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Abstract:We show obstructions to the existence of a coclosed G2-structure on a Lie algebra g of dimension
seven with non-trivial center. In particular, we prove that if there exists a Lie algebra epimorphism from g to
a six-dimensional Lie algebra h, with the kernel contained in the center of g, then any coclosed G2-structure
on g induces a closed and stable three form on h that defines an almost complex structure on h. As a conse-
quence, we obtain a classification of the 2-step nilpotent Lie algebras which carry coclosed G2-structures. We
also prove that each one of these Lie algebras has a coclosed G2-structure inducing a nilsoliton metric, but
this is not true for 3-step nilpotent Lie algebras with coclosed G2-structures. The existence of contact metric
structures is also studied.
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1 Introduction

A 7-dimensional smooth manifold M admits a G2-structure if there is a reduction of the structure group of
its frame bundle from Gl(7,ℝ) to the exceptional Lie group G2, which can actually be viewed naturally as
a subgroup of SO(7). Therefore, a G2-structure determines a Riemannianmetric and an orientation onM. The
presence of a G2-structure is equivalent to the existence of a positive 3-form, where the positivity is a natural
nondegeneracy condition (see Section 2 for details). Such a 3-form φ defines a unique Riemannianmetric gφ
and an orientation on M.

Whenever this 3-formφ is covariantly constantwith respect to the Levi-Civita connection of gφ or, equiva-
lently, the intrinsic torsion of the G2-structure vanishes [25], the holonomy group is contained in G2, and this
happens if and only if the 3-form φ is closed and coclosed [12]. A G2-structure is called closed if the 3-form
φ is closed, and a G2-structure is said to be coclosed if the 3-form φ is coclosed. Usually these two classes of
G2-structures are very different in nature, being that the closed condition is much more restrictive; for exam-
ple, coclosed G2-structures always exist on closed spin manifolds and satisfy the parametric h-principle [7].

In [5], Conti and the second author classified the nilmanifolds endowed with an invariant closed
G2-structure (see also [10]). By a nilmanifoldM we mean a compact manifold which is a quotientM = Γ \ G,
where G is a connected, simply connected and nilpotent Lie group, and Γ ⊂ G is a lattice. By Mal’cev theo-
rem [23], a lattice Γ ⊂ G exists if and only if the Lie algebra g of G has a basis such that the structure con-
stants of g are rational numbers. Therefore, any nilmanifold is parallelizable, and so spin for any Riemannian
metric. Then, by [7, Theorem 1.8], every nilmanifold has a coclosed G2-structure.
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In this paper we study the existence of invariant coclosed G2-structures on 2-step nilmanifolds Γ \ G.
Since invariant differential forms on Γ \ G are uniquely determined by forms on the Lie algebra g of G, we
can restrict our attention to 7-dimensional nilpotent Lie algebras, which were classified in [14]. We show
two necessary conditions that a Lie algebra must satisfy if it supports a coclosed G2-structure (see Corol-
lary 3.2 and Lemma 3.3). It turns out that if the 7-dimensional nilpotent Lie algebra g is 2-step decompos-
able, then it admits a coclosed G2-structure (Corollary 4.4), but if g is indecomposable, up to isomorphism,
only 7 of the 9 indecomposable 2-step nilpotent Lie algebras carry a coclosed G2-structure (Theorem 5.1).
As a result we obtain that there exist 2-step nilmanifolds which admit a coclosed G2-structure, but not an
invariant one.

Nilpotent Lie groups cannot admit left invariant Einstein metrics. Natural generalizations of Einstein
metrics are given by Ricci solitons, which have been introduced by Hamilton in [16]. All known examples of
non-trivial homogeneous Ricci solitons are left invariant metrics on simply connected solvable Lie groups,
whose Ricci operator satisfies the condition Ric(g) = λI + D for some λ ∈ ℝ and some derivation D of the cor-
responding Lie algebra. The left invariantmetrics satisfying the previous condition are called nilsolitons if the
Lie groups are nilpotent [22]. Not all nilpotent Lie groups admit nilsoliton metrics, but if a nilsoliton exists,
then it is unique up to automorphism and scaling [22].

Closed G2-structures inducing nilsolitons have been studied in [11]. A natural question is thus to see how
is restrictive to impose that a left invariant coclosed G2-structure on a nilpotent Lie group induces a nilsoli-
ton metric. In Section 6 we prove that all the 2-step nilpotent Lie groups admitting a left invariant coclosed
G2-structure have a coclosed G2-structure inducing a nilsoliton (see Theorems 6.1 and 6.3). However, this
property is not true for higher steps. Indeed, in Example 6.4, we show that there exists a 3-step nilpotent
Lie group admitting a nilsoliton and a left invariant coclosed G2-structure, but without having any coclosed
G2-structure inducing the nilsoliton.

Given a smooth manifold M of dimension seven, one can ask the existence not only of a G2-structure
but also of a contact structure. By [2], every manifold with G2-structure admits an almost contact structure,
and two types of compatibility between contact and G2-structures have been studied. In Section 7, we show
that if a 2-step nilmanifold Γ \ G admits a contact metric (g, η) such that themetric g is induced by a coclosed
G2-structure, thenG is isomorphic to the7-dimensionalHeisenberg Lie group (Proposition7.1), and therefore
Γ \ G has an invariant Sasakian structure. In higher step, this property is not true. Indeed, in Example 7.2, we
construct a 3-step (not Sasakian) 7-dimensional nilpotent Lie algebra admitting a K-contact metric structure
(η, g) such that the metric g is determined by a coclosed G2-structure.

2 Algebraic preliminaries on stable forms

In this section we collect some results about stable forms on an n-dimensional real vector space. We focus on
the existence of stable forms in dimension n = 6 and n = 7 [6, 9, 17, 24, 26].

Let V be a real vector space of dimension n. Consider the representation of the general linear groupGL(V)
on the space Λk(V∗) of k-forms on V. An element ρ ∈ Λk(V∗) is said to be stable if its orbit under GL(V) is
open in Λk(V∗).

In the following proposition, we recall the values of k and n for which there exist open orbits in Λk(V∗)
under the action of GL(V), and so for which there exist stable k-forms on V.

Proposition 2.1 ([6, 18]). Let V be an n-dimensional real vector space. For1 ≤ k ≤ [ n2 ], the general linear group
GL(V) has an open orbit in Λk(V∗) if and only if k ≤ 2, or if k = 3 and n = 6, 7 or 8. Moreover, the number of
open orbits in Λk(V∗) is finite.

Note that any non-zero 1-form on V is stable. In fact, if α is such a 1-form, then the orbit of α is open in V∗,
since GL(V) ⋅ α = V∗ \ {0}. Moreover, according to the following result due to Hictchin [17, 18], for any stable
k-form ρ on V, there is a dual (n − k)-form ρ̂ ∈ Λn−k(V∗), which is also stable and such that ρ̂ ∧ ρ defines
a volume form on V.
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Proposition 2.2 ([6, 17, 18, 26]). Let V be an n-dimensional oriented vector space. Assume that k ∈ {2, n − 2}
and n even, or k ∈ {3, n − 3} and n = 6, 7 or 8. Then, there exists a GL(V)-equivariant map

ε : Λk(V∗) → Λn(V∗), (2.1)

homogeneous of degree n
k , such that it assigns a volume form to a stable k-form and it vanishes on non-stable

forms. Given a stable k-form ρ, the derivative of ε in ρ defines a dual (n − k)-form ρ̂ ∈ Λn−k(V∗) by the following
property:

dερ(α) = ρ̂ ∧ α

for all α ∈ Λk(V∗). Moreover, the dual form ρ̂ is also stable, the identity component of its stabiliser is equal to
the stabiliser of ρ, and the forms ρ, ρ̂ and the volume form ε(ρ) are related by

ρ̂ ∧ ρ = n
k
ε(ρ).

In the following subsections, we recall the explicit description of the spaces of open orbits in Λk(V∗) when
n = 6 and when n = 7.

2.1 Stable forms in dimension six

Let V be a 6-dimensional oriented vector space.

Theorem 2.3 ([17–19]). There is a unique GL(V) open orbit in Λ2(V∗), which can be characterized as follows:

Λ0(V∗) = {ω ∈ Λ2(V∗) | ω3 ̸= 0}.

Therefore, if ω ∈ Λ0(V∗), then its stabiliser is isomorphic to Sp(6,ℝ), its volume form ε(ω) (where ε is the map
(2.1)) can be chosen to be equal to 1

3!ω
3, and its dual form ω̂ (in the sense of Proposition 2.2) is equal to 1

2ω
2.

Moreover, there exists a suitable coframe {f 1, . . . , f 6} of V∗ such that

ω = f 12 + f 34 + f 56,
ω̂ = f 1234 + f 1256 + f 3456,
ε(ω) = f 123456,

where f 12 stands for f 1 ∧ f 2, and so on.

