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Abstract 

Aims: To show that an increased correlation between CpGs after selection through an EWAS 

might translate into biased replication results.  

Methods: The NINFEA cohort data were used to calculate pairwise correlation coefficients 

between CpGs selected in three published EWAS. We specified the appropriate replication 

null hypothesis, calculated r-values and Benjamini-Hochberg (BH) FDR p-values. Exposures’ 

random permutations were performed to show the empirical p-value distributions. 

Results: The average pairwise correlation coefficients between CpGs were enhanced after 

selection for the replication (e.g. from 0.14 at genome-wide level to 0.29 among the selected 

CpGs), affecting the empirical p-value distributions and the usual BH-FDR control. 

Conclusions: BH-FDR method might be inappropriate for the EWAS replication phase, and 

methods that account for the underlying correlation need to be used. 
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Introduction 

Recent technological developments have enabled the widespread use of epigenome-wide 

association studies (EWAS) focused on identification of DNA methylation markers of disease 

state and progression and markers of a variety of exposures. Many large projects and some 

consortia have been established to reach a large sample size and allow comprehensive 

epigenetic mapping.  

Although methylation occurs throughout the genome, it is often clustered along a 

chromosome with CpG sites likely being in the same methylation state when they are spatially 

close together [1]. CpG-rich areas, known as CpG islands [2], contain correlated sites with 

similar methylation state. The issue of correlation between nearby loci has been tackled to 

some extent in the EWAS by analyzing together areas with analogous functions. Region 

discovery [3], bump hunting [4], different clustering methods [5,6], or grouping by genomic 

annotations are only some of the strategies proposed in the literature that cope with correlated 

CpG sites. These methods offer biologically interpretable results but replication after the 

discovery phase is not straightforward [7]. 

As well recognized in the context of genome-wide association studies, replication and 

validation of epigenome-wide findings is essential and may be challenging. This task 

traditionally implies testing of few candidate CpG loci identified as top hits in the discovery 

sample, by applying gold-standard experimental methods, such as pyrosequencing, in an 

independent sample. Recently, high-throughput epigenome-wide studies focusing on 

exposures that have extensive impact on DNA methylation identify hundreds or thousands of 

potentially relevant single methylation sites. Replication/validation of these candidates with 

pyrosequencing is not possible in practice. Therefore, we often rely on replication in an 

independent sample with available epigenome-wide data, such as those from large epigenome 

consortia.  



 
 

Under such scenario, it is intuitive that the average pairwise correlation between single sites 

in the large discovery EWAS will be lower than the average pairwise correlation between the 

few hundreds of single sites selected for the replication study. This fact is rarely taken into 

consideration in EWAS replication studies and the analyses in the replication sample may, 

thus, be biased. Benjamini-Hochberg False-discovery rate (FDR) correction [8], which is 

typically used both in the discovery and replication phase of the epigenome-wide studies is 

robust, yet does not take into account the underlying correlation structure. In replication 

studies based on epigenome-wide data, the false-discovery controlling procedure must 

consider an appropriate replicability null hypothesis as, for example, done by be the so-called 

r-value [9]. For what we have said insofar, the robustness of the procedure to the lack of 

independence is much more important for the replication than for the discovery study. 

This article has an illustrative intent. We first show with real data examples that the average 

pairwise correlation between CpG sites increases after selection through an epigenome-wide 

discovery analysis. We then illustrate how this increased correlation may translate into biased 

interpretations of the results in replication analyses, and show the appropriate method for 

replication studies that quantifies the strength of replication taking into account the underlying 

correlation structure [9]. 

