
Simple Voting Algorithms for Italian Parsing

Alessandro Mazzei

Dipartimento di Informatica, Università di Torino
Corso Svizzera 185, 101049 Torino, Italy

mazzei@di.unito.it

Abstract. This paper presents an ensemble system for dependency pars-
ing of Italian: three parsers are separately trained and combined by
means of a majority vote. The three parsers are the MATE parser1, the
DeSR parser2, and the MALT parser3. We present three experiments
showing that a simple voting combination further improves the perfor-
mances of the parsers.

1 Introduction

In the last few years Natural Processing Language (NLP) community devoted
great attention to the dependency formalisms and many practical NLP sys-
tems adopted the dependency parsing [16]. Larger dependency treebanks and
more sophisticated parsing algorithms improved the performances of dependency
parsers for many languages [21, 13]. For instance, dependency parsing for Ital-
ian constantly increased its performances. As reported in the Evalita evaluation
campaigns [12], the best scores for Italian dependency parsing (expressed in La-
belled Attachment Score, LAS) was 86.94% in 2007, 88.73% in 2009, and 91.23%
in 2011 [8]. These results have been obtained by using the Turin University Tree-
bank, a dependency treebank for Italian [7] (see Section 3). However, statistical
dependency parsing seems to still have room for improving. On the one hand,
new promising specific algorithms for learning and classification are emerging;
on the other hand, universal machine learning techniques seem to be useful for
this specific task. Some algorithms use larger sets of syntactic features (e.g. [19,
10]), while others are trying to apply general techniques to combine together the
results of various parsers [26, 23, 14, 3, 24, 17]. We designed three experiments on
parser combination for Italian that follows both these directions.

We employed three state of the art statistical parsers, which use sophisticated
parsing algorithms and advanced feature sets. The three parsers are the MATE
parser [6], the DeSR parser [2], the MALT parser [22]. Moreover, in our system
we combined these three parsers by using two very simple voting algorithms [9,
26]. We decided to apply an “out of box” approach, i.e. we applied each parser
with its standard configurations for learning and classification.

1 http://code.google.com/p/mate-tools/, version 2.0
2 http://sites.google.com/site/desrparser/
3 http://maltparser.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302166319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 A. Mazzei

Now we give a brief description of the three parsers applied in our experi-
ments, i.e. MATE, DeSR and MALT parsers.

The MATE parser [5, 6] is a development of the algorithms described in [10,
15]. It basically adopts the second order maximum spanning tree dependency
parsing algorithm. In particular, Bohnet exploits hash kernel, a new parallel
parsing and feature extraction algorithm that improves the accuracy as well as
the parsing speed [6]. The MATE performances on English and German, which
are 90.14% and 87.64% respectively (LAS), posed this parser at the state of the
art for these languages [13, 6, 1].

The DeSR parser [2] is a transition (shift-reduce) dependency parser similar
to [25]. It builds dependency structures by scanning input sentences in left-to-
right and/or right-to-left direction. For each step, the parser learns from the
annotated dependencies if to perform a shift or to create a dependency between
two adjacent tokens. DeSR can use different set of rules and includes additional
rules to handle non-projective dependencies. The parser can choose among sev-
eral learning algorithms (e.g Multi Layer Perceptron, Simple Vector Machine),
providing user-defined feature models. In our experiments we adopted for DeSR
the Multi Layer Perceptron algorithm, which is the same configuration that the
parser exploited when it won the Evalita 2009 competition.

The MALT parser [22] implements the transition-based approach to de-
pendency parsing too. In particular MALT has two components: (1) a (non-
deterministic) transition system that maps sentences to dependency trees; (2) a
classifier that predicts the next transition for every possible system configuration.
MALT performs a greedy deterministic search into the transition system guided
by the classifier. In this way, it is possible to perform parsing in linear time for
projective dependency trees and quadratic time for arbitrary (non-projective)
trees [20]. MALT has several built-in transition systems, but in our experiments
we adopted just the standard “Nivre arc-eager” system, that builds structure
incrementally from left to right. Moreover, we use the standard classifier pro-
vided by MALT, i.e. the SVM (Simple Vector Machine) basic classifier on the
standard “NivreEager” feature model.

To our knowledge this is the first work that experimented the MATE parser
on Italian, while DeSR and MALT parsers have been used in many occasions
on Italian (e.g. [17, 4]), reaching the best results in several contests. In the next
Sections we describe our approach for ensemble parsing (Section 2) and we re-
port the results of three experiments (Section 3), before concluding the paper
(Section 4).