In order to describe the open orbits in Λ3(V∗), we proceed as follows. For any ρ ∈ Λ3(V∗), we consider the
map kρ : V Ü→ Λ5(V∗) defined by

kρ(x) = ιxρ ∧ ρ,

where ιx denotes the contraction by the vector x ∈ V. Clearly, we have Λ5(V∗) ≅ V ⊗ Λ6(V∗). Indeed, themap
μ : Λ5(V∗) Ü→ V ⊗ Λ6(V∗) given by μ(ξ) = x ⊗ α ∈ V ⊗ Λ6(V∗), with ιx(α) = ξ , is an isomorphism. Thus, we
have the linear map

Kρ = μ ∘ kρ : V Ü→ V ⊗ Λ6(V∗). (2.2)

Then, one can also define the quadratic function

λ : Λ3(V∗) Ü→ (Λ6(V∗))⊗2

on the space Λ3(V∗) by
6 λ(ρ) = trace(Kρ2) ∈ (Λ6(V∗))⊗2. (2.3)

An element λ(ρ) ∈ (Λ6(V∗))⊗2, where ρ ∈ Λ3(V∗), is said to be positive, andwewrite λ(ρ) > 0, if λ(ρ) = ν ⊗ ν
with ν ∈ Λ6(V∗). In this case, the form ρ is called positive. An element λ(ρ) ∈ (Λ6(V∗))⊗2 is said to be negative,
and we write λ(ρ) < 0, if −λ(ρ) is positive, that is, −λ(ρ) = ν ⊗ ν. Then, the form ρ is called negative.

Brought to you by | SUNY Binghamton
Authenticated

Download Date | 5/23/17 8:10 AM



4 | L. Bagaglini, M. Fernández and A. Fino, Coclosed G2-structures inducing nilsolitons

Now, let us suppose that ρ ∈ Λ3(V∗) is such that λ(ρ) ̸= 0. Then, we can consider the linear map
Jρ : V → V such that for x ∈ V, Jρ(x) is defined by

Jρ(x) =
1

√λ(ρ)
Kρ(x) ∈ V (2.4)

if λ(ρ) > 0, and

Jρ(x) =
1

√−λ(ρ)
Kρ(x) ∈ V (2.5)

if λ(ρ) < 0.

Theorem 2.4 ([17–19]). The unique GL(V) open orbits in Λ3(V∗) are the two following sets

Λ+(V∗) = {ρ ∈ Λ3V∗ | λ(ρ) > 0} and Λ−(V∗) = {ρ ∈ Λ3V∗ | λ(ρ) < 0},

where λ(ρ) is given by (2.3). If ρ ∈ Λ+(V∗), then the identity component of its stabiliser is isomorphic to
SL(3,ℝ) × SL(3,ℝ), and there is a coframe {f 1, . . . , f 6} of V∗ such that ρ has the following expression:

ρ = f 123 + f 456.

If ρ ∈ Λ−(V∗), then the identity component of its stabiliser is isomorphic to SL(3,ℂ) and there is a coframe
{f 1, . . . , f 6} of V∗ such that

ρ = −f 246 + f 136 + f 145 + f 235.

Moreover, ρ ∈ Λ+(V∗) if and only if the map Jρ, defined by (2.4), is a paracomplex structure on V; and
ρ ∈ Λ−(V∗) if and only if the map Jρ, defined by (2.5), is a complex structure on V. In both cases the dual
form ρ̂ of ρ is given by ρ̂ = −J∗ρ ρ.

Remark 2.5. Note that a 3-form ρ on a 6-dimensional oriented vector space V is stable if and only if λ(ρ) ̸= 0.
Moreover, if ρ ∈ Λ3(V∗) is a 3-form on V, then kρ = k−ρ, so Kρ = K−ρ and λ(ρ) = λ(−ρ). Thus, if ρ ∈ Λ+(V∗),
then −ρ ∈ Λ+(V∗); and if ρ ∈ Λ−(V∗), then −ρ ∈ Λ−(V∗).

2.2 SU(3)-structures as pairs of stable forms in Λ0(V∗) × Λ−(V∗)
We recall the notion of SU(3)-structure on a vector space V of (real) dimension 6. An SU(3)-structure on V
is a triple (g, J, ψ) such that (g, J) is an almost Hermitian structure on V, and ψ = ψ+ + i ψ− is a complex
(3, 0)-form which satisfies

ψ+ ∧ ψ− =
2
3ω

3, (2.6)

where ω is the Kähler form of (g, J), and ψ+ and ψ− are the real part and the imaginary part of ψ, respectively.
It is clear that ω ∧ ψ+ = ω ∧ ψ− = 0 and ψ− = Jψ+.

Theorem 2.6 ([17, 26]). Let (ω, ψ−) ∈ Λ0(V∗) × Λ−(V∗) be such that

ω ∧ ψ− = 0.

Let Jψ− be the complex structure on V defined by (2.5), and let h : V × V → ℝ be the map given by

h(x, y) = ω(x, Jψ−y)
for x, y ∈ V. Then, if h is positive definite, the stabiliser of the pair (ω, ψ−) is a subgroup of SO(V, h) iso-
morphic to SU(3), that is, the pair (ω, ψ−) defines an SU(3)-structure for which Jψ− is the complex structure,
ψ = −J∗ψ−ψ− + iψ− is the complex volume form and h is the underlying Hermitianmetric. Furthermore, any other
SU(3)-structure is obtained in this way.
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If (ω, ψ−) is normalized, that is, the condition (2.6) is satisfied, then the dual form ω̂ and the real part ψ+

of ψ are given by

ω̂ = ⋆hω, ψ+ = ⋆hψ−,

where ⋆h is the Hodge star operator of h; and there exists a suitable (h-orthonormal) coframe {f 1, . . . , f 6} of
V∗ such that

ω = f 12 + f 34 + f 56, ψ− = −f 246 + f 136 + f 145 + f 235.

2.3 Stable forms in dimension seven

Let V be a 7-dimensional oriented vector space. For each 3-form φ ∈ Λ3(V∗) on V, we can define the sym-
metric quadratic form bφ : V × V → Λ7(V∗) by

6bφ(x, y) = ιxφ ∧ ιyφ ∧ φ,

where x, y ∈ V. If φ is stable, then (see [17, 26]) the volume form ε(φ) defined by the map (2.1) is given by

ε(φ) = 9√det(bφ).

Then, we can consider the symmetric map gφ : V × V → ℝ given by

gφ(x, y)ε(φ) = bφ(x, y), (2.7)

where x, y ∈ V.

Definition 2.7. Let V be a 7-dimensional oriented vector space. A 3-form φ on V is called positive if gφ is
positive definite; and φ is said to be negative if gφ is indefinite.

The following result states that the positive and negative forms on V are the unique stable 3-forms on V.

Theorem 2.8 ([17, 26]). There are exactly two GL(V) open orbits in Λ3(V∗) which are defined by

Π+(V∗) = {φ ∈ Λ3(V∗) | gφ is positive definite}

and
Π−(V∗) = {φ ∈ Λ3(V∗) | gφ is indefinite}.

If φ ∈ Π+(V∗), then the stabiliser of φ is a subgroup ofO(V, gφ) isomorphic toG2, and the dual formϕ = φ̂ of φ is
given by ϕ = ⋆φφ, where ⋆φ is the Hodge star operator of the metric gφ. Moreover, in a suitable gφ-orthonormal
coframe {f 1, . . . , f 7} of V∗, the forms φ and ϕ = φ̂ have the following expressions:

φ = f 127 + f 347 + f 567 + f 135 − f 146 − f 236 − f 245,
ϕ = f 1234 + f 1256 + f 1367 + f 1457 + f 2357 − f 2467 + f 3456.

If φ ∈ Π−(V∗), then the metric gφ has signature (3, 4), and the stabiliser of φ is the non-compact group G∗2 . In
this case, there exists a gφ-orthonormal coframe {f 1, . . . , f 7} of V∗ such that the forms φ and ϕ = φ̂ are given
by

φ = −f 127 + f 347 + f 567 + f 135 − f 146 − f 236 − f 245,
ϕ = ⋆φφ = f 3456 − f 1234 − f 1256 − f 2467 + f 1367 + f 1457 + f 2357.

Remark 2.9. The correspondence {φ Ü→ ⋆φφ} from the set of stable 3-forms to the one of stable 4-forms is
2 : 1, preserves both positivity and negativity, and verifies gφ = g⋆φφ. A section of this map is completely
determined by an orientation on V (see [3]).

