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The DAMA-NaI Collaboration has observed a 4s C.L. model-independent effect investigating the annual
modulation signature in the counting rate of an NaI~Tl! setup ~total exposure of 57986 kg day! and the
implications of this effect have been studied under different model-dependent assumptions. In this paper we
extend one of the previous analyses, the case of a WIMP with a purely spin-independent coupling, by discuss-
ing in detail the implications on the results of the uncertainties on the dark matter galactic velocity distribution.
We study in a systematic way possible departures from the isothermal sphere model, which is the parametri-
zation usually adopted to describe the halo. We specifically consider modifications arising from various matter
density profiles, effects due to anisotropies of the velocity dispersion tensor and rotation of the galactic halo.
The hypothesis of WIMP annual modulation, already favored in the previous analysis using an isothermal
sphere, is confirmed in all the investigated scenarios, and the effects of the different halo models on the
determination of the allowed maximum-likelihood region in the WIMP mass and WIMP-nucleon cross section
are derived and discussed.
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I. INTRODUCTION

In the last few years various technical approaches h
been exploited in direct searches for weakly interacting m
sive particles~WIMP! @1#. In particular, the DAMA-NaI Col-
laboration has collected a very large body of statistics wh
allows one to look for the distinctive signature in dark mat
~DM! direct detection represented by the annual modula
of the rate@2–4#, an effect which is due to the rotation of th
Earth around the Sun@5#. The analysis of the DAMA-NaI
data after 4 years of running@2,4#, corresponding to a tota
exposure of 57986 kg day, has indeed led to the observa
of an annual-modulation effect, which does not appear to
related to any possible source of systematics@3#. This excit-
ing result has been analyzed under different hypothese
the properties of WIMP dark matter: purely spin independ
coupling @2#, mixed spin-coherent interaction@6#, inelastic
dark matter@7#. In the case of purely spin-independent inte
actions, the annual modulation result has been shown t
compatible with a galactic halo composed, at least partia
by relic neutralinos in different classes of supersymme
models@8,9#.

In the present analysis we consider the case of a WI
with coherent interactions dominant over the spin-depend
ones. The analysis of the counting rate of any direct de
tion experiment may be done in terms of the WIMP massmW

and of the quantityjsscalar
(nucleon), wheresscalar

(nucleon) is the WIMP-

*Electronic address: belli@roma2.infn.it
†Electronic address: cerulli@roma2.infn.it
‡Electronic address: fornengo@to.infn.it;

URL: http://www.to.infn.it/;fornengo/
§Electronic address: scopel@to.infn.it
0556-2821/2002/66~4!/043503~17!/$20.00 66 0435
e
s-

h
r
n

on
e

on
t

-
be
y,
c

P
nt
c-

nucleon cross section for scalar interaction andj1 is the frac-
tional amount of local nonbaryonic DM density which
ascribed to the WIMP responsible for the effect (j<1) @2,8#.
Performing a maximum-likelihood analysis of the data, t
DAMA-NaI Collaboration has derived a region in the plan
mW-jsscalar

(nucleon) which is compatible at 3s C.L. to the ob-
served effect of annual modulation. The properties of t
region are sensitive to astrophysical inputs@4,10#, some of
which deserve a reanalysis and a deeper insight.

One of the main ingredients for the calculation of t
expected rates is the distribution function of WIMPs in th
six-dimensional phase space:F(rW,vW )d3r d3v @where the po-
sition vector rW[(x,y,z) and the velocity vector vW
[(vx ,vy ,vz) are defined in the rest frame of the Galaxy#.
Direct detection ratesRdet depend on the distribution func
tion ~DF! at the Earth position in the Galaxy:

f ~vW ![F~RW 0 ,vW !, ~1!

whereRW 0[(R0,0,0) is the location of the Earth at a distan
R0.8.5 kpc from the galactic center and along the galac
plane. It is therefore clear that an accurate calculation of
expected detection rates requires a knowledge of the ph
space distribution functionF(rW,vW )d3r d3v.

From the observational side, the most relevant piece
information coming from astrophysics is related to the ro
tional velocity of objects bounded to the Galaxy:

v rot
2 ~r !5

GMtot~r !

r
, ~2!

1In Ref. @2# the same symbol indicates a different quantity:j
5rW/(0.3 GeV cm23).
©2002 The American Physical Society03-1
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whereG is Newton’s constant andMtot(r ) denotes the tota
mass contained inside the radiusr[urWu:

Mtot~r !5E
r 8,r

d3r 8r tot~rW8!. ~3!

The rotational velocity therefore depends on the total ma
density distribution in space:

r tot~rW !5rDM~rW !1rv is~rW !, ~4!

where the DM density distribution function is

rDM~rW ![E d3v F~rW,vW !, ~5!

andrv is(rW) represents the contribution to the matter dens
due to components other than the DM, like the disk and
bulge. The local values for the rotational velocity and for t
DM matter density are denoted byv0[v rot(RW 0) and r0

[rDM(RW 0) and they represent two key parameters in
calculation of WIMP direct detection rates, as it will be di
cussed in the following.

In order to calculate the DF of Eq.~1! one must invert Eq.
~5! taking into account observational data. This problem
affected by degeneracies that cannot be solved without
ing some piece of information. This explains why the velo
ity distribution represents one of the main sources of unc
tainty in the calculation of direct detection signals.

The usual approach to this problem consists in assum
that the system has some symmetry and that the distribu
F depends on the phase space parameters only through
integrals of motion~energy, angular momentum!: this last
condition automatically implies stationarity and that t
Jeans’ equations are verified@11#. The velocity ellipsoids i j
[^v iv j& may then be calculated as a function of the deri
tives of the potential~which are related to the rotational ve
locity! by making use of Euler’s equation@11#. Physically,
this corresponds to imposing hydrostatic equilibrium b
tween pressure and gravitational attraction.

The most common and widely used example of suc
procedure, and by far the simplest, is the isothermal sph
model. It consists in a spherical infinite system with a fl
rotational curve, which automatically impliesr(r )}r 22 and
the potentialC} ln(r2) . The DF may be easily worked ou
and turns out to be a Maxwellian: f (v)}exp
„23v2/(2v rms

2 )…, where v[uvW u and v rms denotes the roo
mean squared velocity of the WIMPs. The isothermal sph
describes a self-gravitating gas of collisionless particles
thermal equilibrium, representing the highest entropy re
rangement of WIMPs in their phase space. A strong ar
ment in favor of this last property is the ‘‘violent relaxation
model of Lynden-Bell@12#, which indicates that the violently
changing gravitational field of the newly formed Galaxy m
have led the non-interacting WIMPs to thermal equilibriu
Hydrostatic equilibrium and the assumption that the veloc
ellipsoid is isotropic allows to calculatev rms through the
relation: v rms

2 53/2v rot
2 (R0). Due to its simplicity, the iso-

thermal sphere model has become the ‘‘standard’’ assu
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tion in the evaluation of DM expected rates, and has b
used extensively in the literature, including the analysis
the DAMA-NaI modulation data@2#. However many of its
underlying assumptions~sphericity of the halo, absence o
rotation, isotropy of the dispersion tensor, flatness of the
tational curve! are not strongly constrained by astrophysic
observations. Moreover the isothermal sphere is strictly
physical and can only represent the behavior of the inner
of physical systems, since it has a total infinite mass a
needs some cutoff at large radii.

