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A sudden change from normal marine to extreme paleoenvironmental conditions occurred approxi-
mately 6 Ma ago in the Mediterranean Basin at the onset of the late Miocene Messinian salinity crisis,

one of the most severe ecological crises in Earth history. Strong evaporation and tectonics led to hyper-
saline conditions, resulting in widespread deposition of evaporites and the apparent annihilation of the
marine metazoan biosphere. In contrast to the prominent occurrence of evaporites elsewhere in the
Mediterranean, evaporites did not form in the deeper part of some marginal basins at the onset of the
crisis. The strata of the Pollenzo section (Piedmont Basin, NW Italy) studied here were deposited in such

a paleogeographic setting. Instead of evaporites, a cyclic succession of organic-rich shales and carbonates
formed during the early phase of the crisis in the study area. These sediments record a sharp increase in

the contents of archaeal molecular fossils that are mostly represented by isoprenoidal dialkyl glycerol
diethers (DGDs) and isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs). Such an expansion of
archaeal biomass is best explained by a change of the archaeal communities at the onset of the
Messinian salinity crisis. In particular, the appearance of molecular fossils of extremophilic archaea,
mostly producing DGDs (archaeol and extended archaeol), suggests the emergence of halophilic archaea.
At the same time, lipids of planktonic Thaumarchaeota, especially crenarchaeol, are present across the
entire section, suggesting the local persistence of normal marine conditions. In agreement with the sud-
den appearance of tetrahymanol in the upper part of the section, the persistence of crenarchaeol indicates
the establishment of water column stratification after the advent of the Messinian salinity crisis. To fur-

ther investigate the Piedmont Basin paleoenvironmental conditions, we test the Archaeol Caldarchaeol
Ecometric (ACE), a proxy developed for identifying high paleosalinities in waters and possibly in sedi-

ments. Despite high ACE values found for the Messinian salinity crisis samples, these values are in con-
trast with the absence of any lithological evidence for high salinities as well with other biomarker-
independent information, indicating low to normal seawater salinities. This apparent contradiction is
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likely explained by the complexity of the sources of archaeal lipids, especially of caldarchaeol and
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archaeol, limiting the utility of the ACE for the reconstruction of paleosalinities for Messinian strata.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license
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Isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) and
isoprenoidal dialkyl glycerol diethers (DGDs) are the two most

common types of membrane lipids of Archaea. Among the Thau-
marchaeota and Crenarchaeota, GDGTs are the predominating

membrane lipids (Schouten et al., 2013; Elling et al., 2017). Among

the Euryarchaeota, GDGTs are less abundant than DGDs (Koga
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et al, 1998), or even absent as in halophilic archaea (e.g.,
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Dawson et al., 2012); only the uncultured anaerobic methane oxi-
dizing archaea are known to produce as well high amounts of
GDGTs (e.g., Blumenberg et al., 2004). The stable isoprenoid-
containing and ether-bond membrane lipids of Archaea are
believed to be advantageous for adaptation to harsh environmental
conditions (e.g., De Rosa and Gambacorta, 1988; Schouten et al.,
2013 and References therein), including high temperatures, salini-
ties, and concentrations of reduced chemical compounds such as
hydrogen sulfide. Likewise, archaeal molecular fossils, and espe-
cially DGDs and their degradation products, have commonly been
used for the reconstruction of ancient extreme environments such
as methane seeps (e.g., Schouten et al, 2003, 2007, 2013;
Blumenberg et al., 2007; Birgel et al., 2008) and hypersaline basins
(Teixidor et al., 1993; Grice et al., 1998; Turich and Freeman, 2011;
Birgel et al., 2014, 2015; Christeleit et al., 2015).

A prominent example of an ancient hypersaline basin is the late
Miocene Mediterranean Basin, which experienced a sudden change
from normal marine to extreme hypersaline conditions during the
Messinian salinity crisis (MSC) about 6 Ma ago (Hsii et al., 1977,
Krijgsman et al., 1999; Ryan, 2009; Roveri et al., 2014). The pro-
gressive isolation of the Mediterranean Sea from the Atlantic
Ocean, triggered by the tectonic closure of the Betic and Rifian
gateways, caused the transformation of the Mediterranean Sea into
a giant salina (Flecker et al., 2015; Capella et al., 2016). The
Mediterranean waters became increasingly salty, leading to the
deposition of more than 1 million km? of evaporites (carbonate
minerals, gypsum, halite) on the Mediterranean seafloor in less
than 700 ka (e.g., Roveri et al., 2014). The lack of modern analogs
for such a basin-wide evaporite event hampers a reliable environ-
mental reconstruction and makes this paleoenvironmental crisis
one of the most controversial events of Earth history (Roveri
et al., 2014).

In Messinian peripheral basins, the occurrence of gypsum is the
most striking evidence of increasing salinity; this lithological mar-
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ker is consequently commonly used to trace the onset of the MSC.
However, gypsum was typically only deposited in the most mar-
ginal sectors of these peripheral basins, which experience a down-
slope transition into shales and carbonate-rich deposits lacking
evaporites (Manzi et al., 2007, 2016; Gennari et al., 2013, in
press). The timing of the MSC is now well constrained (e.g.,
Roveri et al., 2014), but the physico-chemical conditions that
became established during the MSC and their impact on the marine
ecosystem are still poorly understood. The change in seawater
chemistry apparently caused the overall demise of eukaryotes, par-
ticularly metazoans (e.g., Bellanca et al., 2001). In contrast to the
majority of eukaryotes, prokaryotes and especially the versatile
archaeal domain are believed to be more tolerant of extreme envi-
ronmental conditions, and molecular fossils of archaea may conse-
quently serve to trace the environmental changes in the course of
the MSC (e.g., Turich and Freeman, 2011; Christeleit et al., 2015).

Here, we investigate the molecular fossil inventory of the Pol-
lenzo section (Fig. 1; Piedmont Basin, NW Italy) with its cyclic suc-
cession of marls, shales, and carbonate-rich beds, focusing on
archaeal lipids. Molecular fossils of archaea are well preserved
and abundant throughout the studied section and prove to be
excellent recorders of changing environmental conditions across
the MSC onset in the absence of evaporite deposition.