Brought to you by | SUNY Binghamton
Authenticated

Download Date | 5/23/17 8:10 AM



6 | L. Bagaglini, M. Fernández and A. Fino, Coclosed G2-structures inducing nilsolitons

3 Coclosed G2-structures and obstructions

In this section we show obstructions to the existence of a coclosed G2 form on a Lie algebra with non-trivial
center, but not necessarily nilpotent. First, we recall some definitions and results about G2-structures.

A 7-dimensional smoothmanifoldM is said to admit a G2-structure if there is a reduction of the structure
group of its frame bundle from GL(7,ℝ) to the exceptional Lie group G2, which can actually be viewed natu-
rally as a subgroup of SO(7). Thus, a G2-structure determines a Riemannian metric and an orientation onM.
In fact, the presence of a G2-structure is equivalent to the existence of a 3-form φ (the G2 form) on M, which
is positive (in the sense of Definition 2.7) on the tangent space TpM of M at every point p ∈ M.

If φ is a G2-form on M, then by (2.7) φ induces both an orientation and a Riemannian metric gφ on M
given by

6gφ(X, Y) vol = ιXφ ∧ ιYφ ∧ φ

for any vector fields X, Y on M, where vol is the volume form on M, and ιX denotes the contraction by X. Let
⋆φ be the Hodge star operator determined by gφ and the orientation induced by φ. We will always write ϕ to
mean the dual 4-form of a G2 form, that is,

ϕ = ⋆φφ.

We say that a manifold M has a coclosed G2-structure if there is a G2-structure on M such that the G2 form φ
is coclosed, that is, dϕ = 0.

Now, let G be a 7-dimensional simply connected Lie group with Lie algebra g. Then a G2-structure on
G is left invariant if and only if the corresponding 3-form is left invariant. According to Theorem 2.8, a left
invariant G2-structure on G is defined by a positive 3-form φ ∈ Π+(g∗), which can be written as

φ = e127 + e347 + e567 + e135 − e146 − e236 − e245, (3.1)

with respect to some orthonormal coframe {e1, . . . , e7} of g∗. So the dual form ϕ = ⋆φφ has the following
expression:

ϕ = e1234 + e1256 + e1367 + e1457 + e2357 − e2467 + e3456, (3.2)

where e127 stands for e1 ∧ e2 ∧ e7, and so on.
A G2-structure on g is said to be coclosed (or cocalibrated) if φ is coclosed, that is,

dϕ = 0,

where d denotes theChevalley-Eilenberg differential on g∗. By [23],weknow that if g is nilpotentwith rational
structure constants, then the associated simply connected nilpotent Lie group G admits a uniform discrete
subgroup Γ. Therefore, a G2-structure on g determines a G2-structure on the compactmanifold Γ \ G, which is
called a compact nilmanifold; and if g has a coclosed G2-structure, the G2-structure on Γ \ G is also coclosed.

In order to showobstructions to the existence of a coclosedG2-structure on a Lie algebra g, let us consider
first the case that g is a direct sum of two ideals h andℝ, i.e.,

g = h ⊕ ℝ,

where h is a 6-dimensional Lie algebra. If ϕ is a 4-form defining a G2-structure on g, and the decomposition
g = h ⊕ ℝ is orthogonal with respect to the underlying metric on g, then

ϕ = 12ω
2 + ψ− ∧ dt,

where the pair (ω, ψ−) defines an SU(3)-structure on h, and t is a coordinate onℝ. Now, the condition that ϕ
is closed is equivalent to bothω2 and ψ− are closed. Thismeans that the SU(3)-structure is half-flat. There are
exactly 24 nilpotent Lie algebras of dimension six that admit a half-flat structure [4]. Hence, if we focus our
attention on decomposable nilpotent Lie algebras, then there are at least 24 nilpotent Lie algebras, of dimen-
sion seven, with a coclosed G2-structure. In Theorem 4.3, we show that those are exactly the decomposable
nilpotent Lie algebras admitting coclosed G2-structures.
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Let g be a 7-dimensional Lie algebra with non-trivial center. If X ∈ g belongs to the center of g, then the
quotient h = g/Span{X} has a unique Lie algebra structure that makes the projection map π : g→ h a Lie
algebra morphism. Thus, we have the following short exact sequence of Lie algebras:

0 Ú→ ℝX Ú→ g
π
ÚÚÚ→ h Ú→ 0.

Moreover, if we assume that g is nilpotent, then every epimorphism g→ h, with h of dimension six, is of this
form.

We need also to recall the following result due to Schulte [26, Proposition 4.5]. If φ is a G2-structure on a
7-dimensional Lie algebra andwe choose a vector X ∈ gof lengthonewith respect to themetric gφ determined
by φ, then on the orthogonal complement of the span of X one has an SU(3)-structure (ω, ψ−) given by the
2-form ω = ιXφ and the 3-form ψ− = −ιXϕ, where ϕ is the dual 4-form of φ, that is, ϕ = ⋆φφ.

Proposition 3.1. Let gbe a7-dimensional Lie algebrawith non-trivial center anda3-formφ defining a coclosed
G2-structure on g. If π : g→ h is an epimorphism from g to a 6-dimensional Lie algebra h, with kernel contained
in the center of g, then φ determines an SU(3)-structure (ω, ψ−) on h such that the 3-form ψ− is closed.

Proof. Denote by gφ the underlying metric on g defined by the G2-structure φ, and denote by ϕ the dual
4-form of φ, that is, ϕ = ⋆φφ. Let X be a unit vector in the center of g, and let η = ιX(gφ) be the dual form
of X with respect to gφ. By the aforementioned result of [26, Proposition 4.5], we know that φ induces an
SU(3)-structure (ω̃, ψ̃−) on the orthogonal complement V of the span of X, that is, on ker(η), such that

ϕ = σ̃ + ψ̃− ∧ η,

where σ̃ ∈ Λ4(V∗) is the dual 4-form of ω̃ with respect to the metric defined by (ω̃, ψ̃−) on the space ker(η).
Now, consider the Lie algebra h = g/Span{X} and the projection map

π : g→ h.

Clearly, h and V are isomorphic as vector spaces. Then, fixing an isomorphism between these spaces and
doing the pullback of the SU(3)-structure (ω̃, ψ̃−) on V, we have an SU(3)-structure (ω, ψ−) on h such that

ϕ = π∗σ + π∗ψ− ∧ η, (3.3)

where σ̃ ∈ Λ4(h∗) is the dual 4-form of ω with respect to the metric defined by (ω, ψ−) on h. Thus,

ψ− = π∗(−ιXϕ).

Moreover, we see that

dψ− = 0, d(π∗σ) = π∗ψ− ∧ dη.

In fact, since d commutes with the pullback, from (3.3) we have

0 = dϕ = π∗(dσ) + π∗(dψ−) ∧ η − π∗ψ− ∧ dη.

Taking the contraction by X, and using that X is in the center of g, that is, ad(X) = 0, we have dψ− = 0 and
d(π∗σ) = π∗ψ− ∧ dη.

As a consequence of Proposition 3.1, we have the following obstruction to existence of coclosedG2-structures
on Lie algebras with non-trivial center.

Corollary 3.2. Let g be a 7-dimensional oriented Lie algebra with non-trivial center. If there is an element X in
the center of g such that

π∗(ιXκ) ̸∈ Λ−(h∗) (3.4)

for every closed 4-form κ ∈ Λ4(g∗), where π : g→ h = g/Span{X} is the projection map, then g does not admit
any coclosed G2-structure.
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Proof. Let X be a non-zero vector in the center of g such that condition (3.4) is satisfied for any closed 4-
form on g. Suppose that there is a 4-form ϕ on g defining a coclosed G2-structure. Then, by Proposition 3.1,
the 4-form ϕ determines an SU(3)-structure (ω, ψ−) on h = g/Span{X}, where ψ− = π∗(−ιXϕ) by (3.3). Now,
Remark 2.5 and Theorem 2.6 imply that π∗(ιXϕ) ∈ Λ−(h∗), which contradicts condition (3.4). So, g does not
admit coclosed G2-structures.

Another obstruction to the existence of a coclosed G2-structure on a Lie algebra is given by the following
lemma.

Lemma 3.3. Let g be a 7-dimensional Lie algebra. If there are non-zero vectors X and Y in g such that
(ιX ιYκ)2 = 0 for every closed 4-form κ on g, then g does not admit coclosed G2-structures.

Proof. It follows from (3.2).

The following result, whilst straightforward, turns out effective to show that some Lie algebras do not admit
coclosed G2-structures (see Proposition 4.2).

Lemma 3.4. Let (h, J) be an almost Hermitian structure on a 6-dimensional oriented vector space V, with or-
thogonal complex structure J, Hermitian metric h and fundamental two-form ω( ⋅ , ⋅ ) = h(J ⋅ , ⋅ ). Then, for any
J-invariant 4-dimensional subspace W of V, we have that the restriction to W of the 4-form (⋆ω) is non-zero,
that is, (⋆ω)|W ̸= 0, where ⋆ denotes the Hodge ⋆-operator of the metric h.