2 The combination algorithms

In order to combine the three parsers we used two very simple algorithms, COM1
and COM2 (see algorithms 1 and 2), both implemented in the PERL program-
ming language. These algorithms have been previously experimented in [26] and
in [24]. The main idea of the COM1 algorithm is to do a democratic voting



Simple Voting Algorithms for Italian Parsing 3

among the parsers. For each word4 of the sentence, the dependency (the par-
ent and the edge label) assigned to the word by each parser is compared: if at
least two parsers assign the same dependency, the COM1 algorithm selects that
dependency. In the case that each parser assigns a different dependency to the
word, the algorithm selects the dependency assigned by the “best parser”. As
noted by [26], who use the name voting for COM1, this is the most logical de-
cision if it is possible to identify a priori the “best parser”, in contrast to the
more democratic random choice.

foreach sentence do
foreach word in the sentence do

if DependencyParser2(word) == DependencyParser3(word) then
DependencyParser-COM1(word) := DependencyParser2(word)

else
DependencyParser-COM1(word) := DependencyParser1(word)

end
end

end

Algorithm 1: The combination algorithm COM1, that corresponds to the voting
algorithm reported in [26]

The COM2 algorithm is a variation of the COM1. COM1 is a single word
combination algorithm that does not consider the whole dependency structure.
This means that incorrect dependency trees can be produced by the COM1
algorithm: cycles and multiple roots can corrupt the “treeness” of the structure.
The solution that we adopt in the COM2 algorithm is naive: if the tree produced
by the COM1 algorithm for a sentence is corrupted, then the COM2 returns the
tree produced by the “best parser”. Again, similarly to [26], who use the name
switching for COM2, this is the most logical decision when there is an emerging
best parser from a development data set.

4 In this paper we use the term word in a general sense, as synonym of token.



4 A. Mazzei

foreach sentence do
foreach word in the sentence do

if DependencyParser2(word) == DependencyParser3(word) then
DependencyParser-COM2(word) := DependencyParser2(word)

else
DependencyParser-COM2(word) := DependencyParser1(word)

end
end
if TREE-COM2(sentence) is corrupted then

TREE-COM2(sentence) := TREE-PARSER1(sentence)

end
end

Algorithm 2: The combination algorithm COM2, that corresponds to the
switching algorithm reported in [26]

3 Experimental Results

We applied our approach for parsing combination in three experiments. In the
first experiment we use the datasets provided in the SPLeT competition [11],
in the second experiment we used the datasets provided in the Evalita 2011
competition [8], and in the third experiment we used both the datasets. For all
the experiments we used two machines. A powerful Linux workstation, equipped
with 16 cores, processors 2GHz, and 128 GB ram has been used for the training
of the MATE parser, that is the most computationally expensive system: on this
machine the average training time for MATE was 8 hours.

Another Linux workstation equipped with a single processor 1GHz, and 2
GB ram has been used for the training of the DeSR and MALT parsers: that
usually required a couple of hours. This machine has been used for testing all the
systems: this phase required several minutes for MATE parser and few minutes
for MALT and DeSR parsers. MALT and DeSR parsers accept as input the
CONLL-07 format, that is the format provided by the SPLeT organizers. In
contrast, MATE accepts the CONLL-09 format: simple conversions scripts have
been implemented to manage this difference.

3.1 The SPLeT experiment

In the SPLeT experiment, a first run was performed in order to evaluate the “best
parser” in the COM1 and COM2 algorithms. We used the ISST training5 (71, 568
words, 3, 275 sentences) as training set and the ISST development6 (5, 165 words,
231 sentences) as development set. The first row in Table 1 shows the results of
the three parsers in this first experiment. MATE parser outperforms the DeSR
and MALT parsers: MATE does ∼3% better than DeSR and ∼5% better than

5 File: it isst train.splet
6 File: it isst test.splet



Simple Voting Algorithms for Italian Parsing 5

MATE DeSR MALT COM1 COM2 BLW2 BLW3 BLW4

DevSet 81.92 78.99 77.04 82.54 82.36 81.45 82.54 82.63

TestSet 82.57 78.68 77.98 83.20 83.08 82.23 83.15 83.24

NatReg 75.76 70.66 70.33 76.28 75.88 74.78 76.07 75.97

Table 1. The performances (LAS score) of the three parsers, their simple combination
(COM1 and COM2), their blended combination (BlendedW2 , BlendedW3 , BlendedW4)
on the SPLeT test set, development set, Regional laws set.