In light of the latest experimental data on WIMP dire
searches, the issue of possible departures from the isothe
sphere model has gained interest and prompted several
cussions@4,10,13#. In the present paper we intend to analy
this issue in a systematic way, by employing a compreh
sive set of self-consistent galactic halo models. Each mo
introduces a different degree of deviation from the sim
isothermal sphere. We consider modifications in the veloc
distribution function which are originated from a change
the gravitational potential or a change of the DM dens
profile @14–20#. We classify the different models dependin
on the symmetry properties of the galactic halo: spher
potential/density profile with an isotropic velocity dispe
sion; spherical potential/density profile with a nonisotrop
velocity dispersion; axisymmetric models; triaxial mode
For the axisymmetric models we also consider the possib
of having a co-rotating or counter-rotating halo.

The plan of the paper is as follows. In Sec. II we intr
duce the formalism for the calculation of direct detecti
rates and the annual modulation signal, and summarize
procedure used by the DAMA-NaI Collaboration to dete
mine the annual modulation region in the pla
mW-jsscalar

(nucleon) for a purely spin-independent interactin
WIMP. In Sec. III we describe the halo models that we
tend to discuss and introduce a naming scheme that wil
used throughout the paper. Section IV is devoted to the
cussion of the constraints on the dark halo of our Gala
coming from available observational data. In Sec. V the
nual modulation region is calculated in a systematic way
all the models previously introduced, and the results are
cussed. Finally, Sec. VI is devoted to our conclusions.

II. DIRECT DETECTION RATES AND ANNUAL
MODULATION EFFECT

The expected differential event rate of a WIMP dire
search experiment is given, for a monatomic detector, by
expression

dRdet

dER
5NT

r0

mW
E dwW f ~wW !w

ds

dER
~w,ER! ~6!

whereNT is the number of the target nuclei per unit of mas
mW is the WIMP mass,wW and f (wW ) denote the WIMP veloc-
ity and DF in the Earth frame (w5uwW u),ds/dER is the
WIMP-nucleus differential cross section andER is the
nuclear recoil energy. Notice that the detection rate is
3-2
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rectly proportional to the local DM densityr0. The generali-
zation of Eq.~6! to a diatomic detector, like NaI, is straigh
forward.

The differential cross section is, in general, a sum o
coherent and a spin-dependent contribution. In this pape
consider only the case of a WIMP whose interactions
dominated by the coherent part. In this case the rate ma
expressed in terms of the WIMP-nucleon scalar cross
tion, sscalar

(nucleon), as

ds

dER
.S ds

dER
D

coherent

.
Fn

2~ER!

ER
max S 11mW /mp

11mW /mN
D 2

A2sscalar
(nucleon), ~7!

wheremp andmN are the proton and nucleus mass,A is the
nuclear mass number,ER

max is the maximal recoil energy an
Fn(ER) is the nuclear form factor for coherent interactio
which may be parametrized with the usual Helm express
@21#.

The relation between the velocitiesvW andwW is given by

vW 5vW % 1wW , ~8!

vW % 5vW (1vW % rot , ~9!

wherevW % andvW ( denote the velocities of the Earth and t
Sun in the Galactic rest frame (uvW (u.v0112 km/sec), and

vW % rot is the Earth’s orbital velocity around the Sun (uvW % rot
u530 km/sec). Projecting Eq.~9! in the galactic plane, one
gets

uvW % u5uvW (u1uvW % rotucosg cos@v~ t2t0!# ~10!

whereg is the inclination of the plane of rotation with re
spect to the galactic one,v52p/T with T51 year, andt0
.2nd June corresponds to the day when the Earth’s velo
is at its maximum.

The change of reference frame of Eqs.~8!, ~9!, ~10! intro-
duces through the DFf (wW ) a time dependence in the ex
pected rateRdet . In order to exploit this time-dependence
extract the modulated signal from the measured coun
rates, we follow the maximal-likelihood procedure of Re
@2#, to which we refer for a detailed discussion. This proc
dure allows to determine the region in the pla
(mW-jsscalar

(nucleon)) which is compatible with the modulatio
signal. A lower bound onmW at the valuemW530 GeV is
applied, to conform to the analysis of Refs.@2,4#.

The data we analyze in the present paper refer to the
set of data released so far by the DAMA-NaI Collaborati
@2# ~DAMA-NaI 0–4!, including also the upper limit on
jsscalar

(nucleon) obtained by the same Collaboration, as discus
in Ref. @2#. The same values of the quenching factors and
the cut efficiences as in Refs.@2,4# are used. We stress tha
also the determination of upper limits is affected by t
choice of the WIMPs DF. This means that also when c
04350
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fronting upper limits one has to specify the galactic ha
models which have been considered in the calculation.
formalism introduced in the present paper may in fact
used also to quantify the uncertainty in the determination
upper limits from direct detection experiments.

III. HALO MODELS

Let us turn now to the discussion of the galactic ha
models and of the techniques used to calculate the velo
distribution functionf (vW ). The different models are class
fied according to the symmetry properties of their mat
density profile~or gravitational potential! and of the velocity
distribution function. We define four classes:~A! spherically
symmetric matter density with isotropic velocity dispersio
~B! spherically symmetric matter density with nonisotrop
velocity dispersion;~C! axisymmetric models;~D! triaxial
models. All the models which we describe in this sectio
and that will be used in the rest of the paper, are summar
in Table II, where we also introduce a naming scheme t
will be of practical use in the discussion.

A. Spherically symmetric matter density with isotropic
velocity dispersion

The first class of models is represented by those wit
spherically symmetric matter densityr(rW)5r(r ) and isotro-
pic velocity distribution f (vW )5 f (v). These two conditions
imply that the phase-space DF depends on the space
velocity variables only through the energy, which is an in
gral of motion:F(rW,vW )5F(e), wheree5C(r )2v2/2 is the
relative energy~per unit mass! of the WIMP andC is the
relative potential, related to the total densityr tot through
Poisson’s equation@11#:

¹2C524pGr tot . ~11!

Notice thatr tot refers to all the matter components of th
Galaxy, like the disk, the bulge or the halo, as written in E
~4!.

Once the total potentialC(r ) is known, the WIMP DF
F(e) may be worked out by inverting Eq.~5!. A change of
variables fromr to C allows to cast Eq.~5! as @11#

4pE
0

C

F~e!A2~C2e!de5rDM~C!. ~12!

By performing a Laplace inversion on Eq.~12!, one obtains
the Eddington formula@11#:

F~e!5
1

A8p2

d

deE0

edrDM~C!

dC

dC

Ae2C
. ~13!

In Eqs. ~12!, ~13! the normalization ofC, which is defined
through Poisson’s equation up to an arbitrary constant
fixed by requiring thatC(`)50. The velocity distribution
function f (v) which enters the calculation of direct detectio
rates is then obtained as in Eq.~1!.
3-3
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Equation~13! shows that the dark matter DFF(rW,vW ) de-
pends not only on the halo DM density distributionrDM , but
also on the density distribution of all the other galactic co
ponents. This has to be the case, since the DM parti
move inside the gravitational potential generated by all
matter that makes up the Galaxy. A complete and rigor
determination of the DM DF will therefore require to mod
not only the galactic halo, but also all the other~disk, bulge!
components of the Galaxy~see, for instance Ref.@22#!.

However, WIMP direct detection is directly sensitive on
to local properties of the Galaxy, and in particular the r
evant parameters in the calculation of the detection rate
the local rotational velocityv0 and the local DM matter den
sity r0. In fact, v0 is directly related to the average WIM
kinetic energy, which is relevant in the scattering proc
with the nuclei of the detector, and the change of refere
frame of Eqs.~8!, ~9!, which is crucial in determining the
amount of annual modulation in the detection rate. Inste
r0 is a sort of normalization factor for the direct detecti
rate Rdet . The dependence ofRdet essentially on local pa
rameters implies that a detailed modeling of the innerr
!R0) part of the Galaxy, where the disk and bulge comp
nents are more relevant and in general dominant over
halo, is not crucial for our analysis. Moreover, the mat
density of nonhalo components at the local position in
Galaxy (r 5R0) is no longer dominant with respect to th
halo matter density at the same position~see, for instance
Ref. @22#!. The bulge, in fact, can be described by using
spheroidal density distribution which gives a sizeable con
bution inside the first kpc from the galactic center, and it
truncated at aboutr .2 kpc. The disk has an exponenti
distribution which in most of the models dies away at ab
4 kpc from the galactic center. We will therefore assume
the following that in the outer Galaxy the dominant cont
bution to the matter density is given by the halo

rv is!rDM for r *R0 . ~14!