Proof. Since W is J-invariant, there exist non-zero vectors x, y ∈ W such that {x, Jx, y, Jy} is an orthonor-
mal basis of the space W (with respect to h). Let z ∈ V be a unit vector orthogonal to the space W. Then
{x, Jx, y, Jy, z, Jz} is a (real) h-orthonormal basis of V. Therefore,

(⋆ω)(x ∧ Jx ∧ y ∧ Jy) = ω(z ∧ Jz) = ‖z‖2 = 1,

which proves that (⋆ω)|W ̸= 0.

4 Decomposable case

In this section we classify the 7-dimensional decomposable nilpotent Lie algebras which admit coclosed G2-
structures. Recall that a Lie algebra is called decomposable if it is the direct sum of two ideals.

For convenience, from now on we will use the following notation. Suppose that g is a 7-dimensional Lie
algebra whose dual space g∗ is spanned by {e1, . . . , e7} satisfying

dei = 0, 1 ≤ i ≤ 4, de5 = e23, de6 = e34, de7 = e36.

Then we will write
g = (0, 0, 0, 0, 23, 34, 36),

with the same meaning. Moreover, we will denote by {e1, . . . , e7} the basis of g dual to {e1, . . . , e7}.

Proposition 4.1. If g is one of the following 7-dimensional nilpotent Lie algebras:

g1 = (0, 0, 0, 0, 12, 15, 0), g2 = (0, 0, 0, 0, 23, 34, 36), g3 = (0, 0, 0, 12, 13, 14, 0),

g4 = (0, 0, 0, 12, 14, 24, 0), g5 = (0, 0, 12, 13, 14, 23 + 15, 0), g6 = (0, 0, 12, 13, 14, 15, 0),

g7 = (0, 0, 12, 13, 14, 34 − 25, 0), g8 = (0, 0, 12, 13, 14 + 23, 34 − 25, 0),

then g carries no coclosed G2-structures.

Proof. Using Lemma 3.3, we will prove that each Lie algebra gs, s ∈ {1, . . . , 8}, listed in the statement, does
not admit any coclosed G2-structure. For this, we will show that there are non-zero vectors Xs , Ys ∈ gs such
that (ιXs (ιYs κs))2 = 0 for any closed 4-form κs on gs.
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s = 1. A generic closed 4-form κ1 on g1 = (0, 0, 0, 0, 12, 15, 0) has the following expression:

κ1 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c1346e1346 + c1347e1347 + c1356e1356

+ c1357e1357 + c1367e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c1567e1567 + c2345e2345

+ c2347e2347 + c2356e2356 + c2357e2357 + c2456e2456 + c2457e2457 + c2567e2567,

where cijkl are arbitrary real numbers. Now, one can check that if the coefficient c2356 of κ1 vanishes, then

(ιe3 (ιe6κ1))2 = 0,

that is, g1 satisfies the hypothesis of Lemma 3.3 for X1 = e3 and Y1 = e6. If c2456 = 0, then

(ιe4 (ιe6κ1))2 = 0.

But if c2356 and c2456 are both non-zero, then for X1 = c2356e4 − c2456e3 and Y1 = e6, we have

(ιc2356e4−c2456e3 (ιe6κ1))2 = 0.

s = 2. A generic closed 4-form κ2 on g2 = (0, 0, 0, 0, 23, 34, 36) has the following expression:

κ2 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1345e1345 + c1346e1346 + c1347e1347 + c1356e1356 + c1357e1357 + c1367e1367

− c1247e1456 + c1467e1467 + c2345e2345 + c2346e2346 + c2347e2347 + c2356e2356

+ c2357e2357 + c2367e2367 + c2456e2456 + c2467e2467 + c3456e3456 + c3457e3457

+ c3467e3467 + c3567e3567,

where cijkl are arbitrary real numbers. Taking X2 = e5 and Y2 = e7, we have (ιe5 (ιe7κ2))2 = 0.

s = 3. A generic closed 4-form κ3 on g3 = (0, 0, 0, 12, 13, 14, 0) is expressed as follows:

κ3 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c1346e1346 + c1347e1347 + c1356e1356

+ c1357e1357 + c1367e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c1567e1567 + c2345e2345

+ c2346e2346 + c2347e2347 + c2357e2357 + c2367(e2367 + e2457) + c2467e2467,

where cijkl are arbitrary real numbers. For X3 = e5 and Y3 = e6, we have (ιe5 (ιe6κ3))2 = 0.

s = 4. A generic closed 4-form κ4 on g4 = (0, 0, 0, 12, 14, 24, 0) is expressed as follows:

κ4 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c1346e1346 + c1347e1347 + c1357e1357

+ c1367e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c2345e2345 + c2346e2346 + c2347e2347

+ c1367e2357 + c2367e2367 + c2456e2456 + c2457e2457 + c2467e2467 + c3567e3567,

where cijkl are arbitrary real numbers. Then, for X4 = e5 and Y4 = e6, we have (ιe5 (ιe6κ4))2 = 0.

s = 5. A generic closed 4-form κ5 on g5 = (0, 0, 12, 13, 14, 23 + 15, 0) has the following expression:

κ5 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c1346e1346 + c1347e1347 + c1356e1356

+ c1357e1357 + c1367e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c1567e1567 + c2345e2345

+ c1456e2346 + c2347e2347 − c1467e2357 + c2367e2367 − (c1567 + c2367)e2457,

where cijkl are arbitrary real numbers. Then, for X5 = e5 and Y5 = e6, we have (ιe5 (ιe6κ5))2 = 0.
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s = 6. A generic closed 4-form κ6 on g6 = (0, 0, 12, 13, 14, 15, 0) has the following expression:

κ6 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c1346e1346 + c1347e1347 + c1356e1356

+ c1357e1357 + c1367e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c1567e1567 + c2345e2345

+ c2347e2347 + c2367e2367 − c2367e2457,

where cijkl are arbitrary real numbers. So, for X6 = e5 and Y6 = e7, we have (ιe5 (ιe7κ6))2 = 0.

s = 7. A generic closed 4-form κ6 on g7 = (0, 0, 12, 13, 14, 34 − 25, 0) has the following expression:

κ7 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c1256e1346 + c1347e1347 + c1356e1356

+ c1357e1357 + c1367e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c2345e2345 + c2346e2346

+ c2347e2347 − c1267e2357 + c2367e2367 − c1367e2457 − c1467e3457,

where cijkl are arbitrary real numbers. Thus, (ie5 (ie7κ7))2 = 0.

s = 8. A generic closed 4-form κ6 on g8 = (0, 0, 12, 13, 14 + 23, 34 − 25, 0) has the following expression:

κ8 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c1256e1346 + c1347e1347 + c1356e1356

+ c1357e1357 + c1367e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c2345e2345 + c2346e2346

+ c2347e2347 − c1456e2356 − (c1267 + c1457)e2357 + c2367e2367 − c1367e2457 − c1467e3457,

where cijkl are arbitrary real numbers. On can check that if the coefficient c1456 vanishes, then

(ιe5 (ιe6κ8))2 = 0,

that is, g8 satisfies the hypothesis of Lemma 3.3 for X8 = e5 and Y8 = e6. If c2346 = 0, then

(ιe4 (ιe6κ8))2 = 0.

But if c1456 and c2346 are both non-zero, then for X8 = c2346e5 + c1456e4 and Y8 = e6, we have

(ιc2346e5+c1456e4 (ιe6κ8))2 = 0.

The proof is complete.

Moreover, using Lemma 3.4, we have the following proposition.

Proposition 4.2. None of the following 7-dimensional nilpotent Lie algebras:

l1 = (0, 0, 0, 12, 13 − 24, 14 + 23, 0),
l2 = (0, 0, 0, 12, 14, 13 − 24, 0),
l3 = (0, 0, 0, 12, 13 + 14, 24, 0)

admits coclosed G2-structures.

Proof. We will prove, by contradiction, that no closed 4-form τs defines a coclosed G2-structure on the Lie
algebra ls (s = 1, 2, 3). We proceed case by case.

s = 1. A generic closed 4-form τ1 on l1 = (0, 0, 0, 12, 13 − 24, 14 + 23, 0) has the following expression:

τ1 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c1346e1346 + c1347e1347 + c1356e1356

+ c1357e1357 + c1367e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c2345e2345 + c2346e2346

+ c2347e2347 − c1456e2356 + c2357e2357 + c2367e2367 − c1356e2456 + (c1357 + c1467 + c2367)e2457

+ c2467e2467,
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where cijkl are arbitrary real numbers. Let us suppose that, for some real numbers cijkl, the 4-form τ1 defines
a coclosed G2-structure on l1. Since e7 is in the center of l1, Proposition 3.1 implies that

ν1 = −π∗(ιe7τ1)

is a negative 3-form on the Lie algebra h1 = l1/ Span{e7}, where π : l1 → h1 is the projection. Thus,

ν1 = c1237e123 + c1247e124 + c1257e125 + c1267e126 + c1347e134 + c1357e135 + c1367e136 + c1457e145

+ c1467e146 + c2347e234 + c2357e235 + c2367e236 + (c1357 + c1467 + c2367)e245 + c2467e246.