Materials 

Literature dataset 

We used findings from three studies assessing DNA methylation in newborns in association 

with three different exposures: i) a study on 6685 children from the Pregnancy and Childhood 

Epigenetics (PACE) consortium that identified 6073 over 464,628 CpG sites whose 

methylation levels were associated with maternal sustained smoking during pregnancy [10]; 

ii) a study on sex differences in DNA methylation in 111 Mexican-American newborns, 



 
 

members of the CHAMACOS study, that identified 3031 over 410,072 CpG site candidates 

located on the autosomal chromosomes [11]; iii) and a study on 1988 newborns from two 

European cohorts that identified 443 over 419,905 CpG site candidates associated with 

maternal plasma folate levels during pregnancy (hereafter referred to as the “maternal plasma 

folate study”) [12]. All these studies involved analyses on DNA methylation from newborn 

blood samples, and they selected CpG sites by using a fixed threshold of Benjamini and 

Hochberg FDR-corrected p-values of 0.05. 

NINFEA replication study 

We retested the selected CpG candidates from the three literature datasets described above, in 

epigenome-wide data coming from the NINFEA birth cohort [13]. The study design was a 

nested case-control study on 72 cases with at least one reported episode of wheezing between 

6 and 18 months of age and 72 controls matched to cases by sex, age at sampling and 

seasonality/calendar year of sampling. In the NINFEA birth cohort saliva samples are 

routinely collected from infants at approximately 6 months of age using a mailed Oragene 

self-collection kit, and in the nested case control study we focused on saliva DNA 

methylation markers of childhood wheezing (data not published). DNA extracted from the 

saliva samples of cases and matched controls was assessed for epigenome-wide methylation 

using the Illumina Infinuim HumanMethylation450 BeadChip. Three cases and three matched 

controls were excluded due to high percentage of missing DNA methylation values, leading to 

a total of 138 subjects available for the analyses. The baseline NINFEA questionnaire is 

completed by mothers during pregnancy and includes questions on sustained smoking in 

pregnancy and intake of folic acid during pregnancy – no information is instead available on 

plasma folate levels. Information on child sex is obtained at the first follow-up questionnaire 

that is completed 6 months after delivery. 



 
 

The Ethical Committee of the San Giovanni Battista Hospital and CTO/CRF/Maria Adelaide 

Hospital of Turin approved the NINFEA study (approval N. 0048362, and subsequent 

amendments), and all the participating mothers gave their informed consent before taking part 

in the study. 

Methods 

Statistical analyses  

NINFEA cases and controls were pooled together. For each selected CpG site – see details 

below – we obtained a methylation percentage (Beta values) from the Illumina Infinuim 

HumanMethylation450 BeadChip and they were converted to M values by a logit 

transformation [14]. After quality control and probes filtering (probes corresponding the SNPs 

inside the probe body and SNPs at CpG sites, cross hybridizing and probes on the sex 

chromosomes) a total of 321,084 probes were available in the NINFEA dataset.  

For each of the three literature datasets (the PACE consortium, the CHAMACOS study and 

the maternal plasma folate study) we retrieved the published selected altered CpG sites that 

were then used in the NINFEA dataset. Due to different probe filtering between the NINFEA 

study and the three literature datasets, there was an incomplete overlap of the top hits. 

All the analyses were performed using RStudio (version 0.99.903).  

The analytical flow is summarized in Figure 1 and described below in details.                                                  

Correlation analysis 

For each of the three groups of selected CpG sites – derived from the three literature examples 

– we estimated the pairwise Spearman correlation coefficients between the CpG site M values 

in the NINFEA replication study. The three distributions of correlation coefficients were 

compared with the distribution of genome-wide pairwise correlation coefficients between 

CpG sites (histograms, summary statistics with the 3rd, 50th and 97th percentiles, F test on 



 
 

homogeneity of variance on Fisher’s zeta transformation [15]). To obtain the genome-wide 

correlation distribution, we calculated the pairwise correlation coefficients between 100,000 

randomly selected CpG pairs among all available CpG sites in the NINFEA data.  

Replication analyses 

Replication of CpG sites associated with maternal smoking and those associated with child’s 

sex was then conducted in the NINFEA data. As data on maternal folate levels during 

pregnancy were not available in the NINFEA study, we did not identify children exposed and 

unexposed to folate to carry out the replication analyses.  

