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1 Introduction

A 7-dimensional smooth manifold M admits a G,-structure if there is a reduction of the structure group of
its frame bundle from GI(7, R) to the exceptional Lie group G, which can actually be viewed naturally as
a subgroup of SO(7). Therefore, a G,-structure determines a Riemannian metric and an orientation on M. The
presence of a G;-structure is equivalent to the existence of a positive 3-form, where the positivity is a natural
nondegeneracy condition (see Section 2 for details). Such a 3-form ¢ defines a unique Riemannian metric g,
and an orientation on M.

Whenever this 3-form ¢ is covariantly constant with respect to the Levi-Civita connection of g, or, equiva-
lently, the intrinsic torsion of the G,-structure vanishes [25], the holonomy group is contained in G,, and this
happens if and only if the 3-form ¢ is closed and coclosed [12]. A G,-structure is called closed if the 3-form
@ is closed, and a G;-structure is said to be coclosed if the 3-form ¢ is coclosed. Usually these two classes of
G,-structures are very different in nature, being that the closed condition is much more restrictive; for exam-
ple, coclosed G,-structures always exist on closed spin manifolds and satisfy the parametric h-principle [7].

In [5], Conti and the second author classified the nilmanifolds endowed with an invariant closed
G,-structure (see also [10]). By a nilmanifold M we mean a compact manifold which is a quotient M =T \ G,
where G is a connected, simply connected and nilpotent Lie group, and I' ¢ G is a lattice. By Mal’cev theo-
rem [23], a lattice T ¢ G exists if and only if the Lie algebra g of G has a basis such that the structure con-
stants of g are rational numbers. Therefore, any nilmanifold is parallelizable, and so spin for any Riemannian
metric. Then, by [7, Theorem 1.8], every nilmanifold has a coclosed G;-structure.
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In this paper we study the existence of invariant coclosed G,-structures on 2-step nilmanifolds T\ G.
Since invariant differential forms on I' \ G are uniquely determined by forms on the Lie algebra g of G, we
can restrict our attention to 7-dimensional nilpotent Lie algebras, which were classified in [14]. We show
two necessary conditions that a Lie algebra must satisfy if it supports a coclosed G,-structure (see Corol-
lary 3.2 and Lemma 3.3). It turns out that if the 7-dimensional nilpotent Lie algebra g is 2-step decompos-
able, then it admits a coclosed G,-structure (Corollary 4.4), but if g is indecomposable, up to isomorphism,
only 7 of the 9 indecomposable 2-step nilpotent Lie algebras carry a coclosed G,-structure (Theorem 5.1).
As a result we obtain that there exist 2-step nilmanifolds which admit a coclosed G,-structure, but not an
invariant one.

Nilpotent Lie groups cannot admit left invariant Einstein metrics. Natural generalizations of Einstein
metrics are given by Ricci solitons, which have been introduced by Hamilton in [16]. All known examples of
non-trivial homogeneous Ricci solitons are left invariant metrics on simply connected solvable Lie groups,
whose Ricci operator satisfies the condition Ric(g) = AI + D for some A € R and some derivation D of the cor-
responding Lie algebra. The left invariant metrics satisfying the previous condition are called nilsolitons if the
Lie groups are nilpotent [22]. Not all nilpotent Lie groups admit nilsoliton metrics, but if a nilsoliton exists,
then it is unique up to automorphism and scaling [22].

Closed G, -structures inducing nilsolitons have been studied in [11]. A natural question is thus to see how
is restrictive to impose that a left invariant coclosed G,-structure on a nilpotent Lie group induces a nilsoli-
ton metric. In Section 6 we prove that all the 2-step nilpotent Lie groups admitting a left invariant coclosed
G,-structure have a coclosed G,-structure inducing a nilsoliton (see Theorems 6.1 and 6.3). However, this
property is not true for higher steps. Indeed, in Example 6.4, we show that there exists a 3-step nilpotent
Lie group admitting a nilsoliton and a left invariant coclosed G,-structure, but without having any coclosed
G,-structure inducing the nilsoliton.