We claim that the map Kν1 , defined by (2.2), has the following expression:

Kν1 = (K
ν1
ab) ⊗ e

123456 =
(((((

(

Kν111 Kν112 0 0 0 0
Kν121 Kν122 0 0 0 0
Kν131 Kν132 Kν133 Kν134 0 0
Kν141 Kν142 Kν143 Kν144 0 0
Kν151 Kν152 Kν153 Kν154 Kν155 Kν156
Kν161 Kν162 Kν163 Kν164 Kν165 Kν166

)))))

)

⊗ e123456,

where a, b ∈ {1, . . . , 6}, and Kν1ab is a polynomial function of the coefficients cijkl that appear in the expression
of ν1. In fact, by (2.2), it turns out that

(ιeb ν1) ∧ ν1 = ∑
1≤a≤6

Kν1abe
1⋅⋅⋅â⋅⋅⋅6.

Therefore, Kν1abe
1⋅⋅⋅6 = (ιeb ν1) ∧ ν1 ∧ ea. Then, one can check that Kν1ab = 0 for a = 1, 2 and b ≥ 3, and also

Kν1ab = 0 for a = 3, 4 and b = 5, 6. Thus, the claim is true.
Since ν1 ∈ Λ−(h1∗), (2.5) and Theorem 2.4 imply that ν1 defines the almost complex structure Jν1 on h1

given by

Jν1 =
1

√|−λ(ν1)|

(((((

(

Kν111 Kν112 0 0 0 0
Kν121 Kν122 0 0 0 0
Kν131 Kν132 Kν133 Kν134 0 0
Kν141 Kν142 Kν143 Kν144 0 0
Kν151 Kν152 Kν153 Kν154 Kν155 Kν156
Kν161 Kν162 Kν163 Kν164 Kν165 Kν166

)))))

)

.

Therefore, the subspace W = Span{e3, e4, e5, e6} is Jν1 -invariant. Now, consider η = ∑
7
r=1 Crer, an arbitrary

1-form on l1. According to (3.3), and taking into account the expressions of τ1 and ν1, we see that the 4-form
σ = π∗(τ1 − π∗ν1 ∧ η) on h1, has zero component in e3456. Hence, σ|W = σ(e3, e4, e5, e6) = 0, contradicting
Lemma 3.4. Thus, τ1 never defines a coclosed G2-structure.

s = 2. A generic closed four-form on l2 = (0, 0, 0, 12, 14, 13 − 24, 0) has the following expression:

τ2 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c2456e1346 + c1347e1347 + c2456e1356

+ c1357e1357 + (c2467 − c2357)e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c2345e2345

+ c2346e2346 + c2347e2347 + c2357e2357 + c2367e2367 + c2456e2456 + c2457e2457 + c2467e2467,

where cijkl are arbitrary real numbers. Let us suppose that for some real numbers cijkl, the 4-form τ2 defines
a coclosed G2-structure on l2. Since e7 is in the center of l2, by Proposition 3.1, we have that ν2 = −π∗(ie7τ2)
is a negative 3-form on h2 = l2/ Span{e7}, where π : l2 → h2 is the natural projection. Thus, ν2 is given by

ν2 = c1237e123 + c1247e124 + c1257e125 + c1267e126 + c1347e134 + c1357e135 + c1367e136 + c1457e145

+ c1467e146 + c2347e234 + c2357e235 + c2367e236 + c2457e245 + (c2357 + c1367)e246.
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We claim that the map Kν2 , defined by (2.2), has the following expression:

Kν2 = (K
ν2
ab) ⊗ e

123456 =
(((((

(

Kν211 Kν212 0 0 0 0
Kν221 Kν222 0 0 0 0
Kν231 Kν232 Kν233 Kν234 0 0
Kν241 Kν242 Kν243 Kν244 0 0
Kν251 Kν252 Kν253 Kν254 Kν255 Kν256
Kν261 Kν262 Kν263 Kν264 Kν265 Kν266

)))))

)

⊗ e123456,

where a, b ∈ {1, . . . , 6} and Kν2ab is a polynomial function of the coefficients cijkl that appear in the expression
of ν2. In fact, by (2.2) it turns out that

(ιeb ν2) ∧ ν2 = ∑
1≤a≤6

Kν2abe
1⋅⋅⋅â⋅⋅⋅6.

Therefore, Kν2abe
1⋅⋅⋅6 = (ιeb ν2) ∧ ν2 ∧ ea. Then, one can check that Kν2ab = 0 for a = 1, 2 and b ≥ 3, and also

Kν2ab = 0 for a = 3, 4 and b = 5, 6. Thus, the claim is true.
Since ν2 ∈ Λ−(h2∗), (2.5) and Theorem 2.4 imply that ν2 defines the almost complex structure Jν2 on h2

given by

Jν2 =
1

|√−λ(ν2)|

(((((

(

Kν211 Kν212 0 0 0 0
Kν221 Kν222 0 0 0 0
Kν231 Kν232 Kν233 Kν234 0 0
Kν241 Kν242 Kν243 Kν244 0 0
Kν251 Kν252 Kν253 Kν254 Kν255 Kν256
Kν261 Kν262 Kν263 Kν264 Kν265 Kν266

)))))

)

.

Therefore, the subspace W = Span{e3, e4, e5, e6} is Jν2 -invariant. Now, consider η = ∑
7
r=1 Crer, an arbitrary

1-form on l2. According to (3.3), and taking into account the expressions of τ2 and ν2, we see that the 4-form
σ = π∗(τ2 − π∗ν2 ∧ η) on h2 has zero component in e3456. Hence, σ|W = σ(e3, e4, e5, e6) = 0, contradicting
Lemma 3.4. Thus, τ2 never defines a coclosed G2-structure.

s = 3. A generic closed four-form on l3 = (0, 0, 0, 12, 13 + 14, 24, 0) has the following expression:

τ2 = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1267e1267 + c1345e1345 + c1346e1346 + c1347e1347 + c1357e1357

+ c1367e1367 + c1456e1456 + c1457e1457 + c1467e1467 + c2345e2345 + c2346e2346 + c2347e2347

+ c2357e2357 + c2367e2367 + c2356e2456 + (c1367 + c2357)e2457 + c2467e2467,

where cijkl are arbitrary real numbers. Let us suppose that for some real numbers cijkl, the 4-form τ3 defines
a coclosed G2-structure on l2. Since e7 is in the center of l1, by Proposition 3.1, we have that ν3 = −π∗(ie7τ3)
is a negative 3-form on h3 = l3/ Span{e7}, where π : l3 → h3 is the natural projection. Thus, ν3 is given by

ν3 = c1237e123 + c1247e124 + c1257e125 + c1267e126 + c1347e134 + c1357e135 + c1367e136 + c1457e145

+ c1467e146 + c2347e234 + c2357e235 + c2367e236 + (c2357 − c1367)e245 + c2467e246.

We claim that the map Kν3 , defined by (2.2), has the following expression:

Kν3 = (K
ν3
ab) ⊗ e

123456 =
(((((

(

Kν311 Kν312 0 0 0 0
Kν321 Kν322 0 0 0 0
Kν331 Kν332 Kν333 Kν334 0 0
Kν341 Kν342 Kν343 Kν344 0 0
Kν351 Kν352 Kν353 Kν354 Kν355 Kν356
Kν361 Kν362 Kν363 Kν364 Kν365 Kν366

)))))

)

⊗ e123456,
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where a, b ∈ {1, . . . , 6}, and Kν3ab is a polynomial function of the coefficients cijkl that appear in the expression
of ν3. In fact, by (2.2), it turns out that

(ιeb ν3) ∧ ν3 = ∑
1≤a≤6

Kν3abe
1⋅⋅⋅â⋅⋅⋅6.