For two groups of selected CpG sites we evaluated the associations of exposure to maternal 

smoking during pregnancy and child’s sex with offspring saliva DNA methylation levels. A 

robust linear regression model was specified, and adjusted as in the discovery studies: child’s 

sex was analyzed in univariate models, while the models for maternal smoking during 

pregnancy were adjusted for maternal age, maternal education (low, medium and high) and 

parity. Batch effect was controlled by within batch matching between exposed and unexposed 

subjects. We did not adjust for cell type composition as there is no reference data set for the 

saliva cell composition and we are not aware of studies assessing performance of the 

reference free method [16] in saliva samples. We used p-values of the test of the association 

between maternal smoking or child’s sex and DNA methylation in infants. Histograms and 

quantile-quantile (QQ) plots were used to graphically evaluate the observed versus the 

expected null distribution of p-values. Deviations from the theoretical uniform distribution 

were also formally tested using the Kolmogorov-Smirnov test [17]. 

Assessment of the empirical p-value distributions 

To evaluate the impact of the increased correlation among the selected CpG sites, we assessed 

the p-value distributions under the null-hypothesis of no effects of the exposures on the 



 
 

methylation levels in the selected CpG sites. For this purpose, we generated 10,000 random 

shuffling of the exposed-unexposed status for each individual in the two datasets (maternal 

smoking during pregnancy and child’s sex) while maintaining the same ratio between exposed 

and unexposed subjects within each batch as in the original data. The associations between 

the randomly attributed exposure and methylation in the 4794 CpG sites for maternal smoking 

or 2544 CpG sites for sex were estimated in each replicate using the same linear regression 

models. P-value distributions of the 10,000 replicates were described in terms of symmetry by 

estimating the skewness and in terms of deviation from a uniform distribution by performing 

Kolmogorov-Smirnov [17,18] and Anderson-Darling tests [18–20]. To compare empirical 

distributions, we generated additional 10,000 replicates for both examples (maternal smoking 

and child’s sex) with random assignment of the exposure variables and random CpG sites 

selection. 

To ensure that the low exposure frequency in the analyses on maternal smoking did not affect 

the underlying distribution under the null hypothesis, we analyzed all NINFEA subjects with 

available EWAS data by shuffling the imaginary exposure with 69 “cases” and 69 “controls” 

and relating it to methylation levels in 4794 smoking-related CpG sites. 

Finally, to decrease the underlying correlation from both sets of CpG sites (maternal smoking 

and child’s sex) we selected only sites that have all pairwise correlation coefficients below 

0.40 in the NINFEA dataset. On these two subsets of low-correlated CpG sites associated 

with maternal smoking and child’s sex we conducted the same analyses with 10,000 randomly 

assigned exposures and for comparison randomly assigned CpG sites.  

Multiple testing correction and r-values 

Multiple comparisons correction of the NINFEA results using Benjamini-Hochberg FDR 

procedure is not appropriate for a replication study and, therefore, we used r-values [9]. R-



 
 

value is defined as the lowest FDR at which the finding can be called replicated, and with its 

modified version accounts also for the underlying dependence between the p-values within 

the primary study [9]. For each CpG site of the two datasets (maternal smoking and child’s 

sex) we computed both standard r-values for independent tests and its modified version that 

accounts for the underlying correlation. A CpG site is considered replicated if the r-value < 

0.05. For demonstration purposes we also present p-values corrected using Benjamini-

Hochberg FDR procedure [8]. 

Results 

CpG sites selection 

Of the 6073 top hits from the PACE study, 4794 (78.9%) CpG sites overlapped with those 

from the NINFEA data set. NINFEA children exposed to maternal sustained smoking during 

pregnancy (N=6, 4.3%) were matched to the unexposed children (N=30) by batch in which 

samples were analyzed, keeping a constant 1:5 ratio between exposed and unexposed 

children.  