2. Geological setting

The study area is located in the Piedmont Basin (NW Italy), a
wedge-top basin filled with Upper Eocene to Messinian deposits
(Fig. 1B; Maino et al., 2013). The Messinian strata are exposed both
in its northern and southern margins (Fig. 1C; Dela Pierre et al.,
2011). At the southern margin (Langhe region), where the studied
Pollenzo section is located, the Messinian succession starts with
outer shelf to slope muddy sediments referred to as the Sant’Agata
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Fig. 1. (A) Distribution of the Messinian evaporites in the Mediterranean Basin (modified from Manzi et al., 2012; PB: Piedmont Basin). (B) Geological sketch of the Piedmont
Basin (box in Fig. 1A) showing the areal distribution of Messinian deposits (in pink) (modified from Dela Pierre et al., 2011); the red star indicates the Pollenzo section
(44°41'08"N; 7°55'33"E). (C) Simplified profile (NNE-SSW direction, see Fig. 1B) showing the distribution of the Messinian deposits across the western Piedmont Basin
(modified from Dela Pierre et al., 2011). The location of the Pollenzo section is indicated. PLG: Primary Lower Gypsum unit; RLG: Resedimented Lower Gypsum unit; MES:
Messinian Erosional Surface; CB: carbonate-rich beds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Fossili Marls (Tortonian-lower Messinian), recording progressively
more restricted conditions heralding the onset of the MSC. This
unit displays a marked lithological cyclicity (Fig. 2A), evidenced
by the rhythmic repetition of shale/marl couplets (Lozar et al.,
2010; Dela Pierre et al.,, 2011; Violanti et al., 2013). Such cyclicity
is assumed to reflect precession-driven climate change with a peri-
odicity of about 20 ka (Krijgsman et al., 1999; Manzi et al., 2012).

At the basin margins, the Sant’Agata Fossili Marls are overlain
by primary sulfate evaporites referred to as the Primary Lower
Gypsum unit (sensu Roveri et al.,, 2008; Fig. 1C). This gypsum
was deposited during the first MSC stage (5.97-5.60 Ma), and also
shows precession-driven lithological cyclicity, represented by
shale/gypsum couplets (Dela Pierre et al., 2011). Very low salinity
recorded by gypsum fluid inclusions (average of 1.6% NaCl equiva-
lent), which is lower than sea water salinity, points to a strong con-
tribution from freshwater in the Piedmont Basin during the
deposition of the Primary Lower Gypsum (Natalicchio et al.,
2014). Interestingly, the isotope signatures of the sediments of
the Pollenzo section deposited after the MSC onset are marked
by a sharp decline of §'%0 values (5'%0 as low as —9%. V-PDB;
Dela Pierre et al.,, 2012), agreeing with strong freshwater influx
during the early phases of the MSC.

Towards the basin depocenter, gypsum makes a transition into
a cyclic succession of shales, marls, and carbonate-rich beds
belonging to the Sant’Agata Fossili Marls. In particular, seven litho-
logical cycles (Pm1-Pm7) with an average thickness of 3 m have
been recognized (Fig. 2A), which were deposited at water depths
of more than 200 m, according to benthic foraminifer assemblages
from the lower four cycles (Pm1-Pm4; Violanti et al., 2013). Each
cycle is composed of a basal layer of laminated shale that passes
into a marly horizon and a dm-thick carbonate-rich bed. This cycli-
cal pattern has been tuned to orbital solution (Laskar et al., 2004)
using biostratigraphic tie points and correlated bed by bed to the
Abad (Perales) reference section (Sierro et al.,, 2001). In the Pol-
lenzo section, the onset of the MSC has been identified at the base
of cycle Pmb5, three precessional cycles below the first gypsum bed;
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the latter was deposited approximately 60 ka after the MSC onset
(Lozar et al., 2010, in press). In detail, the upper part of the Sant’A-
gata Fossili Marls comprises four pre-MSC cycles (Pm1-Pm4) and
three MSC cycles (Pm5-Pm7), which are the deeper water counter-
parts of the lower three Primary Lower Gypsum cycles in the mar-
ginal part of the basin (Figs. 1C and 2A). Average sedimentation
rates are thought to be constant across the MSC onset, correspond-
ing to approximately 15 cm/ka. MSC deposits, both carbonate-rich
beds (beds e, f and g) and unconsolidated layers, are well lami-
nated (Fig. 2B and C) and are typified by a mass occurrence of fil-
aments (Fig. 2D), interpreted to represent fossils of colorless
sulfide-oxidizing bacteria (Dela Pierre et al., 2012) that apparently
correspond to filamentous fossils in Messinian gypsum deposits
(Dela Pierre et al., 2015).

3. Materials and methods
3.1. Sample preparation

Two freshly exposed lithological pre-MSC cycles (Pm3 and Pm4)
and three MSC cycles (Pm5, Pm6 and Pm7; Fig. 2A) of the Pollenzo
section were studied. Forty-four samples were analyzed for total
organic carbon (TOC) and 15 samples for molecular fossil contents
(see Fig. 3 for sample positions). Among them, five samples are
from the carbonate-rich layers (beds c to g; Fig. 3) and 10 samples
from the unconsolidated sediments. Since the lipid biomarker pat-
terns observed remained unchanged in both lithologies, equal
preservational conditions are expected.

3.2. Total organic carbon

For TOC contents, samples were taken at high resolution in
order to trace the trends across the MSC onset. The sediments were
dried and ground with a mortar and pestle. After splitting the sam-
ples into two aliquots, the total carbon (TC) content was deter-

Fig. 2. (A) Outcrop view of the Pollenzo section archiving the onset of the Messinian salinity crisis (MSC); the letters in yellow refer to the carbonate layers. Lithological cycles
(Pm3-Pm?7) are indicated by dashed white lines. (B and C) Close-up views of a horizon with laminated carbonate layers (B) and the unconsolidated sediments above it (C); the
latter revealed high yields of archaeal lipids. (D) Layer surface with fossilized filaments interpreted to represent sulfide-oxidizing bacteria (Dela Pierre et al., 2012). The boxes
in (B) and (C) indicate the details shown in Figs. (C) and (D), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 3. Graphs showing the contents of total organic carbon (TOC; %), major archaeal compounds (GDGTy_4, crenarchaeol, DGDs), and tetrahymanol (pig/g TOC). On the right,
the Archaeol and Caldarchaeol Ecometric (ACE) index, the caldarchaeol/crenarchaeol ratio, and the BIT index are shown. The gray shaded area represents the deposits of the
Messinian salinity crisis. The first occurrence of filaments of putative sulfide-oxidizing bacteria (SOB) and the last occurrences of calcareous nannofossils (CN) and
foraminifers are indicated. Ca0_20:C20_20 archaeol; Cyp_35:Ca0_25 archaeol; GDGTs: glycerol dialkyl glycerol tetraethers; DGDs: diphytanyl glycerol diethers; cald: caldarchaeol;
cren: crenarchaeol; cren;s,: crenarchaeol regio isomer; PLG: Primary Lower Gypsum unit.