MALT. On the basis of this result, we used MATE as our “best parser” in the
combination algorithms (cf. Section 2). COM1 and COM2 reach the score of
82.54% and 82.36% respectively, and so both combination algorithms improve
the performances of the MATE parser close to the 0.5%.

In a second run, we used the whole ISST as training set7 (total 76, 733 words,
3, 506 sentences) and we used the blind file provided by the organizers as test
set8 (5, 662 words, 240 sentences, European Directives Laws). The second row in
Table 1 shows the results of the three parsers in this second experiment: the value
83.08%, produced by the COM2 algorithm, is the final result of our participation
to the SPLeT shared task [18]. Note that there is a ∼ 0.1% difference between
the COM1 and COM2 results: similar to [26, 24] we have 10 corrupted trees
in the test set, i.e. ∼ 4% of the total (240 sentences). In Table 2 we detailed
the results of the three parsers in the SPLeT experiment on the basis of their
agreement. When the three parsers agree on the same dependency (Table 2,
first row), this happens on ∼ 72% of the words, they have a very high LAS
score, i.e. 95.6%. Moreover, DeSR and MALT parsers do better than the MATE
parser only when they agree on the same dependency (Table 2, second row).
The inspection of the other rows in Table 2 shows that COM1 algorithms has
the best possible performance w.r.t. the voting strategy. In other words, COM1
selects all the parser combinations that correspond to higher value of LAS score
(cf. the discussion on minority dependencies in [24]).

In a third run, we again use the whole ISST as training set9 (total 76, 733
words, 3, 506 sentences), but we use the NatReg file provided by the organizers
as test set10 (5, 194 words, 119 sentences, Regional Laws of Piedmont Region).
The third row in Table 1 shows the results of the three parsers in this third
run: in this case we have 75.88% for COM2 algorithm. This lower result can be
advocated to the different nature of the domain. It is interesting to note that in
this experiment MALT and DeSR parsers give similar results (∼70%), while the
MATE parser still outperforms them by ∼5%.

7 File: it isst train.splet and it isst test.splet
8 File: it EULaw test blind.splet
9 File: it isst train.splet and it isst test.splet

10 File: it NatRegLaw test blind.splet



6 A. Mazzei

Scores Frequency

MATE == DeSR == MALT 71.99
95.6

MATE != DeSR == MALT 4.20
30.7 45.8

MATE == DeSR != MALT 7.70
67.2 14.4

MATE == MALT != DeSR 8.21
59.1 20.0

MATE != DeSR != MALT 7.89
31.1 14.5 16.3

Table 2. The detailed performances (LAS score) of the three parsers and their simple
combination on the SPLeT blind set, corresponding to the first row of the Table 1.

3.2 The EVALITA experiment

We performed a second experiment on two different training and test sets be-
longing to a different Italian Treebank, which has a different PoS tag set and
a different dependency label set. We used for learning the Evalita 2011 Devel-
opment Set11 (93, 987 words, 3, 452 sentences; balanced corpus of newspapers,
laws, wikipedia) and we use for testing the Evalita 2011 test set12 (7, 836 words,
300 sentences; balanced corpus): these sets have been annotated according to the
format of the Turin University Treebank [8]. The first row in Table 3 shows the
results of the three parsers in this experiment: in this case we have 89.16% for
COM2. It is interesting to note that the improvement of the COM2 algorithm
with respect to the MATE parser is only ∼ 0.1%. In Table 4 we detailed the
results of the three parsers in this run on the basis of their agreement. Again,
when the three parsers agree on the same dependency (Table 4, first row) which
happens for ∼ 78% of the words, they have a very high LAS score, i.e. 96.6%.
In contrast with the SPLeT experiment, here we do not have a relevant im-
provement when DeSR and MALT parsers do better than the MATE parser,
i.e. only when they agree on the same dependency (Table 4, second row). In
other words, on the SPLeT test set, the COM113 algorithm does much better
than MATE since DeSR and MALT parsers have a good performance (45.8% vs.
30.7%) when they do not agree with the MATE parser: this is not true for the
EVALITA experiment, where DeSR and MALT have 38.8% while MATE has
35.2%.