Therefore, Kν3abe
1⋅⋅⋅6 = (ιeb ν3) ∧ ν3 ∧ ea. Then one can check that Kν3ab = 0 for a = 1, 2 and b ≥ 3, and also

Kν3ab = 0 for a = 3, 4 and b = 5, 6. Thus, the claim is true.
Since ν3 ∈ Λ−(h3∗), (2.5) and Theorem 2.4 imply that ν3 defines the almost complex structure Jν32 on h3

given by

Jν3 =
1

|√−λ(ν3)|

(((((

(

Kν311 Kν312 0 0 0 0
Kν321 Kν322 0 0 0 0
Kν331 Kν332 Kν333 Kν334 0 0
Kν341 Kν342 Kν343 Kν344 0 0
Kν351 Kν352 Kν353 Kν354 Kν355 Kν356
Kν361 Kν362 Kν363 Kν364 Kν365 Kν366

)))))

)

.

Therefore, the subspace W = Span{e3, e4, e5, e6} is Jν3 -invariant. Now, consider η = ∑
7
r=1 Crer, an arbitrary

1-form on l3. According to (3.3), and taking into account the expressions of τ3 and ν3, we see that the 4-form
σ = π∗(τ3 − π∗ν3 ∧ η) on h3 has zero component in e3456. Hence, σ|W = σ(e3, e4, e5, e6) = 0, contradicting
Lemma 3.4. Thus, τ3 never defines a coclosed G2-structure.

By Gong’s classification, there exist, up to isomorphism, 35 decomposable 7-dimensional nilpotent Lie alge-
bras. We will show that 24 of these Lie algebras admit a coclosed G2-structure.

Theorem 4.3. Among the 35 decomposable nilpotent Lie algebras, of dimension 7, those that have a coclosed
G2-structure are

n1 = (0, 0, 0, 0, 0, 0, 0), n2 = (0, 0, 0, 0, 0, 12, 0),

n3 = (0, 0, 0, 0, 0, 12 + 34, 0), n4 = (0, 0, 0, 0, 12, 13, 0),

n5 = (0, 0, 0, 0, 12, 34, 0), n6 = (0, 0, 0, 0, 13 − 24, 14 + 23, 0),

n7 = (0, 0, 0, 0, 12, 14 + 23, 0), n8 = (0, 0, 0, 0, 12, 14 + 25, 0),

n9 = (0, 0, 0, 0, 12, 15 + 34, 0), n10 = (0, 0, 0, 12, 13, 23, 0),

n11 = (0, 0, 0, 12, 13, 24, 0), n12 = (0, 0, 0, 12, 13, 14 + 23, 0),

n13 = (0, 0, 0, 12, 23, 14 + 35, 0), n14 = (0, 0, 0, 12, 23, 14 − 35, 0),

n15 = (0, 0, 0, 12, 13, 14 + 35, 0), n16 = (0, 0, 0, 12, 14, 15, 0),

n17 = (0, 0, 0, 12, 14, 15 + 24, 0), n18 = (0, 0, 0, 12, 14, 15 + 24 + 23, 0),

n19 = (0, 0, 0, 12, 14, 15 + 23, 0), n20 = (0, 0, 0, 12, 14 − 23, 15 + 34, 0),

n21 = (0, 0, 12, 13, 23, 14 + 25, 0), n22 = (0, 0, 12, 13, 23, 14 − 25, 0),

n23 = (0, 0, 12, 13, 23, 14, 0), n24 = (0, 0, 12, 13, 14 + 23, 15 + 24, 0).

Proof. By Propositions 4.1 and 4.2, we know that there are 11 decomposable nilpotent Lie algebras not ad-
mitting coclosed G2-structures. This implies that there are at most 24 decomposable nilpotent Lie algebras
having a coclosed G2-structure. But all the 24 Lie algebras listed in the statement have such a G2-structure.
This is clear on the abelian Lie algebra n1 = (0, 0, 0, 0, 0, 0, 0). Moreover, every non-abelian Lie algebra ns,
s ∈ {2, . . . , 24}, listed in the statement, is a direct sum of two ideals hs andℝ. In fact, ns is an abelian exten-
sion of hs,

ns = hs ⊕ ℝe7,

where hs is a 6-dimensional Lie algebra, and e7 = ∂
∂t with t a coordinate onℝ.
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By [4], we know that hs has a half-flat SU(3)-structure (ωs , ψ−
s ). Thus, the 4-form ϕs on ns, given by

ϕs =
1
2ω

2
s + ψ−

s ∧ dt,

defines a coclosed G2-structure on ns, which completes the proof.

Corollary 4.4. Anydecomposable 2-step nilpotent Lie algebra, of dimension seven, has a coclosedG2-structure.

Proof. Among the 35 decomposable nilpotent Lie algebras, of dimension seven, those that are 2-step nilpo-
tent are the 7 Lie algebras ns, where s ∈ {2, 3, 4, 5, 6, 7, 10}, defined in Theorem 4.3. Thus, all of them carry
coclosed G2-structures.

5 Indecomposable 2-step nilpotent case

In this section we complete the classification of 7-dimensional 2-step nilpotent Lie algebras which admit a
coclosed G2-structure. We have seen that there are exactly 7 decomposable Lie algebras of this type. In order
to discuss the indecomposable 2-step nilpotent Lie algebras, we refer to Gong’s classification [14] (see also
[5]). This list consists of 131Lie algebras and91-parameter families. Noneof the1-parameter families defines
a 2-step nilpotent Lie algebra. Among the indecomposable Lie algebras (with no parameters), there are only
nine which are 2-step nilpotent Lie algebras. They are the following:

17 = (0, 0, 0, 0, 0, 0, 12 + 34 + 56),
27A = (0, 0, 0, 0, 0, 12, 14 + 35),
27B = (0, 0, 0, 0, 0, 12 + 34, 15 + 23),
37A = (0, 0, 0, 0, 12, 23, 24),
37B = (0, 0, 0, 0, 12, 23, 34),

37B1 = (0, 0, 0, 0, 12 − 34, 13 + 24, 14),
37C = (0, 0, 0, 0, 12 + 34, 23, 24),
37D = (0, 0, 0, 0, 12 + 34, 13, 24),

37D1 = (0, 0, 0, 0, 12 − 34, 13 + 24, 14 − 23).

Theorem 5.1. Up to isomorphism, the unique indecomposable 2-step nilpotent Lie algebras carrying a coclosed
G2-structure are the following: 17, 37A, 37B, 37B1, 37C, 37D and 37D1.

Proof. We know that a G2-structure on a Lie algebra g can be defined either by a 3-form or, equivalently, by
a 4-form, which have the expression given by (3.1) or (3.2), respectively, with respect to some orthonormal
coframe {e1, . . . , e7} of g∗. For each Lie algebra appearing in the statement, an appropriate coframe and the
corresponding 4-form are given as follows:
∙ 17: ϕ1 = e1234 + e1256 + e1367 + e1457 + e2357 − e2467 + e3456, {e1, e2, e3, e4, e5, e6, e7},
∙ 37A: ϕ2 = e1234 + e1257 − e1356 − e1467 − e2367 + e2456 + e3457, {e3, e1, e2, e4, e5, e6, e7},
∙ 37B: ϕ3 = e1234 + e1457 + e2357 + √22 (e1256 − e1356 + e1267 + e1367 + e2456) + √22 (e3456 − e2467 + e3467),

{e1, √22 (e2 − e3), √22 (e2 + e3), e4, e5, e6, e7},
∙ 37B1: ϕ4 = e1234 + e1267 + e1357 + e1456 + e2356 − e2457 + e3467, {e1, e4, e2, e3, e5, e6, e7},
∙ 37C: ϕ5 = −e1234 − e1267 + e1357 + e1456 − e2356 + e2457 + e3467, {e2, e3, e4, e1, e6, e5, e7},
∙ 37D: ϕ6 = e1234 + e1267 + e3467 + √22 (e1356 + e1357 + e1456 − e1457 + e2356) − √22 (e2357 − e2456 − e2457),

{e1, √22 (e3 + e4), e2, √22 (e3 − e4), e5, e6, e7},
∙ 37D1: ϕ7 = −e1234 − e1267 − e1356 + e1457 − e2357 − e2456 + e3467, {e1, e3, e2, e4, e5, −e6, e7}.
It is straightforward to verify that each ϕi is closed on the corresponding Lie algebra.

It remains to prove that the Lie algebras 27A and 27B do not admit any coclosed G2-structure. To this
end, we show that for these Lie algebras the hypothesis of Lemma 3.3 is satisfied for X = e6 and Y = e7. In
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fact, let α be a generic closed 4-form on 27A. Then, one can check that α has the following expression:

α = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1345e1345 + c1346e1346 + c1347e1347 + c1356e1356

+ c1357e1357 + c1367e1367 + c1456e1456 + c1457e1457 + c1567e1567 + c2345e2345

+ c2346e2346 + c2347e2347 + c2356e2356 + c2357e2357 + c2456e2456 + c2457e2457

+ (c1247 − c2357)e3456 + c3457e3457,

where cijkl are arbitrary real numbers. Thus, (ιe6 (ιe7α))2 = 0. A generic closed 4-form β on the Lie algebra 27B
is expressed as

β = c1234e1234 + c1235e1235 + c1236e1236 + c1237e1237 + c1245e1245 + c1246e1246 + c1247e1247

+ c1256e1256 + c1257e1257 + c1345e1345 + c1346e1346 + c1347e1347 + c1356e1356

+ c1357e1357 + c1367e1367 + c1456e1456 + c1457e1457 + c2345e2345

+ c2346e2346 + c2347e2347 + c2356e2356 + c2357e2357 + c2456e2456 + c2457e2457

+ (c1256 + c1457 − c2347)e3456 + c3457e3457,

where cijkl are arbitrary real numbers. Hence, (ιe6 (ιe7β))2 = 0.