mined with a LECO SC-144DR Carbon Analyzer equipped with an
infrared detector at 1350 °C at the Institute for Geology of the
University of Hamburg. The second aliquot was heated first to
550°C for 5h to remove organic carbon and then heated to
1350 °C to measure the carbon content (IC); TOC contents were
determined by the formula TOC = TC - IC. A Synthetic Carbon Leco
502-029 (1.01 £ 0.02 carbon%) standard was measured prior to and
after sample analyses.

3.3. Molecular fossil analyses

Carbonate samples were decalcified with 10% HCI until ~75% of
the carbonate was dissolved. The detailed cleaning, decalcification,
and extraction procedure applied in this study has been published
elsewhere (Birgel et al., 2006). The dry non-carbonate sediments
were homogenized with a mortar and pestle. The remaining resid-
ual sediment after decalcification and the unconsolidated sedi-
ments were first saponified with 6% KOH in MeOH using an
ultrasonic bath to release matrix-bound carboxylic acids (2 h at
80 °C). The saponification extract was collected in a separatory fun-
nel. Then, all samples were extracted by ultrasonication with
dichloromethane (DCM):MeOH (3:1, v:v) and repeated until the
extracts became colorless. The combined extracts were treated
with 10% HCl to pH 1 to transfer the free fatty acids to the organic
solvent phase. For gas chromatography (GC) analysis, each extract
was pre-cleaned by separation into n-hexane-soluble and
dichloromethane-soluble fractions. The n-hexane fraction was fur-
ther treated and separated via solid phase extraction using a
Supelco glass cartridge (6 ml, 500 mg, DSC-NH,) into four fractions
of increasing polarity: (a) hydrocarbons with 4 ml n-hexane, (b)
ketones with 6 ml n-hexane:DCM (3:1, v:v), (c) alcohols with
7 ml DCM:acetone (9:1, v:v), (d) carboxylic acids with 8 ml 2% for-
mic acid in DCM. Alcohols were derivatized by adding 100 pl pyr-
idine and 100 pl N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)
to the alcohol fraction at 70 °C for 30 min. The derivatized fraction
was dried under a stream of N, and re-dissolved in n-hexane prior
injection. Free carboxylic acids were reacted with 1 ml 14% BF3 in
MeOH at 70 °C for 1 h to form fatty acid methyl esters. After cool-
ing, the mixture was extracted four times with 2 ml n-hexane.

Combined extracts were evaporated under a stream of N,, and
re-dissolved in n-hexane prior to injection. The hydrocarbon frac-
tion, the derivatized alcohol, and carboxylic acid fractions were
analyzed using coupled gas chromatography-mass spectrometry
(GC-MS) with an Agilent 7890 A GC system coupled to an Agilent
5975C inert MSD mass spectrometer at the Department of Geody-
namics and Sedimentology, University of Vienna. Quantification
was done using GC-flame ionization detection (GC-FID) with an
Agilent 7820 A GC system. Internal standards used were 50-
cholestane for hydrocarbons, 1-nonadecanol for the alcohols, and
2-Me-Cg fatty acid for the carboxylic acids. Both GC systems were
equipped with a HP-5 MS Ul fused silica column (30 m x 0.25 mm
i.d,, 0.25 um film thickness). The carrier gas was helium. The GC
temperature program for all fractions was: 60 °C (1 min); from
60 °C to 150 °C at 10 °C/min; from 150 °C to 320 °C (held 25 min)
at 4 °C/min. Compound assignment was based on retention times
and published mass spectral data.

3.4. GDGT and DGD analysis

For examination of glycerol dialkyl glycerol tetraethers (GDGTs;
Fig. 4) an aliquot of the solvent extract, that was dissolved in n-
hexane/isopropanol (99.5:0.5, v:v), was analyzed following the
recently developed tandem column protocol (Becker et al., 2013).
GDGT distributions were measured with a Bruker Maxis
Accurate-Mass Quadrupole Time-of-Flight (qToF) mass spectrome-
ter connected to a Dionex Ultimate 3000 RS ultra high performance
liquid chromatography (UHPLC) system via an atmospheric pres-
sure chemical ionization (APCI) interface. Separation of GDGTs
was done with ACQUITY UPLC ®BEH Hilic Amide columns
(2.1 x 150 mm, 1.7 pm, Waters) maintained at 50 °C. The solvent
gradient program was: constant 0.5 ml/min and a linear gradient
from 3% B to 20% B in 20 min, then increased linearly to 50% B at
35 min, after which to 100% B at 45 min, held 6 min, finally back
to 3% B for 9 min for re-equilibration of the column; solvent A
was n-hexane and B n-hexane/isopropanol (90:10, v:v). Detection
of GDGTs was achieved by using positive ion APCI. The APCI source
parameters were: corona current 3500 nA, nebulizer gas 5 bar, dry-
ing gas 8 1/min, drying gas 160 °C, vaporizer 400 °C. The scan range
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Fig. 4. Structures of archaeal isoprenoid alcohols in the Pollenzo samples.

was my/z 150-2000 at a rate of 2 Hz. GDGTs were assigned from
accurate mass (better than 1 ppm), retention time, and diagnostic
fragments (Liu et al., 2012). No internal standard was added for the
quantification of GDGTs. Quantification was carried out indirectly
by correlating GC-MS and HPLC-APCI-MS data for each sample,
using GC- and HPLC-amenable archaeol as reference. Archaeol
was quantified using GC-FID with an internal standard in the alco-
hol fraction (1-nonadecanol). To verify the relative response factors
of archaeol and GDGT-O for the applied HPLC-APCI-MS settings, a
standard mix solution containing 10 ng of archaeol and GDGT-0
was injected into the system at various concentrations (see Supple-
mentary material for more information). The response factors of
archaeol and GDGT-0 are 1.07 and 1, respectively in our samples
and not 30 for archaeol, as shown by Turich and Freeman (2011).
In some studies, the response factor was only indirectly deter-
mined; for instance, Christeleit et al. (2015) compared measured
salinities of a known reference sample with the results achieved
by measuring archaeol and GDGT-0. The same is true for the study
of Wang et al. (2013), where no response factor calculation was

made. The very significant variations of the response factors
between previous studies and our results, especially those relevant
for the Archaeol and Caldarchaeol Ecometric (ACE; e.g., Turich and
Freeman, 2011; Wang et al., 2013; Christeleit et al., 2015), may
have a substantial influence on the determination of the quantities
of archaeol and caldarchaeol and the calculation of the ACE itself.