In order to evaluate the COM1 and COM2 algorithms in a more general
context, we performed two new runs on the EVALITA dataset by using other
parsers. We used five parsers that have participated to the Evalita 2011 compe-

11 File: evalita2011 train.conll
12 File: evalita2011 test.conll
13 The same consideration hold for COM2: in the second experiment there are just 8

corrupted trees



Simple Voting Algorithms for Italian Parsing 7

tition [8]. In the first run (second row in Table 3 and Table 5) we combined the
Parsit14, the UniPi15 and the FBKirst16 parsers, i.e. the best scored systems in
the competition. In the second run (third row in Table 3 and Table 6) we com-
bined the Parsit, UniPi and the UniTo parsers, i.e. two statistical parsers and
one rule-based parser. From Table 3 we can note that the best result (92.54%)
is obtained by the COM1 in the second run, i.e. when the UniTo parser belongs
to the ensemble. Comparing the second rows in Table 5 and in the Table 6 we
can explain this result. There is a relevant improvement when UniPi and UniTo
parsers do better than the Parsit parser, i.e. the COM1 algorithm do much bet-
ter than Parsit since UniPi and UniTo parsers have a good performance (29.6%
vs. 58.3%) when they do not agree with the Parsit parser. This result confirms
that the performance of the parsing combination depends on the “diversity” of
the parsers involved rather than on the absolute score of each single parser.

MATE DeSR MALT COM1 COM2 BLW2 BLW3 BLW4

89.07 86.26 80.76 89.19 89.16 88.03 89.19 89.19

Parsit UniPi FBKirst COM1 COM2 BLW2 BLW3 BLW4

91.23 89.88 88.62 91.95 92.04 91.12 91.97 91.93

Parsit UniPi UniTo COM1 COM2 BLW2 BLW3 BLW4

91.23 89.88 85.34 92.54 92.50 91.39 92.57 92.65

Table 3. The performances (LAS score) of the MATE, DeSR, MALT, Parsit, UniPi,
FBKirst and UniTo parsers, their simple combination (COM1 and COM2), their
blended combination (BLendedW2 , BLendedW3 , BLendedW4) on the Evalita 2011 test.

3.3 Parsing combination versus Re–parsing experiment

Similar to [26], we designed the COM2 algorithm since COM1 can produce cor-
rupted dependency trees. COM2 tests the correctness of the tree and in the case
of corruption returns the dependency structure produced by the “best parser”
of the ensemble. We hypothesized that this strategy can produce good results in
our system since one of the parser of the ensemble drastically outperforms the
others. However, some more general solution to the tree-corruption problem have
been proposed: the re–parsing strategy [23, 14, 3]. In re–parsing, a new, not cor-
rupted, dependency tree is produced by taking into account the trees produced
by each parser of the ensemble. Attardi and Dell’Orletta proposed an approxi-
mate top-down algorithm that starts by selecting the highest-scoring root node,
then the highest-scoring children and so on [3]. Sagae and Lavie together with
Hall et al. proposed a two-steps algorithm: (1) to create a graph by merging all

14 http://www.parsit.it
15 The UniPi parser is the DeSR parser tuned for this specific competition.
16 The FBKirst parser is an ensemble combination of the MALT parser.



8 A. Mazzei

Scores Frequency

MATE == DeSR == MALT 78.39
96.6

MATE != DeSR == MALT 3.38
35.2 38.8

MATE == DeSR != MALT 9.17
82.0 7.2

MATE == MALT != DeSR 4.27
63.3 19.6

MATE != DeSR != MALT 4.78
40.7 18.4 7.9

Table 4. The detailed performances (LAS score) of the MATE, DeSR and MALT
parsers and their combination on the Evalita 2011 test set.

Scores Frequency

Parsit == UniPi == FBKirst 85.15
97.7

Parsit != UniPi == FBKirst 6.34
37.7 49.0

Parsit == UniPi != FBKirst 3.59
75.9 9.4

Parsit == UniPi != FBKirst 2.57
66.8 19.5

Parsit != UniPi != FBKirst 7.89
52.3 16.1 12.6

Table 5. The detailed performances (LAS score) of the Parsit, UniPi and FBKirst
parsers on the Evalita 2011 test set.

the structures produced by the parser on the ensemble, and (2) to extract the
most probable dependency spanning tree from this graph [23, 14].