A total of 2544 CpG sites (83.9%) were available for the replication of the results on sex 

differences and DNA methylation in newborns. The analyses were performed in 80 children, 

by choosing the maximum number of exposed children available within each batch that could 

be matched with unexposed children from the same batch to keep a constant 1:3 ratio between 

“exposed” (females, N=20) and “unexposed” (males, N=60) subjects.  

Out of the candidate CpG sites identified in the maternal plasma folate study, 344 (77.7%) 

were available in the NINFEA dataset.  

Correlation analysis 



 
 

Table 1 reports the summary statistics for the Spearman correlation coefficients calculated in 

the NINFEA data between the top CpG sites from each of the three literature datasets and for 

unselected genome-wide CpG pairs. The corresponding distributions are reported in Figure 2.  

When being pre-selected in the discovery studies, such as in the examples presented here, the 

average correlation between CpG sites tends to increase depending on the exposure under 

study. For example, the mean correlation of 0.29 between several thousands of CpG sites 

associated with maternal smoking during pregnancy was much higher than the original 

genome-wide mean correlation of 0.14. The variance of correlations in the pre-selected CpG 

sites also increased substantially compared with the genome-wide CpG sites (all p-values for 

F test <2.2x10-16, visual inspection of Figure 2).  

Replication analyses 

Figure 3 reports the p-value distributions and the QQ plots for the replication analyses of the 

top CpG sites for maternal smoking and child’s sex in the NINFEA data. For both exposures, 

there was a clear deviation of the p-value distributions and QQ plots from what would be 

expected by chance (Kolmogorov-Smirnov p-value <2.2 x 10-16 in both analyses). The 

analysis on child’s sex revealed 383 CpG sites (15.1%) with a p-value <0.05, while maternal 

smoking during pregnancy was associated with 7.8% of the analyzed CpG sites at 

conventional 5% level of significance. Based on these results, one could suggest that both the 

results for maternal smoking and the results for child’s sex are globally replicated using the 

NINFEA saliva samples. 

Assessment of the empirical p-value distributions 

In the absence of correlation, by randomly permuting and re-analyzing the data we would 

expect the p-value distribution to be approximately uniform in most of the replications. 

Distributions as those observed in Figure 3 - skewed versus lower p-values - are expected to 



 
 

be seen in a small proportion of the replications. After visual inspection of the p-value 

distribution histograms from the 10,000 random permutations of the exposure variable we 

noticed that the percentage of replications not following the uniform p-value distribution was 

much higher than the expected 5%, both in the case of pre-selected CpG sites and in the case 

of genome-wide randomly selected CpG sites.  

In fact, Kolmogorov-Smirnov p-values were low even when the p-value distribution 

histograms visually showed quite uniform patterns (see Supplemental Material; see Figure 

S1). Accordingly, as reported in Table 2, more than 90% of the replications were associated 

with a Kolmogorov-Smirnov p-value < 0.05. This proportion was higher in the case of pre-

selected than randomly selected CpG sites. The Anderson-Darling test, considered more 

sensitive to the tails of a distribution than the Kolmogorov-Smirnov test [20], gave similar 

results (data not shown). However, it should be considered that, with large sample sizes, these 

test are likely to give strong evidence against the null hypothesis (i.e. they are able to detect 

even small departures from the theoretical distribution) [21].  

To further explore the impact of the correlation structure on the p-value distributions we 

plotted the skewness of the underlying p-value distributions from the 10,000 replications for 

each of the examples (Figure 4). Symmetric distributions, such as the uniform or normal 

distribution, have the skewness value zero, while left- or right-skewed distribution have 

positive or negative values, respectively. From Figure 4, it can be noted that in the presence 

of a higher correlation between CpG sites, such as in the examples presented here, the 

skewness of the p-value distributions has a larger variation and is shifted towards positive 

values (left-skewed distributions) compared to the distributions of genome-wide randomly 

selected CpG sites. A similar pattern was also observed when all 138 subjects were analyzed 

with CpG sites associated with maternal smoking during pregnancy (see Supplemental 



 
 

Material; see Figure S2), thus ruling out a possible impact of the small sample size in the 

example with maternal smoking during pregnancy. 