3.5. GDGT and DGD indices

The branched isoprenoid tetraether (BIT) index was calculated
accordingly to the equation [Eq. 1] after Hopmans et al., 2004:

BIT = (I + I +1IIT) /(I + IT + III + crenarchaeol) (1)

where I, I and III refer to the branched GDGTs with m/z 1022, 1036
and 1050 respectively (refer to Hopmans et al., 2004 for the molec-
ular structures of the branched GDGTs). This index is based on the
relative abundance of terrigenous branched non-isoprenoidal tetra-
ethers versus the marine-derived crenarchaeol and is used to iden-



M. Natalicchio et al./Organic Geochemistry 113 (2017) 242-253 247

tify the contribution of land-derived organic matter (cf. Hopmans
et al., 2004).

The ACE (Turich and Freeman, 2011) was calculated for estimat-
ing the magnitude of the salinity change at the onset of the MSC
according to the equation [Eq. 2] provided by Turich and
Freeman (2011):

ACE = [archaeol/(archaeol + caldarchaeol)] x 100 (2)

This index, based on the relative abundance of these two iso-
prenoids, is believed to reflect changes in the archaeal community
structure in response to salinity changes (Turich and Freeman,
2011; Wang et al., 2013).

Salinities were calculated from the ACE index using the equa-
tion [Eq. 3] of Turich and Freeman (2011):

Salinity = (ACE +9.7)/0.38 (3)

using a calibration (R? = 0.95) that excludes significant input of ter-
restrial material.

4. Results
4.1. Total organic carbon contents

TOC contents vary from 0.7% to 2.5% and show a periodical
oscillation both in the pre-MSC and MSC lithological cycles
(Fig. 3 and Supplementary Table S1); the lowest TOC contents were
found in the carbonate-rich beds and, in particular, in beds e and g
(TOC = 0.7%), whereas higher contents were measured in the lam-
inated shales of cycles Pm3, Pm6, and Pm7 (approximately 2.5%).

4.2. Lipid biomarker inventory

4.2.1. Isoprenoid alcohol distribution

In the Pollenzo section, isoprenoid alcohols are the most abun-
dant compounds, representing on average 35 wt% and 31 wt% of
the total extractable lipid content in the pre-MSC and MSC depos-
its, respectively (Table 1; see Supplementary Table S2 for complete
isoprenoid alcohol data). Isoprenoid alcohols are predominated by
DGDs and GDGTs (Table 2, Figs. 3 and 4, Supplementary Table S2)
and their contents increase more than two times above the MSC
onset, from a total average abundance of 267 pg/g TOC in the

Table 1

Table 2

Average content and percentage of isoprenoid alcohols in the Messinian deposits (% of
total isoprenoid alcohols) and total amount of the diphytanyl glycerol diethers
(DGDs) and glycerol dialkyl glycerol tetraethers (GDGTs).

Compound Average amount

Pre-MSC (n = 6) MSC (n=9)

(ng/g TOC) (%) (ng/g TOC) (%)
Cy0-Cyg archaeol 22 7.2 182 25.8
C,0-Cy5 archaeol 0 0.0 20 2.8
Total DGDs 22 7.2 202 28.5
GDGT-0 (caldarchaeol) 77 24.9 147 20.8
GDGT-1 30 9.8 74 104
GDGT-2 26 8.5 36 5.1
GDGT-3 7 24 21 2.9
GDGT-4 14 4.6 13 1.8
Crenarchaeol 83 27.0 84 11.9
Crenarchaeol isomer 47 15.2 83 11.7
Total GDGTs 285 924 458 64.7
Phytanol 1 0.3 31 43
sn2-ph-monoether 0 0.0 14 1.9
sn3-ph-monoether 0 0.0 4 0.5
Sum (pg/g TOC) 309 707

pre-MSC deposits to 633 pg/g TOC in the MSC ones (Table 1). In
particular, the rise in DGD and GDGT abundances occurs just below
Bed f (Fig. 3), approximatively one precessional cycle above the
MSC onset.

Interestingly, the distribution of the major GDGTs changes
across the MSC onset (Table 2). GDGTs are the dominant group
in pre-MSC sediments, making up 92% of all isoprenoid alcohols.
The two major GDGTs, GDGT-0 (caldarchaeol) and crenarchaeol
are evenly distributed across the pre-MSC deposits (caldarchaeol/
crenarchaeol ratio ~1) and represent half of the archaeal iso-
prenoid alcohols identified. They are accompanied by GDGTs with
1-4 cyclopentane rings (Table 2). Among the latter, GDGT-1 and
GDGT-2 are more abundant, whereas GDGT-3 and GDGT-4 make
up the least of all GDGTs. Above the MSC onset, the relative average
proportions of caldarchaeol (21%) and crenarchaeol (12%) have
changed (Table 2), with a consequent increase of the caldar-
chaeol/crenarchaeol ratio up section from a value of ~1 at the
MSC onset to a value of 13 in Bed g. Maximum caldarchaeol and
crenarchaeol contents were found in carbonate Bed f and in the

Molecular fossils inventory with average content and percentage (% of the total extractable lipid content) of the studied Messinian deposits.

