduction

The global prevalence of diabetes has nearly doubled, during the
last 35 years, reaching the 8.5% in the adult population [1]. Recently,
evidences are produced on the interconnection among microbiome,
metabolome and T1DM progression [2–4]. The aim of this work is to
evaluate microbiome composition and specific quantitative difference
between T1DM cases at the onset and controls.

Materials and methods

This case-control study (ClinicalTrials.gov ID: G12114000080001)
included T1DM and healthy children. The T1DM cases were integrated
into the study at the disease onset, with hyperglycemia – with/without
ketoacidosis – polyuria/polydipsia symptoms, high value of glycated
haemoglobin (> 42mmol/mol) and T1DM-specific auto-antibodies
positivity. Healthy children were included if comparable to cases in
terms of age, gender and ethnicity. Inclusion criteria were: age
(5–14 years), normal weight and residence in Piedmont (north-west
Italy). Exclusion criteria were: celiac, chronic diseases diagnosis, eating
disorders, overweight/obesity, active infections, use of antibiotics/
probiotics/any other medical treatment that influences intestinal mi-
crobiota during the 3months before the study start [5]. During the last
control before the hospital discharge, the study participation was

proposed to the children and his guardians. A kit for stool collection
was delivered following validated procedure [6]. In the lab, the samples
were homogenised and 2 g aliquots were stored at −80 °C. DNA ex-
traction was performed using the PowerFecal DNA Isolation Kit (MoBio
Laboratories Inc.). Fluorimetric quantification of DNA samples was
performed using a Qubit™ fluorometer (Life Technology Ltd.). Within
the first six months of project, 26 children aged between 5 and 13 years
are included, 13 at the T1DM onset and 13 healthy as control. Extracted
DNA concentrations ranged between 22 and 155 ng/µL (mean 30.4 ng/
µL). Samples were stored at −20 °C until biomolecular analysis.

PCR-DGGE

PCR products for DGGE were obtained by amplifying total bacterial
16S rRNA genes. Primer pairs were 357F-GC and 518R [7]. All PCR
reactions were performed with the T100 Biorad Thermocycler and the
Master Mix (166-5009, Bio-Rad) was used (final volume 25 μl). DGGE
was performed as previously described [8] using a DCode System (Bio-
Rad), with gradient 30–50%. Electrophoresis ran at 200 V for 5 h at
60 °C in 1× TAE buffer. Gels were stained for 30min with SYBR® Green
I (Sigma-Aldrich) and visualized under Gel-Doc XR (Bio-Rad). DGGE
bands were excised, incubated one night at −20 °C, washed, and cru-
shed in sterilized water. Supernatant (1 μl) was used as template and
PCR was performed as above, except for BSA and the employment of
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modified linker-PCR bacterial primers [9]. PCR products were se-
quenced (Genechron – Ylichron srl) and searched for sequence simila-
rities in the NCBI database using BLASTn analysis.

qRT-PCR

The stool samples were quantified for total bacteria (TotBact) [10],
Methanobrevibacter smithii (16S rDNA [10] and functional nifH gene
[11]) and Akkermansia muciniphila [12]. RT-qPCR was performed with
C1000 Thermal Touch (Bio-Rad). 2 µl of 1:10 extracted DNA was added
to a reaction mixture (1:100 only for TotBact) consisting of IQ™ Mul-
tiplex PowerMix (Bio-Rad), molecular probe (10 µM), primers (10 µM
final concentration, Thermo Fisher Scientific) and ultrapure water in a
20 µl final volume. The reaction conditions were 95 °C-3min (1X),
95 °C-10 sec, 59 °C-15 sec, 72 °C-15 sec (39X), 72 °C-1 min. Genomic
DNA of microorganism target (ATCC®) were used as standards. To
confirm the amplification of each target, gel electrophoresis was per-
formed on 2% agarose gels.

Statistical analysis

The DGGE gel analysis was performed with Bionumerics 7.2. The
hierarchical classification was performed by UPGMA system (1% tol-
erance and optimization level) and Pearson correlation. Statistical
analysis was performed using the SPSS Package 24.0. We applied log
transformation of non-normally distributed data, Spearman rank-order
correlation coefficient and T-test for independent variables.

Results and discussion

No difference could be observed for age and gender between case
and control groups (Table 1A). The average of Shannon’s diversity
index was 2.82 ± 0.25, 4% lower in the patients and the Simpson’s
index showed a 27% less diversity in patients (both T-test p > .05).
The hierarchical phylogenetic clustering showed a main division in two
clusters with a similarity< 14%. 10/13 patients were included in one
of this cluster while the other cluster include all the controls and
showed a higher similarity (> 50%) (Graphical Abstract). Gut micro-
biota of all children was predominately composed by Firmicutes and
Bacteroidetes, followed by Proteobacteria and Actinobacteria, con-
sistent with previous studies [5,13,14]. The major difference between
case and control groups was found in the prevalence of bacteria at
genus-division level. In the children with diabetes, we observed – by
sequencing – an increase in the presence of two members of Bacter-
oidetes: Bacteroides clarus and Alistipes obesi and of Bifidobacterium
longum.

Alistipes obesi is an obligate anaerobic rod, with optimal growth
observed at 37 °C. It is different respect the other Alistipes sp. for its

taxono-genomics profile moreover it is the first Alistipes isolated from
the gut of an obese patient [15]. In recent published article is observed
a growth of Alistipes sp. both in obese [16] and in T2DM patients [17].

Other remarkable results, in the group of patients, were the decrease
of the presence of Bacteroides vulgatus, oleiciplenus, coprophilus and dorei
as the decrease of some Firmicutes (i.e. Eubacterium and
Faecalibacterium prausnitzii) and Fusicatenibacter saccharivorans.

A. muciniphila level significantly correlated with Shannon index
(Spearman’s rho= 0.415 p < .05).

The Table 1B shows the quantification of specific indicators in cases
and controls. Methanobrevibacter smithii is under the method LOQ in all
the samples, excluding 3 patients in which it is present at level of 107

gene copies/g stool. All the 3 patients are comprised into the same
cluster (TDM1 cluster). There was no significant difference between the
groups, except for M. smithii (Table 1B). Such methanogen species is
increasing during the time starting from the onset in T2DM patient
cohort [18] and in obese cohort. M. smithii seems to be able to po-
tentiate the process of adipose tissue build-up and thus the obesity
status [19]. Moreover, it is suggested a significant correlation between
breath out methane and autonomic neuropathy exacerbation in T1DM
[20]. This evidence can also suggest an implication of M. smithii – as
major human gut methanogen – in such disease.

Conclusion

These are only preliminary data on the first part of the cases and
controls recruitment. The data are yet lack in numbers and no NSG
technique were yet applied, however it seems clear that some bio-in-
dicators could be relevant at the end of the study. In particular, M.
smithii, generally very low in children, as well Simpson’s diversity index
could become significant T1DM bio-indicators. Such research data will
provide a tool to the T1DM early diagnosis and prevention.
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