It is noteworthy that the biases that we have so far described are mainly due to the underlying 

correlation structure. For demonstration purposes we have selected 256 out of 4794 CpG sites 

related to maternal smoking during pregnancy and 129 out of 2544 CpG sites related to 

child’s sex that have all pairwise correlation coefficients below an arbitrary level of 0.40 in 

the NINFEA dataset. Mean correlation coefficient was 0.09 for both low-correlated data sets, 

and thus lower than the underlying genome-wide mean correlation of 0.14.  

P-value distributions of the 10,000 random permutations of the exposure variables were 

“uniform” in 15.8% permutations of maternal smoking and 5.3% permutations of child’s sex 

according to Kolmogorov-Smirnov test. The average skewness was 0.04 for maternal 

smoking and 0.004 for child’s sex, with standard deviations much smaller than that for 

genome-wide randomly selected CpG sites (Figure 5). The results were similar when 

analyses on 256 CpG sites associated with maternal smoking were performed in all 138 

subjects from the NINFEA data (see Supplemental Material; see Figure S3). 

Multiple testing correction and r-values for replicability 

After the initial replication performed in Step 2 (Figure 1, Figure 3) a standard naïve and 

incorrect practice would then be to consider the results of the single CpG sites, after 

implementing some of the procedures that take into account multiple testing and reduce the 

number of false positives, such as Benjamini-Hochberg FDR multiple testing correction. 

After the Benjamini-Hochberg correction at the 0.05 FDR level only five CpG sites were 

selected for sex differences in methylation levels, while no CpG site remained associated with 

maternal smoking during pregnancy, reflecting the small number of exposed subjects (N=6) 

in the NINFEA dataset.  



 
 

A correct approach for a replication study would be to apply FDR-based replication p-values 

(r-values). For the analyses on sex differences in methylation levels, unmodified version of r-

value revealed 4 replicated CpG sites (all r-values=0.02), while after considering the 

underlying correlation only three sex-associated CpG sites remained replicated in the 

NINFEA cohort (all r-values=0.03). It should be noted that all CpG sites considered 

replicated according to the r-value estimates had a Benjamini-Hochberg FDR p-value <0.05, 

while two CpG sites that passed the FDR naïve correction were not replicated (Table 3). No 

CpG site was replicated for maternal smoking during pregnancy. 

Discussion 

The large number of tests performed in epigenome-wide association studies requires 

statistical and computational methods to control for multiple testing both in the exploratory 

and in the replication phase. The most commonly used methods dealing with this issue, such 

as Bonferroni and Benjamini-Hochberg FDR corrections, rely on the assumption of 

independence of the tests. This assumption is often violated in EWAS, as spatially related 

CpG sites are very often in similar methylation state. 

As shown in this paper, a certain degree of correlation already affects the discovery phase of 

EWAS, when analyses are carried out at the genome-wide level. This underlying correlation 

structure is enhanced in large sample size studies of exposures/outcomes that broadly affect 

DNA methylation, in which thousands of candidate CpG sites are selected for replication. The 

increase in correlation can be substantial: in one of the examples that we evaluated in this 

paper the mean pair-wise correlation coefficient increased from 0.14 at the genome-wide level 

to 0.29 among the selected CpG sites. Thus, the independency assumption of standard 

multiple testing procedures can be seriously violated, resulting in spurious replication 

findings. It should be noted that we analyzed the correlation structure and its impact on the 

results using only one dataset with saliva DNA methylation measured in children at 



 
 

approximately 6 months of age. Average correlation at genome-wide level and that of pre-

selected CpG sites might be different in other data sets, populations, age groups or 

tissues/biofluids. 