Compounds Source Average amount

Pre-MSC (n=6) MSC (n=9)

(ng/g TOC) (%) (ug/g TOC) (%)
Isoprenoid alcohols’ Archaea 267 34.8 633 314
Branched GDGTs Bacteria 59 7.7 103 5.1
n-Cye and n-Cyg-FA Algae, Bacteria 74 9.7 108 53
Branched FA Bacteria 70 9.1 43 2.1
McDGs Bacteria 3 0.4 6 0.3
Hopanoids Bacteria 15 1.9 115 5.3
Tetrahymanol Ciliates, Bacteria 0 0 15 0.7
Sterols® Algae, land plants 47 6.2 234 103
LC n-fatty acids Land plants (algae) 43 5.6 230 114
MC n-fatty acids Algae, zooplankton 28 3.7 96 4.7
LC n-alcohols Land plants 68 8.9 234 11.6
LC n-alkanes Land plants 92 12.0 236 11.7
Sum (pg/g TOC) 766 2020

LC: long chain (with 25-33 carbons); MC: medium chain (with 20-24 carbons); FA: fatty acids; McDG: macrocyclic diether lipids.

" GDGTs; DGDs; sn2-ph-monoether; sn3-ph-monoether; phytanol.
" see supplementary material for more details (Supplementary Table S3).
" i, ai-Cy5; Cy6, C17, 10Me-Cyq.

™ C3, Bp-hopanol, C3; Bp-hopanoic acid, Cs, pB-hopanoic acid, 2Me Cs, pp-hopanoic acid, 3Me Cs, pB-hopanoic acid.

§ Sitosterol, dinosterol.
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shales just below, with 327 and 239 png/g TOC for caldarchaeol, and
189 and 222 pg/g TOC for crenarchaeol, respectively (Fig. 3 and
Supplementary Table S2). Overall, the other GDGTs (1-4) also
increase in cycles Pm6 and Pm7 (especially in and close to Bed f),
but decline in the uppermost part of cycle Pm7 (Bed g; see Fig. 3).

Changes in DGD distributions between pre-MSC and MSC
deposits are even more significant. In the pre-MSC section, DGDs
are represented only by Cyg_50 archaeol (Fig. 3), which accounts
for about 7% of all isoprenoid alcohols on average (Table 2). On
the contrary, in the MSC sediments, Cy9_5¢ archaeol increases sig-
nificantly and is more than four times more abundant than in
the pre-MSC sediments on average. Cg_po archaeol peaks in car-
bonate layers f (396 pg/g TOC) and g (384 pg/g TOC) (Supplemen-
tary Table S2). This extreme increase of Cyg_¢ archaeol contents
(26% of all isoprenoid alcohols in the upper part of the section) is
accompanied by the first appearance of a second DGD, Cyp_3s
archaeol (extended archaeol). Extended archaeol represents 3% of
all the isoprenoid alcohols (Table 2) and it shows the maximum
abundances in Bed f and in the shales just below (~58 pg/g TOC)
(Fig. 3 and Supplementary Table S2).

Apart from GDGTs and DGDs, also minor amounts of phytanol
and sn2- and sn3-phytanyl-monoethers have been identified. The
phytanol contents are 87 and 113 pg/g TOC in Beds f and g, respec-
tively (Supplementary Table S2). This compound is present only in
very minor amounts in the pre-MSC deposits. The two phytanyl-
monoethers (sn2 and sn3) appear coevally with extended archaeol.
Their maximum abundances mirror that of the other archaeal
ether lipids with a total of 52 pg/g TOC in Bed f and of 68 ug/g
TOC in Bed g.

4.2.2. Distribution of other lipids

Other groups of compounds that have been identified (data not
shown in detail; see Table 1 for the relative abundances) include
sterols, long chain n-alcohols (Cys-Cs;), long chain n-alkanes
(C26-C31), long chain n-fatty acids (Cy6—Cs,), and various hopa-
noids. As found for the isoprenoid alcohols, most compound con-
tents significantly increase from the pre-MSC to the MSC
deposits; hopanoids increase from 15 to 115 pg/g TOC, sterols from
47 to 234 ng/g TOC, and long chain n-fatty acids from 43 to 230 pg/
g TOC on average, respectively. Some compounds, like the penta-
cyclic triterpenoid tetrahymanol was identified only in the MSC
deposits, with slightly higher contents in carbonate beds (up to
52 pg/g TOC in Bed f; see Table 1, Fig. 3 and Supplementary
Table S2). Other compounds do not increase as significantly as
the aforementioned compound classes, as for example branched
GDGTs (Supplementary Table S3 shows the abundance of the com-
pounds used to calculate the BIT index; Hopmans et al., 2004, see
below), n-Cy¢ and n-Cyg, and other, medium chain fatty acids. Var-
ious branched fatty acids even decrease after the onset of the MSC.
Two non-isoprenoidal macrocyclic diether lipids (McDGs: B and C
in Baudrand et al., 2010) were found with very low abundances in
the pre-MSC and MSC sediments.

4.2.3. GDGT and DGD-based indices

The obtained BIT values range from 0.3 to 0.8 (see Supplemen-
tary Table S3; Fig. 3). The lowest values (0.3-0.4) are recorded in
carbonate Beds ¢, d and f, coinciding with an increase of the crenar-
chaeol contents. Highest BIT values (0.7-0.8) are observed in the
shales from the lowermost part of the section (cycles Pm3 and
Pm4), as well as in carbonate Bed g.

Concerning the ACE index and calculated salinities (Fig. 3 and
Supplementary Table S2), the values in the carbonate layers
increase up section, from an ACE value of 14 in Bed c to a value
of 67 in Bed g, with calculated salinities increasing from 61 ppt
to 201 ppt. Shale layers show a less distinctive trend and exhibit
greater fluctuations, with minimum ACE and salinities values

below Bed ¢ (~28 and ~99 ppt; respectively) and maximum values
above Bed g (~64 and ~195 ppt, respectively). Remarkably, values
as high as 59 were found also in the pre-MSC deposits; according
to the Eq. 3 (Turich and Freeman, 2011), such values corresponds
to a salinity of 180 pppt.