The only basic information which is required from the no
halo components is their contribution to the local rotatio
velocity v0:

v0
25v rot

2 ~R0!5
G

R0
@M v is1Mhalo#, ~15!

where

M v is(halo)[E
r 8,R0

d3r 8rv is(halo)~r 8!. ~16!

TABLE I. Values of the parameters for the spherically symm
ric density profile of Eq.~26!.

a b g a ~kpc!

NFW @18# 1 3 1 20
Moore et al. @19# 1.5 3 1.5 28
Kravtsovet al. @20# 2 3 0.4 10
Jaffe @14# 1 4 2 160
04350
-
es
e
s

-
re

s
e

d,

-
e

r
e

a
i-
s

t
n

l

A maximal halo occurs whenM v is!Mhalo : in this case al-
most all the local rotational velocity is supported by the ha
and the local DM densityr0 gets its maximal valuer0

max

compatible with the givenv0. The opposite situation occur
when M v is assumes its maximal value compatible with o
servations: in this case, the local rotational velocity gets
maximal contribution from the nonhalo components and o
a fraction ofv0 is supported by the halo. At the same timer0

gets its minimal valuer0
min , for the samev0. The constraints

on these parameters are discussed in Sec. IV.
From the point of view of calculating the DM DF@Eq.

~13!#, the occurrence of a maximal or nonmaximal ha
modifies the gravitational potentialC(r ) and therefore the
velocity distribution function f (v) is affected. Indicating
with C0(r ) the potential for the maximal halo, the conditio
of Eq. ~14! allows the generalization to the nonmaximal ca
as:

C~r !5
r0

r0
max

C0~r !1S 12
r0

r0
maxD R0

r
v0

2 . ~17!

The condition of Eq.~14! allows to work out the total poten
tial for the case of nonmaximal halos without explicitly mo
eling the visible parts of the Galaxy~bulk, disk!: all the
dependence of these components is contained inM v is .

As a comment, we notice that the presence of a n
negligible contribution tov0 from the nonhalo component
alters also the velocity distribution function of the isotherm
sphere. The standard Maxwellian form for the isotherm
sphere is in fact correct only for a maximal halo.

Now that we have discussed the procedure to calculate
velocity distribution function once the matter density of t
DM is given, we proceed to introduce the different mode

The first type of model is a direct generalization of t
isothermal sphere by introducing a core radiusRc ~model
A1!. The density profile is

rDM~r !5
v0

2

4pG

3Rc
21r 2

~Rc
21r 2!2

, ~18!

which corresponds to the following potential for a maxim
halo:

C0~r !52
v0

2

2
ln~Rc

21r 2!. ~19!

From the analytic form of this potential we will refer to th
type of model as alogarithmic model. The usual isotherma
sphere~model A0! corresponds to the limitRc→0:

rDM~r !5
v0

2

4pG

1

r 2
, ~20!

which corresponds to the following potential for a maxim
halo:

C0~r !52
v0

2

2
ln~r 2!. ~21!

-

3-4
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TABLE II. Summary of the galactic halo models discussed in Sec. III. The label introduced in the first column is used throughout
to indicate each model in a unique way. For all the models, the numerical values of the parameters which have been used in the c
are given in the third column. The last column contains references to the models in the text. Models of class C have been ana
including co-rotation and counter-rotation of the halo through Eq.~42!.

Class A: SphericalrDM , isotropic velocity dispersion

A0 Isothermal sphere Eq.~20!

A1 Evans’ logarithmic@15# Rc55 kpc Eq.~18!

A2 Evans’ power-law@16# Rc516 kpc, b50.7 Eq.~23!

A3 Evans’ power-law@16# Rc52 kpc, b520.1 Eq.~23!

A4 Jaffe @14# Table I Eq.~26!

A5 NFW @18# Table I Eq.~26!

A6 Moore et al. @19# Table I Eq.~26!

A7 Kravtsovet al. @20# Table I Eq.~26!

Class B: SphericalrDM , non-isotropic velocity dispersion„Osipkov-Merrit , b050.4!

B1 Evans’ logarithmic Rc55 kpc Eqs.~18!,~28!

B2 Evans’ power-law Rc516 kpc, b50.7 Eqs.~23!,~28!

B3 Evans’ power-law Rc52 kpc, b520.1 Eqs.~23!,~28!

B4 Jaffe Table I Eqs.~26!,~28!

B5 NFW Table I Eqs.~26!,~28!

B6 Mooreet al. Table I Eqs.~26!,~28!

B7 Kravtsovet al. Table I Eqs.~26!,~28!

Class C: Axisymmetric rDM

C1 Evans’ logarithmic Rc50, q51/A2 Eqs.~33!,~34!

C2 Evans’ logarithmic Rc55 kpc, q51/A2 Eqs.~33!,~34!

C3 Evans’ power-law Rc516 kpc, q50.95, b50.9 Eqs.~37!,~38!

C4 Evans’ power-law Rc52 kpc, q51/A2, b520.1 Eqs.~37!,~38!

Class D: Triaxial rDM †17‡ (q50.8,p50.9)

D1 Earth on major axis, radial anisotropy d521.78 Eqs.~43!,~44!

D2 Earth on major axis, tangential anis. d516 Eqs.~43!,~44!

D3 Earth on intermediate axis, radial anis. d521.78 Eqs.~43!,~44!

D4 Earth on intermediate axis, tangential anis. d516 Eqs.~43!,~44!
g
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For a maximal halo, the velocity distribution function arisin
from Eqs.~20!, ~21! is the standard Maxwellian one. For
nonmaximal halo, a deviation is present also in theRc→0, as
discussed above. The rotational curve supported byC0 of
Eq. ~19! is:

v rot
2 ~r !5v0

2 r 2

~Rc
21r 2!

. ~22!

It is rising for small radii and at large radii becomes flat.
the RC→0 limit, v rot5v0 for all radii.

A second type of spherical model~A2 and A3! is defined
by the following matter density@16#:

rDM~r !5
bCaRc

b

4pG

3Rc
21r 2~12b!

~Rc
21r 2!(b14)/2

, ~23!
04350
which corresponds to the following potential for a maxim
halo:

C0~r !5
CaRc

b

~Rc
21r 2!b/2

~bÞ0!. ~24!

From the analytic form of this potential we will refer to th
type of model as apower-law model. It represents the spheri
cal limit of the more general class of axisymmetric ‘‘powe
law’’ model of Ref. @16# which will be discussed in Sec
III B. The family of power-law models given by Eq.~24! is
not defined forb50. However, whenb50 is substituted in
Eq. ~23!, the density of Eq.~18! is recovered. In fact the
logarithmic model turns out to have the properties of t
‘‘missing’’ b50 power law potential. Evaluating Eq.~23!
for r 5R0 the parameterCa can be expressed in terms of th
densityr0. The rotational velocity for the power-law mode
is given by:
3-5
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v rot
2 5

bCaRc
br 2

~Rc
21r 2!(b12)/2

, ~25!