Surdeanu and Manning provided experimental evidence that re–parsing al-
gorithms are a good choice for practical ensemble parsing in out domains [24]:
in order to confirm this hypothesis we performed a third experiment on both
the SPLeT and EVALITA datasets by using the “MaltBlender” tool [14]. In
Table 1 and Table 3 the columns BLW2

, BLW3
, BLW4

report the application of
the algorithm described in [14]. There are three weighting strategies: the results
of the three parsers are equally weighted (W2); the three parsers are weighted
according to the total labeled accuracy on a held-out development set (W3);
the parsers are weighted according to labeled accuracy per coarse grained PoS
tag on a held-out development set (W4). For the first, the second and the third
runs of the SPLeT experiment (Table 1), the held-out development set is the
SPLeT development set; for the EVALITA experiment (Table 3), the held-out
development set is the Evalita 2011 test set.



Simple Voting Algorithms for Italian Parsing 9

Scores Frequency

Parsit == UniPi == UniTo 80.92
98.2

Parsit != UniPi == UniTo 4.57
29.6 58.3

Parsit == UniPi != UniTo 7.82
81.7 9.3

Parsit == UniPi != UniTo 2.96
72.1 15.5

Parsit != UniPi != UniTo 3.73
49.6 23.2 8.3

Table 6. The detailed performances (LAS score) of the Parsit, UniPi and UniTo parsers
on the Evalita 2011 test set.

Three evidences seems to emerge from the third experiment: (1) the re–
parsing strategy always performs slightly better than COM2 algorithm but not
always better than COM1 algorithm; (2) there is no winning weighting strategy
for re–parsing; (3) it does not seem that blending performs better out domain
than in domain.

4 Conclusions

In this paper we described three parsing experiments on three parsers, i.e. the
MATE, the DeSR and the MALT parsers. The first emerging issue by these
experiments is that the MATE parser has a very good performance on Italian
ISST treebank, both in domain and out domain, reaching very good scores. The
EVALITA experiment confirms that similar results can be obtained on the Turin
University Treebank. The second emerging issue is that very simple combina-
tion algorithms, as well as more complex blending algorithms, can furthermore
improve performance also in situations where one parser outperforms the others.

In future research we plan to repeat our experiments on a larger set of parsers.
In particular, on the basis of the results emerged by the EVALITA experiment,
i.e. that “diversity” is an important value in combining parsers, we want to
perform more tests on the combination of statistical parsers with rule based
parsers.

References

1. Anders, B., Bernd, B., Hafdell, L., Nugues, P.: A high-performance syntactic and
semantic dependency parser. In: Coling 2010: Demonstrations. pp. 33–36. Coling
2010 Organizing Committee, Beijing, China (August 2010), http://www.aclweb.
org/anthology/C10-3009

2. Attardi, G.: Experiments with a multilanguage non-projective dependency parser.
In: Proceedings of the Tenth Conference on Computational Natural Language



10 A. Mazzei

Learning (CoNLL-X). pp. 166–170. Association for Computational Linguistics,
New York City (June 2006), http://www.aclweb.org/anthology/W/W06/W06-2922

3. Attardi, G., dell’Orletta, F.: Reverse revision and linear tree combination for de-
pendency parsing. In: HLT-NAACL. pp. 261–264 (2009)

4. Attardi, G., Simi, M., Zanelli, A.: Tuning DeSR for the Evalita 2011 Dependency
Parsing. In: Working Notes of EVALITA 2011. CELCT a r.l. (2012), iSSN 2240-
5186

5. Bohnet, B.: Efficient parsing of syntactic and semantic dependency structures. In:
Proceedings of the Thirteenth Conference on Computational Natural Language
Learning: Shared Task. pp. 67–72. CoNLL ’09, Association for Computational Lin-
guistics, Stroudsburg, PA, USA (2009), http://dl.acm.org/citation.cfm?id=

1596409.1596421

6. Bohnet, B.: Top accuracy and fast dependency parsing is not a contradiction. In:
Proceedings of the 23rd International Conference on Computational Linguistics
(Coling 2010). pp. 89–97. Coling 2010 Organizing Committee, Beijing, China (Au-
gust 2010), http://www.aclweb.org/anthology/C10-1011

7. Bosco, C., Lombardo, V.: Dependency and relational structure in treebank annota-
tion. In: Proceedings of the COLING’04 workshop on Recent Advances in Depen-
dency Grammar. Geneve, Switzerland (2004), http://www.di.unito.it/~bosco/
publicat/dependency-coling04.zip