5. Discussion

5.1. Archaeal expansion and diversification across the onset of the
Messinian salinity crisis

In the Pollenzo section, the predominance of isoprenoid alco-
hols, but especially of DGDs and GDGTs, indicates that archaea were
among the most abundant organisms before and after the onset of
the crisis (Table 1). Right after the advent of the MSC, archaeal lipids
begin to increase significantly at constant sedimentation rates
(Fig. 3). The general increase of isoprenoid alcohols is accompanied
by a rise of other, non-isoprenoidal molecular fossils (Table 1). In
particular, the concomitant increase of long-chain aliphatic com-
pounds (see Table 1), which derive from leaf waxes of terrestrial
higher plants (e.g., Eglinton and Hamilton, 1967), suggests that
the increased contents of archaeal lipids may reflect an enhanced
supply of terrestrial organic matter, and consequently an input of
biomass from soil archaea (e.g., Pester et al., 2011). However, the
BIT values do not reveal a trend of increasing input of soil-derived
organic matter in the Pollenzo section and are chiefly in the range
of coastal marine environments (Hopmans et al., 2004). Such BIT
values (0.3-0.5) suggest that input from soil archaea did not affect
the overall archaeal lipid inventory and confirm that aquatic
archaea contributed significantly to marine biomass production in
the water column; part of this biomass was subsequently exported
to the seafloor and preserved in the sediments.

Apart from the unusually high contents of archaeal lipids in the
MSC deposits, there are no changes in the relative proportion of
isoprenoid alcohols compared to other compounds, since contents
of most non-isoprenoidal molecular fossils increase as well
(Table 1). Nevertheless, it must be noted that a relevant change
in the composition of the archaeal isoprenoid alcohol inventory
occurred after the MSC onset, exemplified by an extreme rise of
Cy0_20 archaeol and the first appearance of C,g_5 archaeol
(extended archaeol) just below Bed f. The DGD and GDGT patterns
of the Pollenzo MSC deposits resemble patterns found in extreme
environments, such as methane seeps (e.g., Pancost and
Sinninghe Damsté, 2003; Birgel et al., 2008) and hypersaline envi-
ronments (Turich and Freeman, 2011). However, the isoprenoid
alcohol patterns also show some differences from those of
methane seep environments (e.g., Blumenberg et al., 2004), with
their prominent GDGTs 1-3 (which are present only in low amount
in the MSC sediments) and the absence of crenarchaeol. Hyper-
saline environments, on the other hand, are typified by a predom-
inance of Cyg_»9 archaeol and Cyq_»5 archaeol (extended archaeol),
which are believed to be mostly sourced by halophilic Eur-
yarchaeota (Kates, 1977; Kamekura and Kates, 1999; Dawson
et al,, 2012; Lincoln et al., 2014a); these extremophiles live at high
salt concentrations (up to 200 g/I; e.g., Oren, 2002). Cultures of
halophilic archaea and mat or sediment samples from modern
salt-rich environments dominated by halophilic euryarchaea are
typified by the absence of GDGTs (e.g., Teixidor et al., 1993;
Jahnke et al., 2008; Dawson et al., 2012). Caldarchaeol seems to
be the only GDGT present in some ancient hypersaline depositional
settings (Turich and Freeman, 2011; Birgel et al., 2014), but its
source in these environments is unknown. The predominance of
archaeol, as well as the presence of extended archaeol and caldar-
chaeol in the MSC sediments of the Pollenzo section, is conse-
quently consistent with a hypersaline environment.
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However, the overall archaeal lipid inventory also shows
remarkable differences from other hypersaline settings. Unlike
most modern and ancient hypersaline environments (cf. Teixidor
et al., 1993; Turich and Freeman, 2011; Birgel et al., 2014), various
GDGTs and not only caldarchaeol, archaeol, and extended archaeol
are present in the Pollenzo section. In particular, crenarchaeol is
among the most abundant GDGTs below and above the MSC onset.
Crenarchaeol is known to be mainly produced by planktonic Thau-
marchaeota (Schouten et al., 2013; Elling et al., 2017), typically
autotrophs (Konneke et al., 2005) that live in the meso- to bathy-
pelagic zones of modern oceans, where they account for up to
40% of all cells (Karner et al., 2001; Wuchter et al., 2006; Pearson
and Ingalls, 2013). Thaumarchaeota are mostly found in seawater
with normal salinity (~35 ppt), even though laboratory cultures
of Nitrosopumilus maritimus suggest that salinities as high as 51
ppt may be tolerated without an effect on the GDGT distribution
(Elling et al., 2015). However, it has been put forward that marine
Euryarchaeota (Marine Group II) also produce crenarchaeol, but
this hypothesis remains a matter of debate (Schouten et al.,
2014; Lincoln et al., 2014a,b). Benthic ammonia-oxidizing archaea
(Pitcher et al, 2011) may produce crenarchaeol as well.
Molecular studies targeting various marine sediments revealed
that an equal amount of caldarchaeol and crenarchaeol (caldar-
chaeol/crenarchaeol ratio ~1) is typical for a combined contribu-
tion from planktonic Thaumarchaeota and Euryarchaeota (e.g.,
Turich et al., 2007 and References therein), thus agreeing with nor-
mal marine conditions. Such a pattern has been reported from
modern (e.g., Pearson and Ingalls, 2013) and Cenozoic marine sed-
iments (Schouten et al., 2013), despite a more extended GDGT
database (Kim et al., 2010) revealed that in modern open marine
waters the caldarchaeol/crenarchaeol ratio can fluctuate between
0.5 and 1.5 (Fig. 5). The caldarchaeol/crenarchaeol ratio close to 1
of the pre-MSC Pollenzo deposits remains unchanged in the basal
MSC deposits, where DGDs abruptly increase (e.g., Bed f), indicat-

*

ing that marine planktonic Thaumarchaeota were still present dur-
ing this early stage of the MSC. Yet, the sharp increase of the
caldarchaeol/crenarchaeol ratio (up to 13) in the uppermost part
of the section suggests a rapid decline of planktonic Thaumar-
chaeota in response to the establishment of harsher conditions in
the water body, probably resulting from an intensification of water
column stratification (see below).