FIG. 1. The quantitiesM v is ~upper panel! and v rot
100[v rot(R

5100 kpc)~lower panel! calculated as a function ofr0 for the halo
models summarized in Table II and forv05220 km sec21. The
different curves correspond, from left to right, to the following ha
models: A4, A0, D3, A3, A6, A1, A5, D1, A7, C1, C4, C3, A2, C
~upper panel!; A3, A0, D3, A5, A1, A6, A2, A4, C3, A7, C2, C1
~lower panel: here C4 and D1 are not plotted because they
indistinguishable from A7!. The horizontal lines indicate the con
straints discussed in Sec. IV. The B1–7 models have the same
sity distribution of the corresponding A1–7 models. D2 and
have the same distribution as D1 and D3, respectively.

FIG. 2. The same as in Fig. 1 forv05170 km sec21 ~the order-
ing of all the different curves is maintained!.
04350
and it is asymptotically falling withr if b.0 ~model A2!
and rising ifb,0 ~model A3!.

The last family of spherical models we consider~models
A4–A7! is defined by the following matter density:

rDM5r0S R0

r D gF11~R0 /a!a

11~r /a!a G (b2g)/a

~26!

for the choice of values of the parametersa,b,g anda sum-
marized in Table I. Except for the Jaffe model~A4!, the other
three density profiles~A5, A6, A7! are obtained from nu-
merical simulations of galaxy evolution.

B. Spherically symmetric matter density
with nonisotropic velocity dispersion

The procedure described in the previous section can
generalized to the case of a nonisotropic velocity distrib
tion, while keeping a spherically symmetric density profi
In this case, the most general DF is a function ofe and of the

re

en-

FIG. 3. The same as in Fig. 1 withv05270 km sec21 ~the
ordering of all the different curves is maintained!.

FIG. 4. Plot of the 3s annual-modulation region in the plan
jsscalar

(nucleon) versusmW using for the velocity distribution of WIMPs
the isothermal sphere model~model A0, see Table II!. The three
panels of the figure correspond tov05170, 220, 270 km sec21

from left to right. Upper~lower! regions correspond tor05r0
min

(r0
max) wherer0

min andr0
max are given in Table III.
3-6



r-

it

y
s

an

d
b-

S

d
re
he

ral
g

ite

he

to
n
lly

a

en

dy
ic
We
r
the
to a
ost
al

is

of

of

of

of
e
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magnitude of the angular momentum vector (L5uLuW ): F
5F(e,L). Among the different choices which can be pe
formed, a particularly simple case is obtained whenF de-
pends one andL only through the so called Osipkov-Merr
variable@23,11#:

Q5e2
L2

2r a
2

, ~27!

where the parameterr a is related to the degree of anisotrop
b0 of the velocity dispersion tensor~evaluated at the Earth’
position! in the following way@23#:

b0512
v̄f

2

v̄ r
2

5
R0

2

R0
21r a

2
. ~28!

Here the velocity is expressed in spherical coordinates

v̄f5 v̄uÞ v̄ r ~with v̄ i
2[^v i

2&2^v i&
2,i 5r ,u,f).

The corresponding DF can be obtained by solving a mo
fied version of Eddington’s inversion formula, which is o
tained by making the following substitutions in Eq.~13! @11#:

e→Q, ~29!

rDM~r !→rQ,DM~r ![S 11
r 2

r a
2D rDM~r !. ~30!

The models we consider are the same as discussed in
III A: the logarithmic model of Eq.~18! ~model B1!, the
power-law models of Eq.~23! ~models B2 and B3! and the
models defined by Eq.~26! ~models B4–B7!. The velocity
distribution functions, which are obtained by solving the E
dington equation with the Osipkov-Merrit term, are therefo
anisotropic with a degree of anisotropy controlled by t
parameterb0 related tor a as in Eq.~28!.

FIG. 5. The same as in Fig. 4 for the velocity distribution
model A1 ~see Table II!.

FIG. 6. The same as in Fig. 4 for the velocity distribution
model A2.
04350
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C. Axisymmetric models

In the case of axial symmetry the DF depends in gene
~at least! on two integrals of motion, the relative bindin
energye and the componentLz of the angular momentum
along the axis of symmetry. The DF may be written qu
generally as the sum of an even (F1) and an odd (F2)
contribution with respect toLz :

F~e,Lz!5F1~e,Lz!1F2~e,Lz!, ~31!

where

F65
1

2
@F~e,Lz!6F~e,2Lz!#. ~32!

When Eq. ~12! is extended to the axisymmetric case, t
densityrDM turns out to depend only on the even partF1

@11#, so that, by inverting it, the DF may be determined up
an arbitrary odd partF2 . The problem of the determinatio
of F1 for an axisymmetric matter density is both analytica
and numerically hard to perform and actually it requires
double Laplace inversion on Eq.~12!. However, for particu-
lar families of axisymmetric potentials this problem has be
solved analytically by Evans@16,15#. These families are the
axisymmetric generalization of the first two classes alrea
introduced in Sec. III A: the first family has a logarithm
potential, the second one has a power-law potential.
stress that these analytic solutions forF1 are obtained unde
the assumption that the halo potential is dominant over
other components. Therefore these solutions correspond
maximal halo. Even though they do not represent the m
general situation, their simplicity makes them of practic
use and convenient for studying the axisymmetric case.

The first family of axisymmetric potential we consider
the logarithmic potential@15# ~models C1 and C2!:

FIG. 7. The same as in Fig. 4 for the velocity distribution
model A3.

FIG. 8. The same as in Fig. 4 for the velocity distribution
model A4. In this caser0

max.r0
min , so upper and lower curves ar

not distinguishable.
3-7
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C0~R,z!52
v0

2

2
lnS Rc

21R21
z2

q2D , ~33!

whereR25x21y2 is the radial coordinate along the galac
plane,Rc is the core radius andq the flatness parameter. Th
corresponding DM density is

rDM~R,z!5
v0

2

4pGq2

~2q211!Rc
21R21~22q22!z2

~Rc
21R21z2q22!2

.

~34!

Equations~33! and ~34! are the axisymmetric generalizatio
of Eqs.~19! and ~18!. The corresponding rotational curve
obtained from Eq.~22! by substituting the radial coordinater
with the radial coordinate in the galactic planeR.

By expressingz as a function ofC through Eq.~33!, the
density of Eq.~34! may be decomposed as@16#:

r5r0~C!1R2r1~C!, ~35!

which allows to determineF1 in the form:

F1~e,Lz!5F1
0 ~e!1Lz

2F1
1 ~e!, ~36!

leading to a particularly simple analytic solution for the D
@15#. We give it for completeness in Appendix A. The rel
tion of Eq. ~35! is no longer valid for a nonmaximal halo
since in that case, the change of variable fromz to C is not
determined by the potential of Eq.~33! but by an axisym-
metric analogous of Eq.~17!. Therefore the analytic expres
sion given by Eq.~36! can be used only for maximal halo
i.e. r05r0

max.
The second family of distribution functions is a genera

zation of the axisymmetric logarithmic potential to the ca
of an asymptotically nonflat rotational curve, while prese

FIG. 9. The same as in Fig. 4 for the velocity distribution
model A5.

FIG. 10. The same as in Fig. 4 for the velocity distribution
model A6.
04350
e
-

ing the property of Eq.~35!. This is obtained for the axisym
metric power-law potential@16# ~models C3 and C4!:

C0~R,z!5
CaRc

b

~Rc
21R21z2q22!b/2

~bÞ0!. ~37!

The corresponding matter density is:

rDM~R,z!

5
bCaRc

b

4pGq2

3
~2q211!Rc

21~12bq2!R21@22q22~11b!#z2

~Rc
21R21z2q22!(b14)/2

.