We argue that in situations of high correlation it is important to explore its magnitude by 

conducting permutations in which the exposure/outcome status is randomly shuffled. The so-

called permutation procedure that empirically generates a model-free p-value is based on this 

approach, and it is robust to the data correlation – a Family-wise Error Rate (FWER) control 

procedure (i.e. a procedure to control for type I errors in the context of multiple testing) based 

on permutations was proposed in the literature [22]. The only assumption behind permutation 

procedures is that the observations are exchangeable under the null hypothesis [22], while the 

most important limitation is the long computational time, especially in large EWAS. Several 

alternatives that account for the underlying correlation structure have been proposed and are 

shown to be as efficient as the permutation procedure [23–27]. The implementation of these 

approaches requires much less time, but to our knowledge, they are seldom used in the 

analysis of EWAS. Although not in the context of an increased correlation in replication 

studies, a recent study by van Iterson at al. [28] sheds light on the inflation and bias of test 

statistics in EWAS and transcriptome-wide association studies. They proposed a Bayesian 

method for the estimation of the empirical null distribution and bias and inflation correction in 

the presence of the correlated test statistics [28]. 

Several recently published EWAS used Benjamini-Hochberg FDR method to adjust for 

multiple tests, both in the discovery and replication analysis. Apart from using alternative 

methods to account for the underlying correlation, an option for the replication phase would 

be to select a subgroup of CpG sites using ad-hoc algorithms to decrease the correlation, 

including, for example, approaches based on the genomic location or the introduction of a 

maximum threshold for pairwise correlation coefficients. To our knowledge, the performance 



 
 

and validity of possible selection criteria remains to be systematically investigated in 

methodological studies. 

In this study we applied and recommended r-values as an FDR-based measure and an 

appropriate method for replication studies. The modified version of r-value guarantees false-

discovery rate control under any type of dependency between tests, and is an appropriate 

approach for the replication phase of EWAS.  

Finally, we have also shown that the Kolmogorov-Smirnov and Anderson-Darling tests, often 

used to assess departures from a uniform distribution of p-values, become extremely sensitive 

in presence of large sample sizes. Thus, if hundreds or thousands correlated CpG sites are 

selected for replication, these tests will almost invariably generate low p-values, and a 

spurious result of a global replication of the exploratory phase is very likely.  

Conclusions 

We caution against using FWER control procedures (e.g. the simple Bonferroni correction) or 

Benjamini-Hochberg FDR control in epigenome-wide replication studies, where the 

correlation between CpG sites can be substantial and the null hypothesis different than the 

null hypothesis of a discovery study. Permutation procedures are proposed as the method of 

choice to control FWER in the circumstances of highly correlated tests, but they are time-

consuming when applied to large-scale studies, and are seldom used in EWAS. In replication 

studies, CpG sites for replication could also be selected a priori, based on different criteria or 

their combinations, such as significance in the discovery sample, correlation with other CpG 

sites, genomic location or biological significance. An option that is highly recommended for 

replication studies is the computation of r-values, which focus specifically on the strength of 

replication. In the context of epigenome-wide replication studies with highly correlated tests, 

we suggest to rely on robust FDR r-value. 



 
 

 

Executive summary 

• The most commonly used approaches dealing with multiple testing in the replication 

phase of epigenome-wide association studies are type I error rate and false-discovery 

rate controls that, although claimed to be robust, assume independence between tests. 

• The correlation between CpGs is enhanced after selection during the discovery phase. 

• In the replication phase of EWAS an increased correlation between CpGs might 

translate into biased empirical p-value distributions, affecting also the usual control by 

Benjamini-Hochberg FDR procedure. 

• Benjamini-Hochberg FDR method might not be adequate for the replication phase of 

EWAS. 