5.2. Is the ACE index a reliable indicator of paleosalinity in Messinian
strata?

The ACE index was introduced by Turich and Freeman (2011) as
paleosalinity recorder in ancient sediments and has been applied
with varying results and interpretations (e.g., Birgel et al., 2014;
Gilinther et al., 2014; Huguet et al., 2015; Christeleit et al., 2015).
For the Pollenzo section, the ACE index shows wide fluctuations
across the MSC onset, although a general upward increase is
observed in the carbonate layers (from 14 in Bed c to 67 in the
Bed g), suggesting a rise in salinity (Fig. 3). However, the ACE salin-
ity estimates obtained with the equation of Turich and Freeman
(2011) (Eq. 3) are surprisingly high, not to say unrealistic for such
evaporite-free sediments. The calculated salinities for pre-MSC
waters range from 60 to 180 ppt. This is in great contrast with
the micropaleontological content of the studied sediments (steno-
haline planktonic and benthic foraminifers, calcareous nannofos-
sils; Violanti et al., 2013), and the dominance of Thaumarchaeota
suggested by the GDGT distribution, both indicative of normal
marine salinities in the water column, similar to the present day
Mediterranean Sea with its salinity of 36 ppt. The obtained ACE
based salinities for the MSC waters as high as ~200 ppt (Bed g) fall
within the range of gypsum precipitation (gypsum saturation point
~110 ppt; e.g., Natalicchio et al, 2014). However, no gypsum
deposits have been observed at this level in the Pollenzo section,
suggesting that the measured ACE salinities are flawed. In addition,
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the negative 3'0 values (as low as —9%. PDB) measured in MSC
carbonate beds e, f and g (Dela Pierre et al., 2012) point to signifi-
cant influx of freshwater during the early MSC, further questioning
the reliability of ACE-based salinities in this case.

By comparison with other Mediterranean MSC sequences,
inconsistencies between the estimated ACE paleosalinity and other
independent salinity indicators (i.e. lithological features and the
overall lipid biomarker inventory) are apparent. For example, Mes-
sinian evaporites (gypsum, anhydrite, and halite) studied by
Christeleit et al. (2015) from the Mediterranean abyssal plain show
ACE index values ranging from 0.3 to 3.1, which correspond to
brackish to normal marine salinities. These values are surprisingly
low considering that gypsum and halite precipitation requires
salinities of ~110 and ~270 ppt (e.g., Natalicchio et al., 2014),
respectively. Christeleit et al. (2015) hypothesized that the abyssal
plain evaporites were deposited in deep stratified basins, typified
by a mixed superficial water layer with normal salinity and a deep
bottom water brine at or above the gypsum and halite saturation
points. According to their scenario, the low ACE index values pre-
served in the evaporites record only the salinities of surface waters,
which were dominated by planktonic Thaumarchaeota, the bio-
mass of which was subsequently transported to the sediments.
Even though lipid biomarkers from surface water communities
can accumulate at the seafloor by an effective shuttle process
(Taylor et al., 2013 and References therein), it must be stressed that
the deep brines of modern stratified hypersaline basins, such as the
deep Eastern Mediterranean Sea (van der Wielen et al., 2005) or
the Dead Sea (Thomas et al., 2015) are inhabited by diverse micro-
bial communities, also including halophilic archaea among other
archaea and bacteria. Considering the modern analogs, it is difficult
to imagine that the archaeal lipid inventory, and therefore the ACE
index, of the abyssal plain evaporites studied by Christeleit et al.
(2015) are not affected by these brine communities and only reflect
the upper water column inventory of planktonic Thaumarchaeota.
Assuming that the deep halophilic archaeal communities produce
membrane lipids composed of DGDs, chiefly archaeol, the ACE
index of the abyssal plain Messinian evaporites would be expected
to be high. Only a few studies have reported high contents of DGDs
(archaeol) from evaporitic deposits, including examples from Mio-
cene halite of the Lorca Basin (Teixidor et al., 1993) and the Dead
Sea (Oldenburg et al., 2000), but the GDGTs required to calculate
the ACE index have not been measured. The only case in which
ACE paleosalinity estimations agree with lithology and lipid inven-
tory is represented by some MSC carbonates (the so called Calcare
di Base) from Sicily and Calabria (Italy), where high ACE index val-
ues (> 40) reflecting salinities > 75 ppt were obtained (Turich and
Freeman, 2011; Birgel et al.,, 2014). Additional indicators for
increased salinities in these carbonates, including pseudomorphs
after halite (Birgel et al., 2014; Caruso et al., 2015), the occurrence
of extended archaeol, and characteristic GDGT patterns with
almost only caldarchaeol present (Birgel et al., 2014), agree with
high salinities and apparently reflect deposition in a hypersaline
basin not typified by normal marine conditions and their charac-
teristic dominance of planktonic Thaumarchaeota.

The inconsistency between the ACE salinity reconstruction and
other proxies (e.g., lithology, fossil content) suggests that the ACE
index should only be used with caution to calculate paleosalinities
from Messinian strata with their different sources of archaeal
lipids. Interestingly, studies of modern restricted environments
with known salinities (Giinther et al., 2014; Huguet et al., 2015)
indicate that the ACE index is not necessarily dependent on salinity
alone, but rather on the source of the archaeal lipids (archaeol and
caldarchaeol) used for its calculation. Originally, the ACE index was
calibrated using sediments and suspended particles from salt
works (Turich and Freeman, 2011), where caldarchaeol is abundant
and other GDGTs are only minor constituents or are even absent

(Turich et al., 2007). Therefore, it seems likely that the ACE index
provides reliable salinity estimates only when caldarchaeol is the
predominant GDGT like in some MSC carbonates (Calcare di Base)
typified by caldarchaeol/crenarchaeol ratio > 1.5 (Fig. 5) and the
presence of pseudomorphs after halite (Turich and Freeman,
2011; Birgel et al., 2014). It needs to be stressed that other sources
of archaeal lipids, particularly sediment-dwelling archaea, will
affect the calculation of the ACE index. Among benthic archaea,
methanotrophic (Feng et al, 2014) and methanogenic (Koga
et al.,, 1998; Schouten et al., 2013) Euryarchaeota produce large
amounts of archaeol and caldarchaeol, which may also cause high
caldarchaeol/crenarchaeol ratios and high ACE based salinity esti-
mates (Fig. 5; Feng et al., 2014), which are, of course, not necessar-
ily indicative of hypersaline conditions.