~38!

Evaluating Eq.~38! for R5R0 ,z50 the parameterCa can
be expressed in terms of the densityr0. Equations~37! and
~38! are the axisymmetric generalization of Eqs.~24! and
~23! and they possess the same properties already discu
in Sec. III A. As for the case of the logarithmic potential, th
rotational curve is obtained from Eq.~25! by substituting the
radial coordinater in Eq. ~25! with the radial coordinate in
the galactic planeR, and it is asymptotically falling withR if
b.0 ~model C3! and rising ifb,0 ~model C4!.

In analogy with the logarithmic case, also for the pow
law model an analytic solution for the DF can be worked o
@16# with the form of Eq.~36!. This applies again only for a
maximal halo. The analytic formulas forF1 can be found for
completeness in Appendix A.

FIG. 11. The same as in Fig. 4 for the velocity distribution
model A7.

FIG. 12. The same as in Fig. 5, with anisotropy of the veloc
dispersion through the Osipkov-Merrit term and anisotropy para
eterb050.4 ~model B1!. The horizontal axis has been extended
the first panel.
3-8
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Co-rotation and counter-rotation of the halo

As mentioned before, the DF for an axisymmetric mod
is known up to an arbitrary odd componentF2 . The DF we
summarized above for the Evan’s models all refer to the p
even component: they all haveF2(e,LZ)50 and possess n
bulk rotation. The caseF2(e,LZ)Þ0 corresponds to the cas
of a rotating halo, where the number of particles movi
clockwise around the axis of symmetry is different from th
in the opposite sense.

A family of DF’s with bulk rotation can be studied b
constructing an explicit example forF2 . This can be done
starting from a genericF1 , by considering the linear com
bination @24–26#:

F2~e,Lz!5Fright~e,Lz!2Fle f t~e,Lz!, ~39!

where

Fright~e,Lz!5H F1~e,Lz!, vf.0,

0, vf,0,
~40!

and

Fle f t~e,Lz!5H 0, vf.0,

F1~e,Lz!, vf,0.
~41!

The distributionsFright andFle f t describe the configuration
with maximaluv̄fu with the same density profile asF1 @24#.
A DF with an intermediate value ofv̄f can be obtained as
linear combination ofF1 andF2 , or, equivalently, ofFle f t
andFright :

F~e,Lz!5hFright~e,Lz!1~12h!Fle f t~e,Lz!. ~42!

FIG. 13. The same as in Fig. 6, with anisotropy of the veloc
dispersion through the Osipkov-Merrit term and anisotropy para
eterb050.4 ~model B2!.

FIG. 14. The same as in Fig. 7, with anisotropy of the veloc
dispersion through the Osipkov-Merrit term and anisotropy para
eterb050.4 ~model B3!. The horizontal axis has been extended
the first panel.
04350
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The parameterh ranges from 1~maximal co-rotation! to 0
~maximal counter-rotation! and is related to the dimension
less spin parameterl of the Galaxy by:l50.36uh20.5u
@25#. In order to be consistent with the available extens
numerical work on galaxy formation,l should not exceed
the value 0.05@27#, implying 0.36&h&0.64. For all the
Evans model discussed in this section, we will also study
co- and counter-rotating situations, adopting the two val
h50.36 andh50.64.

D. Triaxial models

The last class of models we wish to discuss is represe
by the triaxial potential discussed in Ref.@17#:

C0~x,y,z!52
1

2
v0

2 lnS x21
y2

p2
1

z2

q2D , ~43!

which, for a maximal halo, corresponds to the DM densit

rDM~x,y,z!5
v0

2

4pG

Ax21By2/p21Cz2/q2

~x21y2/p21z2/q2!2
~44!

whereA5p221q2221,B511q222p22 and C511p22

2q22. In Ref. @17# the velocity DF f (vW ) of the system is
approximated by a triaxial Gaussian with semiaxes equa
the velocity dispersions as obtained by the solutions of
Jeans equations:

v̄ r
25

v0
2

~21d!~p221q2221!
~45!

-

-

FIG. 15. The same as in Fig. 8, with anisotropy of the veloc
dispersion through the Osipkov-Merrit term and anisotropy para
eter b050.4 ~model B4!. In this caser0

max.r0
min , so upper and

lower curves are not distinguishable.

FIG. 16. The same as in Fig. 9, with anisotropy of the veloc
dispersion through the Osipkov-Merrit term and anisotropy para
eterb050.4 ~model B5!. The horizontal axis has been extended
the first panel.
3-9



tal
n
of a

P. BELLI, R. CERULLI, N. FORNENGO, AND S. SCOPEL PHYSICAL REVIEW D66, 043503 ~2002!
TABLE III. Allowed intervals of r0 obtained from the constraints onM v is andv rot
100 for the halo models

summarized in Table II. The values ofr0
max andr0

min are used in the modulation analysis of the experimen
data of Figs. 4–18 for the models of class A and B, while onlyr0

max is used for models of class C and D i
Figs. 19–34. The value ofr0

max for the axisymmetric models of class C is not affected by the inclusion
co-rotation or counter-rotation effect through Eq.~42!.

v05170 km sec21 v05220 km sec21 v05270 km sec21

Model r0
min r0

max r0
min r0

max r0
min r0

max

A0 0.18 0.28 0.30 0.47 0.45 0.71
A1,B1 0.20 0.42 0.34 0.71 0.62 1.07
A2,B2 0.24 0.53 0.41 0.89 0.97 1.33
A3,B3 0.17 0.35 0.29 0.59 0.52 0.88
A4,B4 0.26 0.27 0.44 0.45 0.66 0.67
A5,B5 0.20 0.44 0.33 0.74 0.66 1.11
A6,B6 0.22 0.39 0.37 0.65 0.57 0.98
A7,B7 0.32 0.54 0.54 0.91 0.82 1.37
C1 0.36 0.56 0.60 0.94 0.91 1.42
C2 0.34 0.67 0.56 1.11 0.98 1.68
C3 0.30 0.66 0.50 1.10 0.97 1.66
C4 0.32 0.65 0.54 1.09 0.96 1.64
D1,D2 0.32 0.50 0.54 0.84 0.81 1.27
D3,D4 0.19 0.30 0.32 0.51 0.49 0.76
po

on
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v̄f
2 5

v0
2~2q2221!

2~p221q2221!
~46!

v̄u
25

v0
2~2p2221!

2~p221q2221!
~47!

when the Earth’s position is on the major axis of the equi
tential ellipsoid~models D1 and D2!, and:

v̄ r
25

v0
2p24

~21d!~11q222p22!
~48!

v̄f
2 5

v0
2~2q222p22!

2~11q222p22!
~49!

v̄u
25

v0
2~22p22!

2~11q222p22!
~50!

FIG. 17. The same as in Fig. 10, with anisotropy of the veloc
dispersion through the Osipkov-Merrit term and anisotropy para
eterb050.4 ~model B6!. The horizontal axis has been extended
the first panel.
04350
-

when the Earth’s position is on the intermediate axis~models
D3 and D4!. In Eqs. ~45!, ~48! the quantityd is a free pa-
rameter that in the spherical limit (p5q51) quantifies the
degree of anisotropy of the velocity dispersion tensor:

v̄f
2

v̄ r
2

5
21d

2
. ~51!