• Replication studies should consider methods that take into account the underlying 

correlation structure, including permutation procedures and r-values to detect 

replicated associations. 
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Table 1. Summary statistics of the correlation coefficients’ distributions, expressed as 

absolute values, in 138 children of the NINFEA cohort. 

Set of CpG sites N 3rd 

percentile
Mean Median 97th 

percentile
Genome-wide 321084 0.01 0.14 0.10 0.49

Maternal plasma folate study 344 0.01 0.15 0.11 0.46

Child’s sex 2544 0.01 0.19 0.14 0.59

Maternal smoking during pregnancy 4794 0.01 0.29 0.24 0.76

 

 

Table 2. Kolmogorov-Smirnov test assessing the uniformity of the p-value distributions from 

10,000 permutations  

Permutations 
(N=10,000) 

Percentage of permutations 
associated with a Kolmogorov-

Smirnova p-value < 0.05 (%) 

Maternal smoking during pregnancy 96.4 

Random CpG sites 93.0 

Child’s sex 95.9 

Random CpG sites 93.8 
a Kolmogorov-Smirnov test to determine if the distribution of p-values from 
each replication is equal to the expected uniform distribution. 

 
 

 

 



 
 

Table 3. Sex-associated CpG sites that passed Benjamini-Hochberg (BH) FDR correction and 

corresponding uncorrected p-values, BH FDR p-values and FDR r-values 

CpG sites Discovery study p-
value 

Replication study 
p-value

BH FDR 
p-value

FDR  
r-valuea 

Modified 
r-valueb

cg25438440 1.86e-18 1.81e-05 0.02 0.02 0.03

cg19544707 4.06e-12 9.77e-06 0.02 0.02 0.03

cg03168896 9.30e-09 1.53e-05 0.02 0.02 0.03

cg12763978 5.65e-07 1.40e-05 0.02 0.02 0.23

cg14022202 5.85e-06 2.89e-05 0.02 0.14 0.40
a R-value for the independent tests 
b Conservative modification of r-value that accounts for any type of the dependency between tests  

 

Figure 1. The main steps of the analysis 

 

Figure 2. Distribution of correlation coefficients (left side) and their absolute values with the 

corresponding absolute mean correlation coefficients (right side) for genome-wide CpG sites, 



 
 

4794 CpG sites associated with maternal smoking during pregnancy, 344 CpG sites 

associated with maternal folate levels and 2544 CpG sites associated with child’s sex.  

 

Figure 3. Distribution of replication p-values and QQ plot of observed versus expected p-

values testing the null hypotheses of no association between methylation levels of pre-

selected CpG sites and maternal smoking during pregnancy, and child’s sex. 



 
 

 

Figure 4. Skewness of p-value distributions from the analyses of the association between 

smoking-related and sex-related CpG sites and permutations of maternal smoking during 

pregnancy and child’s sex from 10,000 replications. “Random” indicates random 

permutations of both CpG sites and exposure under study.  

 

Figure 5. Skewness of p-value distributions from the analyses of the association between pre-

selected low-correlated CpG sites and permutations of maternal smoking/child’s sex from 



 
 

10,000 replications. “Random” indicates random permutations of both CpG sites and 

exposure under study.  
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Figure S1. Histograms of p-value distributions from random permutations and Kolmogorov-
Smirnov p value assessing whether the observed p-value distributions come from a 
hypothesized uniform distribution 
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Figure S2. Skewness of p-value distributions from the analyses of the association between 

4794 CpG sites associated with maternal smoking and 10,000 permutations of an imaginary 

exposure for 138 subjects from the NINFEA cohort. “Random” indicates random 

permutations of both CpG sites and exposure under study. 
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Figure S3. Skewness of p-value distributions from the analyses of the association between 256 low-

correlated CpG sites associated with maternal smoking and 10,000 random permutations of an 

imaginary exposure for 138 subjects from the NINFEA cohort. “Random” indicates random 

permutations of both CpG sites and exposure under study.  

 