6 Coclosed G2-structures inducing nilsolitons

In this sectionweprove that any2-stepnilpotent Lie algebra, admitting a coclosedG2-structure, alsohas anil-
soliton inner product determined by a coclosed G2-structure. This result is not true for higher steps. Indeed,
we give an example of a 3-step nilpotent Lie algebra supporting a nilsoliton and coclosed G2-structures but
none coclosed G2-structure induces a nilsoliton.

Let n be a nilpotent Lie algebra. According to Lauret [21], an inner product g on n is called nilsoliton if its
Ricci endomorphism Ric(g) differs from a derivation D of n by a scalar multiple of the identity map I, that is,
if there exists a real number λ such that

Ric(g) = λI + D.

Not all nilpotent Lie algebras admit nilsoliton inner products, but if a nilsoliton exists, then it is unique up to
automorphism and scaling [21].

Theorem 6.1. Any indecomposable 2-step nilpotent Lie algebra admitting a coclosed G2-structure also has
a coclosed G2-structure inducing a nilsoliton.

Proof. By Theorem 5.1, we know that, up to isomorphism, the Lie algebras 17, 37A, 37B, 37B1, 37C, 37D
and 37D1 are the unique indecomposable 2-step nilpotent admitting coclosed G2-structures. For each of
these Lie algebras, defined in Section 5 in terms of a basis {e1, . . . , e7} of the dual space, we consider a new
basis {f 1, . . . , f 7} and a coclosed G2-structure defined by a 3-form φi (1 ≤ i ≤ 7) which determines the inner
product so that the basis {f 1, . . . , f 7} is orthonormal. The basis {f j}, the G2-structure φi and the appropriate
coframe defining φi are given as follows:
∙ 17: f i = ei, 1 ≤ i ≤ 6, f 7 = √66 e

7. Then

17 = (0, 0, 0, 0, 0, 0, √66 f
12 + √66 f

34 + √66 f
56)

and
φ1 = f 127 + f 347 + f 567 + f 135 − f 146 − f 236 − f 245, {f 1, f 2, f 3, f 4, f 5, f 6, f 7}.

∙ 37A: f i = ei, 1 ≤ i ≤ 4, f j = √66 e
j, 5 ≤ j ≤ 7. Then,

37A = (0, 0, 0, 0, √66 f
12, √66 f

23, √66 f
24)

Brought to you by | SUNY Binghamton
Authenticated

Download Date | 5/23/17 8:10 AM



16 | L. Bagaglini, M. Fernández and A. Fino, Coclosed G2-structures inducing nilsolitons

and
φ2 = −f 137 + f 247 + f 567 − f 126 − f 145 − f 235 − f 346, {f 3, f 1, f 2, f 4, f 5, f 6, f 7}.

∙ 37B: f i = ei, 1 ≤ i ≤ 4, f 5 = √55 e
5, f 6 = √66 e

6, f 7 = √55 e
7. Thus,

37B = (0, 0, 0, 0, √55 f
12, √1010 f

23, √55 f
34)

and

φ3 = −f 146 − f 236 + f 567 + √22 (f 123 + f 125 − f 135 − f 137 − f 245) + √22 (f 247 + f 345 + f 347),

{f 1, √22 (f 2 − f 3), √22 (f 2 + f 3), f 4, f 5, f 6, f 7}.

∙ 37B1: f i = ei, 1 ≤ i ≤ 4, f j = √1010 e
j, 5 ≤ j ≤ 7. So,

37B1 = (0, 0, 0, 0, √1010 (f 12 − f 34), √1010 (f 13 + f 24), √1010 f
14)

and

φ4 = f 125 + f 345 + f 567 + √22 (−f 136 + f 137 + f 146 + f 147 + f 236) + √22 (f 237 + f 246 − f 247),

{f 1, √22 (f 3 + f 4), f 2, √22 (f 3 − f 4), f 5, f 6, f 7}.

∙ 37C: f i = ei, 1 ≤ i ≤ 4, f j = √24 e
j, 5 ≤ j ≤ 7. Thus,

37C = (0, 0, 0, 0, √24 (f 12 + f 34), √24 f
23, √24 f

24)

and
φ5 = f 147 + f 237 + f 567 + f 125 − f 136 + f 246 + f 345, {f 1, f 4, f 2, f 3, f 5, f 6, f 7}.

∙ 37D: f i = ei, 1 ≤ i ≤ 4, f j = √36 e
j, 5 ≤ j ≤ 7. Then,

37D = (0, 0, 0, 0, √36 (f 12 + f 34, √66 f
13, √66 f

24)

and
φ6 = −f 147 + f 237 − f 567 + f 125 + f 136 + f 246 − f 345, {f 2, f 3, f 4, f 1, f 6, f 5, f 7}.

∙ 37D1: f i = ei, 1 ≤ i ≤ 4, f j = √36 e
j, 5 ≤ j ≤ 7. Hence,

37D1 = (0, 0, 0, 0, √36 (f 12 − f 34, √66 (f 13 + f 24), √66 (f 14 − f 23)),

and
φ7 = f 137 + f 247 − f 567 + f 125 + f 146 − f 236 − f 345, {f 1, f 3, f 2, f 4, f 5, −f 6, f 7}.

It is straightforward to check that each φi is coclosed and induces the inner product gi = ∑7
j=1(f j)2. By [8],

each gi is a nilsoliton on the corresponding Lie algebra, which completes the proof.

Remark 6.2. Note that for each of the Lie algebras 17–37D1, considered in the previous theorem, the change
of basis from {ei} to {f i}, given in the proof of Theorem 6.1, defines an automorphism of the Lie algebra, but
it is not an isomorphism between the G2-structure defined in the proof of Theorem 6.1 and the G2-structure
defined in the proof of Theorem 5.1. In fact, these structures define different metrics.

Theorem 6.3. Any decomposable 2-step nilpotent Lie algebra has a coclosedG2-structure inducing a nilsoliton.

Proof. By Corollary 4.4, any decomposable 2-step nilpotent Lie algebra admitting a coclosed G2-structure is
isomorphic to one of the following seven Lie algebras ns, s ∈ {2, 3, 4, 5, 6, 7, 10}, defined in Theorem 4.3.
For each of these Lie algebras, we consider the G2 form φ, and the appropriate coframe defining φ, given as
follows:
∙ n2: φ = −e137 − e247 − e567 + e126 + e145 − e235 − e346, {e1, e3, e2, e4, e6, −e5, −e7},
∙ n3: φ = −e127 + e347 − e567 + e135 + e146 − e236 + e245, {e1, e2, e3, −e4, e5, e6, −e7},
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∙ n4: φ = e147 + e237 + e567 − e126 − e135 + e245 − e346, {e1, e4, e2, e3, −e6, e5, e7},
∙ n5: φ = √22 (e125 + e126 + e135 − e136 − e245 + e345 + e346 + e246) + e147 + e237 + e567,

{e1, e2, √22 (e5 + e6), e3, √22 (e5 − e6), e4, e7},
∙ n6: φ = e127 + e347 + e567 − e235 + e246 − e136 − e145, {e1, e2, e6, −e5, e3, e4, e7},
∙ n7: φ = e137 + e247 − e567 − e125 − e146 + e236 + e345, {e1, e3, e2, e4, −e5, e6, e7},
∙ n10: φ = −e147 − e257 − e367 + e126 − e135 + e234 − e456, {e1, e4, e3, e6, −e5, e2, −e7}.

It is straightforward to check that each formφ is coclosed on the corresponding Lie algebra, and it defines
the metric g = ∑7

i=1(ei)2, which is a nilsoliton as it is proved in [27].

Finally, we show an example of a 3-step nilpotent Lie algebra admitting coclosed G2-structures and a nilsoli-
ton which is not determined by any coclosed G2-structure.

Example 6.4. Consider the 3-step nilpotent decomposable Lie algebra n8 defined in Theorem 4.3 as

n8 = (0, 0, 0, 0, 12, 14 + 25, 0),

with respect to a basis {e1, . . . , e7} of the dual space n∗8 . Clearly, in the basis

{f 1 = e1, f 2 = √22 e
2, f 3 = e3, . . . , f 7 = e7},

the Lie algebra n8 is defined by the structure equations

(0, 0, 0, 0,√2f 12, f 14 + √2f 25, 0).