IV. CONSTRAINING THE MODELS

Once a given model is chosen for the velocity distributi
function of the dark matter particles, the parameters of
model have to be fixed using observational data. Unfor
nately, due to its ‘‘darkness,’’ all our knowledge of the halo
of indirect nature@28,22# and it includes requirements on th
circular rotational speed~constraints on its flatness and i
value at the solar circle and in the outer regions of the G
axy! as well as observational constraints on the local surf
density of the disk and on the dispersion velocity of t
bulge. In general, one should construct a composite mode
the Galaxy where the DM is coupled to other compone

- FIG. 18. The same as in Fig. 11, with anisotropy of the veloc
dispersion through the Osipkov-Merrit term and anisotropy para
eterb050.4 ~model B7!.
3-10
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EFFECT OF THE GALACTIC HALO MODELING ON THE . . . PHYSICAL REVIEW D 66, 043503 ~2002!
like the disk and the bulge, and the parameters describing
various components are varied independently requiring
the observational constraints are satisfied.

We have already noticed that WIMP direct detection ra
are particularly sensitive to the value of the rotational vel
ity v0 and the local DM densityr0 ~both evaluated at the
solar circle!. The procedure we follow in order to determin
the allowed ranges forv0 and r0 in each galactic model is
explained in the following. First of all, the experimental i
formation we use is: the allowed range for the local ro
tional velocity, the amount of flatness of the rotational cur
of our Galaxy and the maximal amount of nonhalo comp
nents in the Galaxy. The first information directly fixes t
allowed interval for v0, irrespective of the galactic hal
model. The other constraints are used in order to determ
the allowed ranges forr0, for each halo model.

The allowed interval forv0 is:

v05~220650! km sec21 ~90% C.L.!, ~52!

which conservatively relies on purely dynamical obser
tions @29#. Proper motion measurements of nearby stars@30#
lead to similar estimates for the central value ofv0, with a
significantly smaller uncertainty. However they are based
the assumption of circular orbit of the observed objects.
definiteness, we will use in the following three representat
values forv0, which correspond to its central value and
the boundaries of its allowed 90% C.L. range of Eq.~52!:
v05170,220,270 km sec21.

For the three representative values ofv0 we then deter-
mine the corresponding allowed ranges forr0. For each halo
model and for each value ofv0, we calculate, as a function o
r0, two quantities:~i! the total amount of massM v is in com-
ponents other than the halo~e.g.: disk, bulge! which is nec-
essary in order to match the given value of local rotatio

FIG. 19. The same as in Fig. 4 for the velocity distribution
model C1. Only the caser05r0

max is shown.

FIG. 20. The same as in Fig. 19 including a co-rotation effec
the halo withh50.64. The horizontal axis has been extended in
panels.
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velocity v0; ~ii ! the value of the rotational curve at a distan
of 100 kpc from the center of the Galaxy:v rot

100[v rot (R
5100 kpc). These two quantities are somewhat constrai
from observations, even though their constraints are o
obtained by using some degree of galactic modeling.
conservatively quote the following ranges@22,28#:

131010M (&M v is&631010M ( ~53!

0.8•v0&v rot
100&1.2•v0 , ~54!

whereM ( denotes the solar mass. The first constraint lim
the amount of nonhalo components, while the second
constraint of ‘‘essentially flatness’’ rotational curve: only g
lactic halo models which provide a rotational curve whi
does not deviate from a flat one more than 20% at 100
are accepted. The constraint of Eq.~54! is compatible with
the estimates of the galactic mass at large radii as obta
by the dynamics of satellites of the Galaxy@22#.

The behavior ofM v is and v rot
100 as a function ofr0 is

shown in Fig. 1~which refers tov05220 km s21), Fig. 2
(v05170 km s21), and Fig. 3 (v05270 km s21). Each line
refers to a different halo model. The upper panels show
M v is is a decreasing function ofr0, since increasing the
amount of dark matter in the Galaxy implies that less ma
in other galactic components is required to support the ro
tional curve. On the other hand, the value of the rotatio
velocity in the outer Galaxy is totally supported by the da
halo, and it is larger for more massive halos.

When the constraints expressed in Eqs.~53! and ~54! are
simultaneously applied, an allowed interval forr0 may be
derived for each halo model.

The procedure outlined above may be used as a sim
recipe for identifying the intervals for the local density p
rameter. However, some caution must be taken in the ap
cation of the bounds onM v is in Eq. ~53!. As already dis-

f
ll

FIG. 21. The same as in Fig. 19 including a counter-rotat
effect of the halo withh50.36.

FIG. 22. The same as in Fig. 4 for the velocity distribution
model C2. Only the caser05r0

max is shown.
3-11
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P. BELLI, R. CERULLI, N. FORNENGO, AND S. SCOPEL PHYSICAL REVIEW D66, 043503 ~2002!
cussed in the previous section, for the models of class A
class B we solve the Eddington equation in order to de
mine the velocity distribution function of dark matter pa
ticles. In this case we can take into account also the situa
in which the local rotational velocity is only partially sup
ported by the halo, and therefore we can apply the limits
M v is given by Eq.~53!. Instead, the analytic models of cla
C and class D may be applied only to the extreme case
fully maximal-halo, since the analytic formulas forf (vW ) are
derived under the assumption that only the halo matter d
sity is present. For these models~class C and class D! the
only case we can deal with is that of a fully maximal ha
which corresponds toM v is50. This represents a conserv
tive upper limit forr0. From Figs. 1–3 we can see that th
upper bounds tor0 obtained from theM v is50 limit are only
a few percent larger than what is obtained by imposing
lower limit of Eq. ~53!: M v is5131010M ( . For consistency
and simplicity, we will useM v is.0 as a lower limit also for
models of class A and B.

The allowed intervals forr0 that we obtain by imposing
the bounds onM v is andv rot

100 are listed in Table III. As dis-
cussed above, both valuesr0

min andr0
max will be used in the

next sections to perform the modulation analysis of
DAMA-NaI experimental data, while onlyr0

max will be used
for the analysis of the data for models of class C and D.
stress that the reason for this stands in the fact that for
analytic models of classes C and D, we knowf (vW ) only for
a maximal–halo.

V. RESULTS AND DISCUSSION

In this section we make use of the halo models descri
in Sec. III, with the choice of parameters shown in Table
to analyze the annual-modulation signal present in

FIG. 23. The same as in Fig. 22 including a co-rotation effec
the halo withh50.64. The horizontal axis has been extended in
first panel.

FIG. 24. The same as in Fig. 22 including a counter-rotat
effect of the halo withh50.36.
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DAMA-NaI data @2# in terms of relic WIMPs with purely
coherent interactions. The procedure is the one outlined
Sec. II. The results are presented as 3s annual-modulation
regions shown in the planejsscalar

(nucleon)versusmW . All figures
are divided in three panels which correspond to the ca
v05170,220,270 km sec21.

A general feature of all the models is that by raising t
parameterv0 the modulation region moves from the uppe
right to the lower-left of themW-jsscalar

(nucleon) plane. This is
easily understood since, for a given DM density profi
higher values ofv0 imply higher values ofr0 @through Eq.
~2!# and of the velocity ellipsoids i j [^v iv j& ~through the
Jeans equations!; the experimental value of the signal and t
measured WIMP-nucleus recoil energy are fixed by the d
therefore the modulation region moves downward becau

dRdet

dER
}r03sscalar

(nucleon) ~55!

@see Eq.~6!# and moves to lower masses because

ER}mW3^v2&. ~56!

On the other hand, when one compares the different d
sity profiles that we have discussed in the previous sectio
it is worth noticing that, for a given value ofv0, a stronger
singularity in the galactic center lowers the value ofr0

max ~in
order to keep constant the mass integral! with the conse-
quence that the lower part of the modulation region rises.
the smallest values ofjsscalar

(nucleon) are reached by the mode
with a less singular density profile.