Based on these considerations, the calculation of ACE-based
salinities can be biased by the production of ring-containing
GDGTs by Thaumarchaeota and methanotrophic archaea. Since
Thaumarchaeota produce both crenarchaeol and caldarchaeol
(e.g., Schouten et al., 2013), the ACE index is unlikely to provide
robust salinity estimates for marine settings that are characterized
by thaumarchaeotal input to the caldarchaeol pool (caldarchaeol/
crenarchaeol ratio ~1; e.g., Pearson and Ingalls, 2013). In this
regard, we put forward that the caldarchaeol/crenarchaeol ratio
must be monitored if the ACE index is to be used, to be able to
decide whether the overall caldarchaeol pool is impacted by thau-
marchaeotal caldarchaeol production or not (Fig. 5). Such a rela-
tionship applies to most of the Pollenzo samples that are
characterized by a caldarchaeol/crenarchaeol ratio ~1; the high
ACE index values (> 30) (Figs. 3 and 5) calculated from these sed-
iments cannot be translated into realistic salinities. A different
explanation is, however, needed for the few samples from the
uppermost MSC deposits with high caldarchaeol/crenarchaeol
ratios and ACE index values, which in turn result from high caldar-
chaeol and DGD (archaeol and extended archaeol) contents (see
discussion below).

5.3. Do DGDs record the onset of hypersaline conditions in the Pollenzo
section?

The DGD distribution in the uppermost Pollenzo section sug-
gests an expansion of halophilic Euryarchaeota and an overall
change in the archaeal community. Halophilic Euryarchaeota are
generally thought to be aerobic heterotrophs, though alternative
lifestyles including anaerobic and even phototrophic metabolisms
have been suggested (Oren, 2002, 2014). Since the conditions in
the water column of the Pollenzo section seem to have been locally
still favorable for planktonic Thaumarchaeota even after the onset
of the MSC, halophilic archaea may rather have lived at or below a
chemocline, separating a body of normal marine or even brackish
waters with oxic conditions above, from a layer of denser and more
saline brines below. Interestingly, the major change and diversifi-
cation in the archaeal lipid assemblage (just below Bed f) coincides
with the appearance of the pentacyclic triterpenoid tetrahymanol.
This compound has been attributed to bacterivorous ciliates (e.g.,
Tetrahymena pyriformis; Harvey and McManus, 1991), anoxygenic
phototrophic bacteria (Kleemann et al., 1990; Rashby et al., 2007;
Eickhoff et al., 2013), or aerobic methanotrophic bacteria (Banta
et al., 2015), all of which are living at the interface between oxic
and anoxic waters in stratified basins (Wakeham et al., 2007,
2012). Hence tetrahymanol is commonly used as an indicator of
water column stratification (ten Haven et al., 1989; Schoell et al.,
1994; Sinninghe Damsté et al., 1995). The appearance of this com-
pound along with the evidence for a possible contemporaneous
salinity increase points to the establishment of water column strat-
ification in the Piedmont Basin.
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However, the interpretation that the increase of DGDs and cal-
darchaeol had been caused by an increase of salinity and an asso-
ciated change in the archaeal community is not without
alternatives, particularly considering the lack of local lithological
evidence for evaporation (see above). Some haloarchaea have been
found to tolerate low salt concentrations for example at sulfur-rich
springs (~10 ppt; Elshahed et al., 2004) and in estuaries (Purdy
et al., 2004). Similarly, Jessen et al. (2016) described several groups
of extremophilic archaea and bacteria, including non-halophilic
Thermoplasmatales and Halobacteriales in microbial mats on the
seafloor of the Black Sea, which are dominated by filamentous Beg-
giatoa-like sulfide-oxidizing bacteria at a salinity of approxima-
tively 20 ppt. These mats occur in hypoxic environments where
the chemocline intercepts the seafloor. Since non-halophilic Ther-
moplasmatales are known to produce chiefly archaeol, extended
archaeol, and caldarchaeol (de Rosa and Gambacorta, 1988;
Schouten et al., 2013; Becker et al., 2016) and Halobacteriales pro-
duce mostly archaeol and extended archaeol (e.g., Dawson et al.,
2012), these taxa are candidate source organisms that could
explain the high DGD and caldarchaeol contents of the upper part
of the Pollenzo section.

Remarkably, the sharp increase of these compounds in the sed-
iments below Bed f of the Pollenzo section coincides with the first
occurrence of filamentous fossils (Fig. 2D), which have been inter-
preted as sulfide-oxidizing bacteria (Dela Pierre et al., 2012, 2014).
Moreover, high archaeal and bacterial cell densities and peaks of
various molecular fossils, including GDGTs (especially caldarchaeol
and crenarchaeol), archaeol and tetrahymanol, have also been
reported from the chemocline of modern stratified basins, includ-
ing the Black Sea (Wakeham et al., 2003, 2007) and the Cariaco
Basin (Wakeham et al., 2012). Based on the striking similarities
between the biomarker inventories of the Pollenzo sediments with
those of some modern, non-evaporitic basins (Wakeham et al,,
2003, 2007, 2012; Jessen et al., 2016), it seems possible that the
Pollenzo section records the onset of the MSC in a marine basin
that was typified by intense water column stratification and a
well-defined chemocline, but not necessarily by desiccation and
hypersaline conditions.

6. Conclusions

Archaeal molecular fossils, in particular isoprenoidal dialkyl
glycerol diethers (DGDs) and isoprenoidal glycerol dialkyl glycerol
tetraethers (GDGTSs), are powerful tools for reconstructing environ-
mental change in the course of the MSC in the absence of evapor-
ites. The Piedmont Basin sedimentary rocks of the Pollenzo section
record an increase and a diversification of Archaea approximately
20 ka after the advent of the crisis. The molecular fossils archived
in the basal MSC sediments point to the existence of persistent
marine to possibly brackish conditions in the upper water column.
The increase of archaeol and caldarchaeol and the appearance of
extended archaeol, mostly produced by extremophilic archaea
(especially halophiles), after the onset of the MSC apparently sug-
gest an increase of salinity. However, other evidence for hyper-
saline conditions is lacking except for the unrealistically high
values of the Archaeol and Caldarchaeol Ecometric (ACE), repre-
senting salinities > 60 ppt for the entire section. The ACE index val-
ues obtained for the Pollenzo section cannot be translated into
reliable salinities, since the archaeal lipid patterns are affected by
shifts in the composition of archaeal communities that impede
the utility of this proxy. We speculate that the changes in the
archaeal community at the onset of the crisis do not necessarily
account for basin-wide seawater evaporation, but may reflect
stratification and hypoxia like in some modern stratified basins
(Black Sea or the Cariaco Basin). Stratified, but not necessarily

evaporitic basins may serve as a modern analog for a better under-
standing of the response of microorganisms to the MSC in some
marginal basins of the Mediterranean Sea like the Piedmont Basin.
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