By [13], the inner product

g =
7
∑
i=1

(f i)2

is a nilsoliton on n8, and so it is unique up to scaling and automorphism of the Lie algebra [21].
On the other hand, by Theorem 4.3, n8 admits a coclosed G2-structure. However, we will show that the

Lie algebra n8 does not carry any coclosed G2-structure inducing the nilsoliton g. For this, we consider the
G2-structure defined by the 3-form

φ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245.

Denote by⋆ theHodge operator defined byφ0. By using [3, formula (3.6)], we know that every positive 3-form
φ on n8, compatible with the previous metric g and orientation, can be written as

φ = (a2 − |α|2)φ0 + 2a ∗ (α ∧ φ0) + i(α ∘ α),

where a is a constant, α is a 1-form satisfying a2 + |α|2 = 1, and i(α ∘ α) is a 3-form depending on α and φ0.
Consequently,

∗φ = (a2 − |α|2) ∗ φ0 + 2a(α ∧ φ0) + ∗i(α ∘ α).

Consider a generic 1-form α = ∑7
j=1 αjej, with αj ∈ ℝ. Since

i(α ∘ α) = ∑
1≤j,k≤7

αjαkej ∧ (ιekφ0),

we obtain the following explicit expression for ∗φ:

∗φ = (a2 − |α|2)e3456 + (2aα3 + α1α5 − α2α6 − α4α7)e3567

+ (2aα1 − α2α7 + α3α5 − α4α6)e1347 + (a2 − |α|2)e1256 + (a2 − |α|2)e2357

+ (2aα2 + α1α7 − α3α6 − α4α5)e2347 + (2aα2 + α1α7 + α3α6 + α4α5)e2567

+ (a2 − |α|2)e1367 + (2aα4 − α1α6 − α2α5 + α3α7)e4567 + (a2 − |α|2)e1457

+ (2aα1 − α2α7 − α3α5 + α4α6)e1567 + (−a2 + |α|2)e2467 + (a2 − |α|2)e1234
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+ (2 − aα1 − α2α7 − α3α5 − α4α6)e1236 + (2 − aα1 − α2α7 + α3α5 + α4α6)e1246

+ (2 − aα2 + α1α7 + α3α6 − α4α5)e1235 + (2aα3 − α1α5 + α2α6 − α4α7)e1237

+ (2aα2 − α1α7 + α3α6 − α4α5e1246 + (2aα4 + α1α6 + α2α5 + α3α7)e1247

+ (2aα5 + α1α3 − α2α4 − α6α7)e1257 + (2aα6 − α1α4 − α2α3 + α5α7)e1267

+ (2aα4 + α1α6 − α2α5 − α3α7e1345 + (2aα3 − α1α5 − α2α6 + α4α7)e1346

+ (−2aα6 + α1α4 − α2α3 + α5α7)e1356(−2aα7 − α1α2 − α3α4 − α5α6)e1357

+ (−2aα5 − α1α3 − α2α4 − α6α7)e1456 + (2aα7 + α1α2 − α3α4 − α5α6)e1467

+ (2aα3 + α1α5 + α2α6 + α4α7)e2345 + (−2aα4 + α1α6 − α2α5 + α3α7)e2346

+ (−2aα5 + α1α3 + α2α4 − α6α7)e2356 + (2aα7 − α1α2 + α3α4 − α5α6)e2367

+ (2aα6 + α1α4 − α2α3 − α5α7)e2456 + (2aα7 − α1α2 − α3α4 + α5α6)e2457

+ (2aα5 − α1α3 + α2α4 − α6α7)e3457 + (2aα6 + α1α4 + α2α3 + α5α7)e3467.

Therefore,

d(∗φ) = −(a2 − |α|2)√2e12357 − (2aα4 − α1α6 − α2α5 + α3α7)√2e12467

+ (−2aα7√2 − √2α1α2 + √2α3α4 + √2α5α6 − 2aα2 − α1α7 − α3α6 − α4α5)e12457

+ (−2aα3√2 + √2α1α5 + √2α2α6 − √2α4α7 + 2aα5 − α1α3 − α2α4 + α6α7)e12345

− (2aα3 + α1α5 − α2α6 − α4α7)√2e12367 + (a2 − |α|2)√2e12346

+ (2aα5√2 − √2α1α3 + √2α2α4 − √2α6α7 + 2aα7 − α1α2 + α3α4 − α5α6)e12347

+ (2aα6√2 + √2α1α4 + √2α2α3 + √2α5α7)e23457 + (−2aα3 − α1α5 + α2α6 + α4α7)e13457.

Then we see that d(∗φ) = 0 is equivalent to the following system:

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

a2 − |α|2 = 0,
aα4 − α1α6 − α2α5 + α3α7 = 0,
2aα3 + α1α5 − α2α6 − α4α7 = 0,

2aα6√2 + √2α1α4 + √2α2α3 + √2α5α7 = 0,

−2aα3√2 + √2α1α5 + √2α2α6 − √2α4α7 + 2aα5 − α1α3 − α2α4 + α6α7 = 0,

2aα5√2 − √2α1α3 + √2α2α4 − √2α6α7 + 2aα7 − α1α2 + α3α4 − α5α6 = 0,

−2aα7√2 − √2α1α2 + √2α3α4 + √2α5α6 − 2aα2 − α1α7 − α3α6 − α4α5 = 0,

in the variables a, αj, j = 1, . . . , 7. We can show that the above system has no solution. In fact, from the first
equation it follows that a2 = |α|2, so it is not restrictive to suppose that 2a = 1. By the second, third and fourth
equations, we obtain

α4 = α1α6 + α2α5 − α3α7, α3 =
−α1α6α7 − α2α5α7 + α1α5 − α2α6

1 + α27
, α6 = −α5α7.

By the last equation (d(∗φ))12457 = 0, we get α25 = −1, and so n8 does not admit any coclosed G2-structure
inducing the nilsoliton.

7 Contact metric structures induced by coclosed G2-structures

In general, the existence of a coclosed G2-structure is independent of the existence of a contact form. We
recall that a contact metric structure on a Riemannianmanifold (M, g) is a unit length vector field ξ such that
the endomorphism ϕ defined by g(ϕ ⋅ , ⋅ ) = 1

2dη( ⋅ , ⋅ ) and the 1-form η = ⟨ξ, ⋅ ⟩ are related by

ϕ2 = −Id + η ⊗ ξ.
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A contact metric structure (M, g, ξ, ϕ) is called K-contact if the Reeb vector field ξ is Killing, and it is said to
be normal if the induced almost complex structure J on the product manifoldM × ℝ is integrable. A Sasakian
manifold is a normal contact metric manifold.

A natural question is whether on a 7-manifold there exists a contact metric structure such that themetric
is induced by a coclosed G2-structure. For 2-step nilmanifolds we can show the following.

Proposition 7.1. If a 2-step nilmanifold Γ \ G admits an invariant contact metric structure (g, ξ, ϕ) such that
the metric g is induced by a coclosed G2-structure, then G is isomorphic to the 7-dimensional Heisenberg Lie
group. Moreover, Γ \ G has an invariant Sasakian structure.

Proof. Since the involved structures are invariant, we can work at the level of the Lie algebra g of G. In [20],
Kutsak showed that a decomposable 7-dimensional nilpotent Lie algebra does not admit any contact struc-
ture, and the only indecomposable 2-step nilpotent Lie algebra admitting a contact form is the Lie algebra 17,
which is the Lie algebra of the 7-dimensional Heisenberg Lie group. Therefore, the result follows by Theo-
rem 5.1.

Note that, by [1], the Heisenberg Lie algebra 17 is indeed the only 7-dimensional nilpotent Lie algebra ad-
mitting a Sasakian structure. So a natural problem is whether on a (not Sasakian) 7-dimensional nilpotent
Lie algebra there exists a K-contact metric structure such that the metric is induced by a coclosed structure.

Example 7.2. Consider the following indecomposable 3-step nilpotent Lie algebra

n = (0, 0, 0, 12, 13, 0, 16 + 25 + 34).

By [15], we know that n admits a K-contact metric structure defined by g = ∑7
i=1(ei)2 and the Reeb vector

ξ = e7. We can show that g admits a coclosed G2-structure φ, whose underlying metric coincides with g.
Indeed, consider the 3-form

φ = −e167 − e237 + e457 − e124 − e135 − e256 + e346.

One can check that gφ = g and that the Hodge dual ⋆φ of φ, given by

⋆φ = e1236 − e1456 − e1257 + e1347 + e2467 + e2357,

is closed.
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