Figures 4–18 show the result of the analysis for the m
els with a spherically symmetric density profile~models
A0–7, B1–7!. Models A0–7 have an isotropic velocity dis
persion, while in models B1–7 a degree of anisotropy in
velocity dispersion is introduced through the Osipkov-Mer

f
e

n

FIG. 25. The same as in Fig. 4 for the velocity distribution
model C3. Only the caser05r0

max is shown.

FIG. 26. The same as in Fig. 25 including a co-rotation effect
the halo withh50.64.
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EFFECT OF THE GALACTIC HALO MODELING ON THE . . . PHYSICAL REVIEW D 66, 043503 ~2002!
term of Eq.~27!. The amount of anisotropy is controlled b
the b0 parameter of Eq.~28! and it has been fixed at th
value: b050.4. This value corresponds to a radial anis
ropy. In order to account for the uncertainty in the DM loc
densityr0, for each case two regions are given, the hig
~lower! corresponding tor05r0

min (r0
max), wherer0

min and
r0

max have been obtained as discussed in Sec. IV and
reported in Table III. The numerical values of the paramet
summarized in the third column of Table II have been cho
in order to ensure the compatibility of the curves of Figs.
2, 3 with the constraints of Eqs.~53!, ~54!, discussed in Sec
IV. The Jaffe models A4, B4, which go into the isotherm
sphere whenRc→`, have been calculated for the smalle
allowed value of the core radiusRc in order to examine the
case of maximal departure from the usual scenario. A
consequence of this, for this modelr0

min.r0
max and in Figs.

8,15 the upper and lower modulation regions are super
posed.

The effect of radial anisotropy in the velocity dispersi
tensor (v̄ r. v̄u5 v̄f), which occurs for the models of clas
B, may be seen by comparing Figs. 5–11with the cor
sponding Figs. 12–18. As a general feature, a reduction
the modulation effect is expected, since the WIMPs ph
space is depopulated along the direction of the Sun’s ve
ity. This is confirmed by the fact that in most cases t
modulation regions move upwards and widen, although
size of the effect can be small. The effect of radial anisotro
on the WIMP mass is more involved. In particular, the mod
lation regions for models B1, B3, B5, B6 extend to heav
WIMP masses compared to the corresponding isotro
cases, while for models B2, B4, B7 the region moves
smaller WIMP masses.

As already pointed out, for the models belonging
classes C and D only the regions forr05r0

max are shown. As
far as the axisymmetric models of class C are concern

FIG. 27. The same as in Fig. 25 including a counter-rotat
effect of the halo withh50.36.

FIG. 28. The same as in Fig. 4 for the velocity distribution
model C4. Only the caser05r0

max is shown.
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they are shown in Figs. 19, 22, 25, 28. In each model
flatness parameterq has been chosen in order to have t
maximal flatness compatible with observations and with
positivity of the DF. The main effect induced by flatness
through the increase in the local densityr0, as can be seen in
Table III. As a consequence, the modulation regions for th
models reach values ofjsscalar

(nucleon) significantly below the
levels of the spherical cases. In Figs. 20, 23, 26, 29 the s
models are shown with a co-rotation effect of the halo imp
mented through Eq.~42! with h50.64, while in Figs. 21, 24,
27, 30 for the same models a counter-rotation effect withh
50.36 has been introduced. The main consequence of
co-rotation is a decrease of the relative velocity betwe
WIMPs and the Earth. The energy of WIMPs is therefo
smaller and in order to produce the same recoil energy in
detector the WIMPs have to be heavier. This can be veri
in the figures, where the modulation region of co-rotati
models may reach very high WIMP masses, even higher t
200 GeV. By the same token, in counter-rotating models
modulation region is shifted toward lower masses.

The peculiar shape of the modulation region of Fig.
deserves some comments. The two disconnected closed
tours, which arise at differentmW values, are indicative of
the superposition in the WIMP phase space of two com
nents with well separated r.m.s. velocities. This is exem
fied in Fig. 35 for the models B1 (q51) and C1 (q
51/A2), where the contour plots of the corresponding DF
are plotted in thev-vf plane~in the galactic rest frame! and
in the w-wf plane ~in the Earth’s rest frame!. It is evident
from the figure that, in flattened models, smalluLzu orbits are
depopulated compared to the spherical case, leading to
well separated populations withvf.0 and vf,0. These
two components have the same temperature in the gala
rest frame, but develop different r.m.s. velocities wh
boosted in the Earth’s rest frame. As shown in Fig. 35,
relative weight of the two populations can be tilted towar

n FIG. 29. The same as in Fig. 28 including a co-rotation effect
the halo withh50.64.

FIG. 30. The same as in Fig. 28 including a counter-rotat
effect of the halo withh50.36.
3-13
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slow or fast WIMPs in the two cases of a co-rotating
counter-rotating halo, respectively. This explains why the
rotating model of Fig. 20 develops a second minimum
high WIMP masses, and this is not observed in the co
sponding non-rotating or counter-rotating cases. We have
merically verified that the peculiar disconnected region
high WIMP masses reduces in size when the flatness pa
eter is increased~since in this way the velocity distribution
function becomes more similar to the nonflattened on!,
while it shifts towards lower masses when the core radiusRc
is decreased.

We conclude the discussion of our results with the triax
models shown in Figs. 31, 32, 33, 34 where, to be defin
the same choice of parameters of Ref.@17# is adopted. For
these models a general solution for the DF is not availa
Only the velocity ellipsoid of Eqs.~45!–~48! is known, and it
is used to fix the second moments of a nonisotropic M
wellian. This explains why the shape of the modulation
gions is quite similar to the standard case. In models D1
D2 the Earth is assumed to be located on the major axi
the density ellipsoid, while in models D3 and D4 it is plac
on the intermediate axis. Since in the two cases the S
positionR0 is the same,r0 is higher for models D1, D2 than
for models D3, D4~see Table III!. As a consequence, th
modulation regions of Figs. 31 and 32 reach smaller val
of jsscalar

(nucleon) compared to those of Figs. 33 and 34. Mod
D1 and D3 ~D2 and D4! have d521.78 (d516), which
implies a radial~tangential! anisotropy of the velocity ellip-
soid @see Eq.~51!#. Solving the Jeans equation for the pote
tial of Eq. ~43! in the spherical limitq5p51 ~which corre-
sponds to a noncored isothermal sphere! leads to the relation
@11#

vf
2 1vu

25
3

2
v0

2 . ~57!

FIG. 31. The same as in Fig. 4 for the velocity distribution
model D1. Only the caser05r0

max is shown.

FIG. 32. The same as in Fig. 4 for the velocity distribution
model D2. Only the caser05r0

max is shown. The horizontal axis
has been extended in the first panel.
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Note that this property is a consequence of the flatness o
rotational curve, and would not be true, for instance, inclu
ing a core radius in the potential. Equation~57! implies that,
in this model, the tangential components of the velocity
lipsoid are fixed byv0. As a consequence of this, radial a
isotropy (v r.vu5vf) corresponds to faster WIMPs an
tangential anisotropy to slower WIMPs. This shifts th
modulation regions towards smaller values ofmW in Figs. 31
and 33 and higher values ofmW in Figs. 32 and 34. This
effect is sizeable in the case of tangential anisotropy, wh
the modulation region may extend up tomW.270 GeV.