8. Bosco, C., Mazzei, A.: The evalita 2011 parsing task: the dependency track. In:
Working Notes of EVALITA 2011. CELCT a r.l. (2012), iSSN 2240-5186

9. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
10. Carreras, X.: Experiments with a higher-order projective dependency parser. In:

Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007. pp. 957–
961 (2007), http://www.aclweb.org/anthology/D/D07/D07-1101

11. Dell’Orletta, F., Marchi, S., Montemagni, S., Plank, B., Venturi, G.: The SPLeT-
2012 Shared Task on Dependency Parsing of Legal Texts. In: SPLeT 2012 – Fourth
Workshop on Semantic Processing of Legal Texts (SPLeT 2012) – First Shared
Task on Dependency Parsing of Legal Texts (2012)

12. EVALITA 2011 Organization Comitee: Working Notes of EVALITA 2011. CELCT
a r.l (2012)

13. Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Mart́ı, M.A., Màrquez,
L., Meyers, A., Nivre, J., Padó, S., Štěpánek, J., Straňák, P., Surdeanu, M.,
Xue, N., Zhang, Y.: The conll-2009 shared task: syntactic and semantic de-
pendencies in multiple languages. In: Proceedings of the Thirteenth Conference
on Computational Natural Language Learning: Shared Task. pp. 1–18. CoNLL
’09, Association for Computational Linguistics, Stroudsburg, PA, USA (2009),
http://dl.acm.org/citation.cfm?id=1596409.1596411

14. Hall, J., Nilsson, J., Nivre, J., Eryigit, G., Megyesi, B., Nilsson, M., Saers, M.:
Single malt or blended? a study in multilingual parser optimization. In: Proceedings
of the CoNLL Shared Task Session of EMNLP-CoNLL 2007. pp. 933–939 (2007),
http://www.aclweb.org/anthology/D/D07/D07-1097

15. Johansson, R., Nugues, P.: Dependency-based syntactic-semantic analysis with
propbank and nombank. In: Proceedings of the Twelfth Conference on Compu-
tational Natural Language Learning. pp. 183–187. CoNLL ’08, Association for
Computational Linguistics, Stroudsburg, PA, USA (2008), http://dl.acm.org/

citation.cfm?id=1596324.1596355

16. Kübler, S., McDonald, R.T., Nivre, J.: Dependency Parsing. Synthesis Lectures on
Human Language Technologies, Morgan & Claypool Publishers (2009)



Simple Voting Algorithms for Italian Parsing 11

17. Lavelli, A.: An Ensemble Model for the EVALITA 2011 Dependency Parsing Task.
In: Working Notes of EVALITA 2011. CELCT a r.l. (2012), iSSN 2240-5186

18. Mazzei, A., Bosco, C.: Simple Parser Combination. In: SPLeT 2012 – Fourth Work-
shop on Semantic Processing of Legal Texts (SPLeT 2012) – First Shared Task on
Dependency Parsing of Legal Texts. pp. 57–61 (2012)

19. McDonald, R., Pereira, F.: Online learning of approximate dependency parsing
algorithms. In: Proceedings of 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL-2006)). vol. 6, pp. 81–88 (2006)

20. Nivre, J.: Algorithms for deterministic incremental dependency parsing. Com-
putional Linguistics 34(4), 513–553 (Dec 2008)

21. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.: The
CoNLL 2007 shared task on dependency parsing. In: Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007. pp. 915–932 (2007), http://www.
aclweb.org/anthology/D/D07/D07-1096

22. Nivre, J., Hall, J., Nilsson, J.: Maltparser: a data-driven parser-generator for de-
pendency parsing. In: Proceedings of LREC-2006. vol. 2216-2219 (2006)

23. Sagae, K., Lavie, A.: Parser combination by reparsing. In: Moore, R.C., Bilmes,
J.A., Chu-Carroll, J., Sanderson, M. (eds.) HLT-NAACL. The Association for
Computational Linguistics (2006)

24. Surdeanu, M., Manning, D.C.: Ensemble models for dependency parsing: Cheap
and good? In: NAACL. The Association for Computational Linguistics (2010)

25. Yamada, H., Matsumoto, Y.: Statistical dependency analysis with support vector
machines. In: Proceedings of IWPT. vol. 3 (2003)

26. Zeman, D., Žabokrtskỳ, Z.: Improving parsing accuracy by combining diverse de-
pendency parsers. In: International Workshop on Parsing Technologies. Vancouver,
Canada. pp. 171–178. Association for Computational Linguistics (2005)