The results of this section are summarized in Fig.
where all the modulation regions previously discussed h
been plotted jointly. A convolution of all the regions may b
indicative of the uncertainties in the determination of t
WIMP modulation signal due to the modeling of the WIM
DF. As a final result, we show such a convolution in Fig. 3
where a single curve in the planemW-jsscalar

(nucleon) is plotted by
collecting the information contained in the analyses of all
nonrotating models considered in this paper. The region
compared with the original annual modulation region o
tained in Ref.@2# for an isothermal sphere model of the g
lactic halo with rotational velocityv05220 km s21 and lo-
cal dark matter densityr050.3 GeV cm23. From Fig. 37
we see that the DAMA-NaI annual modulation result is co
patible with WIMPs masses up tomW.270 GeV and
WIMP-nucleon cross sections in the interval: 10210 nbarn
&jsscalar

(nucleon)&631028 nbarn when the uncertainties in th
WIMP velocity DF are taken into account. Co-rotating mo
els with maximal corotation can extend the mass range e
further, up tomW.500–900 GeV, for cross section of th
order few31029 nbarn&jsscalar

(nucleon)&231028 nbarn, as it
can be seen, for instance, in Fig. 36.

FIG. 33. The same as in Fig. 4 for the velocity distribution
model D3. Only the caser05r0

max is shown.

FIG. 34. The same as in Fig. 4 for the velocity distribution
model D4. Only the caser05r0

max is shown. The horizontal axis
has been extended in the first panel.
3-14
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FIG. 35. Contour plots of the DF’s for models B1 and C1~see Table II!. From left to right, the different panels refer to models B1@panels
~a! and ~e!#, C1 @panels~b! and ~f!#, co-rotating C1@panels~c! and ~g!#, counter-rotating C1@panels~d! and ~h!#. Upper panels are plotted
in the vf-v plane, defined in the reference frame of the Galaxy, while lower panels are shown in thewf-w plane, defined in the referenc
frame of the Earth. Solid lines, big dashes, small dashes and dots correspond to growing values of the DF~in arbitrary units!. The two
disconnected closed contours which arise at differentw values in panels~f!, ~g! and ~h! signal the superposition in the WIMP phase spa
of two components with well separated r.m.s. velocities.
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VI. CONCLUSIONS

In the present paper we have extended a previous ana
of the DAMA modulation experiment for the case of
WIMP with a purely spin-independent coupling, by discus
ing in detail the implications on the results of the uncerta
ties on the dark matter galactic velocity distribution. We ha
studied a large number of viable models which deviate fr
the standard isothermal sphere in the matter density pro
in the presence of anisotropies of the velocity dispersion
sor and in effects of rotation of the galactic halo. The diff
ent models have been classified according to the symm

FIG. 36. Summary of the 3s annual-modulation regions in th
planejsscalar

(nucleon) versusmW , obtained by superimposing the resu
obtained with the velocity distributions of all the models describ
in Table II. For each of the models A1–7 and B1–7 two regions
plotted, which refer to the two extreme valuesr0

min andr0
max shown

in Table III for the WIMP local densityr0. For models C1–4 and
D1–4 only the regions which refer tor05r0

max are shown.
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FIG. 37. 3s annual-modulation region in the planejsscalar
(nucleon)

versusmW , obtained by considering all the~nonrotating! galactic
halo models discussed in this paper. The region is compared
the original annual modulation contour~shaded region! obtained in
Ref. @2# for an isothermal sphere model of the galactic halo w
rotational velocityv05220 km s21 and local dark matter density
r050.3 GeV cm23.
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properties of their matter density profile~or gravitational po-
tential! and of the velocity distribution function. We hav
specifically considered:~a! spherically symmetric matte
density with isotropic velocity dispersion;~b! spherically
symmetric matter density with nonisotropic velocity dispe
sion; ~c! axisymmetric models;~d! triaxial models.

The different models have then been used to reanalyze
DAMA-NaI 0–4 data collected by the DAMA-NaI Collabo
ration @2#; in particular a total exposure of 57986 kg da
which corresponds to 4 annual cycles, has led to the ob
vation of an annual modulation effect. The hypothesis
WIMP annual modulation, already favored in the previo
studies@2,4# by using an isothermal sphere, is confirmed
all the investigated scenarios, and the effects of the diffe
halo models on the determination of the allowed maximu
likelihood region in the WIMP mass and WIMP-nucleo
cross-section have been derived. We can summarize tha
DAMA-NaI annual modulation result is compatible wit
WIMPs masses up tomW.270 GeV and WIMP-nucleon
cross sections in the interval: 10210 nbarn&jsscalar

(nucleon)&6
31028 nbarn, when the uncertainties in the WIMP veloc
DF are taken into account. When also co-rotation of the
lactic halo is considered, the mass range extends furthe
mW.500–900 GeV, for a cross section of the order a f
31029 nbarn&jsscalar

(nucleon)&231028 nbarn. These inter-
vals quantify the extent of the annual modulation region
WIMPs with purely spin-independent couplings, as due
uncertainties in the phase space distribution function of
lactic WIMPs.
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APPENDIX: AXISYMMETRIC MODELS

In this appendix we give, for completeness, the analy
formulas of the DF’s for the axisymmetric potentials of Eq
~33!, ~37! adapted from Refs.@15,16#. All expressions are
written in the reference frame of the Galaxy.

1. Logarithmic potential

The DF for the logarithmic potential of Eq.~33! can be
written as

F~e,Lz
2!5~A1B!expS 22v2

v0
2 D 1C expS 2v2

v0
2 D , ~A1!

where

A5F04pS 2

p D 5/2S vf

v0
D 2 R0

4

~R0
21Rc

2!2

12q2

q2
, ~A2!
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B5F04pS 2

p5D 1/2
R0

2Rc
2

~R0
21Rc

2!2

1

q2
, ~A3!

C5F0p23/2
R0

2

R0
21Rc

2

2q221

q2
, ~A4!

andF050.47 GeV cm23/v0
3.

2. Power-law potential

The DF for the power-law potential of Eq.~37! for b
.0 can be written as

F~e,Lz
2!5Aẽ4/b23/21Bẽ4/b21/21Cẽ2/b21/2, ~A5!

where

ẽ[
e

Ca
5

C2
1

2
v2

Ca
5zb2

1

2 S v
v1

D 2

, ~A6!

with z5Rc /ARc
21R0

2, while the velocityv15AuCau is fixed
through Eq.~38!, and with suitable normalizations, can b
cast in the form

v15220 km sec21S r0

0.47 GeV cm23D 1/2
R0

8.5 kpc

3
q~Rc

21R0
2!(b14)/4

AubuR0Rc
b/2ARc

2~112q2!1R0
2~12bq2!

. ~A7!

The quantitiesA, B andC may be written as

A5F1S vf

220 km sec21D 2S R0

Rc
D 4

3
G~214/b!

23/2p3/2G~4/b21/2!
b~b12!S 1

q2
21D , ~A8!

B5F1S v1

220 km sec21D 2S R0

Rc
D 2

3
G~214/b!

23/2p3/2G~1/214/b!
b~b12!

1

q2
, ~A9!

C5F1S v1

220 km sec21D 2S R0

Rc
D 2

3
G~212/b!

23/2p3/2G~1/212/b!
bF22

11b

q2 G , ~A10!

with F150.47 GeV cm23/v1
3.

For b,0 Eq. ~A5! still applies, with the following modi-
fications~now Ca,0):
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ẽ[
2e

Ca
52

C1
1

2
v2

Ca
5zb2

1

2 S v
v1

D 2

, ~A11!

where

A5F1S vf

220 km sec21D 2S R0

Rc
D 4

3
G~3/224/b!

23/2p3/2G~2124/b!
b~b12!S 12

1

q2D ,

~A12!
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B5F1S v1

220 km sec21D 2S R0

Rc
D 2

3
G~1/224/b!

23/2p3/2G~2124/b!
b~b12!

1

q2
, ~A13!

C5F1S v1

220 km sec21D 2S R0

Rc
D 2

3
G~1/222/b!

23/2p3/2G~2122/b!
bF11b

q2
22G , ~A14!

with againF150.47 GeV cm23/v1
3.
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