Given a smooth manifold M of dimension seven, one can ask the existence not only of a G,-structure
but also of a contact structure. By [2], every manifold with G,-structure admits an almost contact structure,
and two types of compatibility between contact and G;-structures have been studied. In Section 7, we show
thatif a 2-step nilmanifold I' \ G admits a contact metric (g, ) such that the metric g is induced by a coclosed
G,-structure, then G is isomorphic to the 7-dimensional Heisenberg Lie group (Proposition 7.1), and therefore
I' \ G has an invariant Sasakian structure. In higher step, this property is not true. Indeed, in Example 7.2, we
construct a 3-step (not Sasakian) 7-dimensional nilpotent Lie algebra admitting a K-contact metric structure
(1, g) such that the metric g is determined by a coclosed G,-structure.

2 Algebraic preliminaries on stable forms

In this section we collect some results about stable forms on an n-dimensional real vector space. We focus on
the existence of stable forms in dimensionn = 6andn=71[6,9, 17, 24, 26].

Let V be a real vector space of dimension n. Consider the representation of the general linear group GL(V)
on the space AX(V*) of k-forms on V. An element pe AX(V*) is said to be stable if its orbit under GL(V) is
open in AK(V*).

In the following proposition, we recall the values of k and n for which there exist open orbits in AX(V*)
under the action of GL(V), and so for which there exist stable k-forms on V.

Proposition 2.1 ([6, 18]). Let V be an n-dimensionalreal vector space. For 1 < k < [3], the general linear group
GL(V) has an open orbit in AX(V*) if and only if k < 2, orif k = 3 and n = 6, 7 or 8. Moreover, the number of
open orbits in AK(V*) is finite.

Note that any non-zero 1-form on V is stable. In fact, if a is such a 1-form, then the orbit of a is open in V*,
since GL(V) - a« = V* \ {0}. Moreover, according to the following result due to Hictchin [17, 18], for any stable
k-form p on V, there is a dual (n - k)-form p € A" ¥(V*), which is also stable and such that p A p defines
a volume form on V.
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Proposition 2.2 ([6, 17, 18, 26]). Let V be an n-dimensional oriented vector space. Assume that k € {2, n — 2}
andneven,ork € {3,n-3}andn = 6, 7 or 8. Then, there exists a GL(V)-equivariant map

e: AK(V*) = A(V*), (2.1)

homogeneous of degree %, such that it assigns a volume form to a stable k-form and it vanishes on non-stable
forms. Given a stable k-form p, the derivative of € in p defines a dual (n — k)-form p € A"~¥(V*) by the following
property:

dep(@) =pAa

for all @ € A¥(V*). Moreover, the dual form p is also stable, the identity component of its stabiliser is equal to
the stabiliser of p, and the forms p, p and the volume form £(p) are related by

_ n
PAp= E“«‘(P)-

In the following subsections, we recall the explicit description of the spaces of open orbits in A¥(V*) when
n=6andwhenn=7.

2.1 Stable forms in dimension six

Let V be a 6-dimensional oriented vector space.

Theorem 2.3 ([17-19]). There is a unique GL(V) open orbit in A?(V*), which can be characterized as follows:
Ao(V*) = {w € A*(V*) | w? # 0}.

Therefore, if w € No(V*), then its stabiliser is isomorphic to Sp(6, R), its volume form e(w) (where € is the map
(2.1)) can be chosen to be equal to %aﬁ, and its dual form w (in the sense of Proposition 2.2) is equal to %wz.
Moreover, there exists a suitable coframe {f1, ..., f®} of V* such that

w :flz +f34 +f56,
7 =f1234 +f1256 +f3456,

12
8((0) :f 3456,

where f12 stands for f* A f2, and so on.

In order to describe the open orbits in A?(V*), we proceed as follows. For any p € A3(V*), we consider the
map k,: V — A>(V*) defined by
kp(x) = txp A p,

where 1, denotes the contraction by the vector x € V. Clearly, we have A>(V*) = V ® A%(V*). Indeed, the map
u: AS(V*) — Vo A8(V*) given by u(é) = x®a € Vo A®(V*), with 1,(a) = £, is an isomorphism. Thus, we
have the linear map

Ky=poky: Vis Vo AS(V*). (2.2)

Then, one can also define the quadratic function
A A3(V*) > (A8(V*))®2

on the space A3(V*) by
6 A(p) = trace(K,?) € (AS(V*))®2. (2.3)

Anelement A(p) € (A®(V*))®2, where p € A3(V*), is said to be positive, and we write A(p) > 0, if A(p) =ve v
withv € A®(V*).In this case, the form p is called positive. An element A(p) € (A®(V*))®? is said to be negative,
and we write A(p) < 0, if —A(p) is positive, that is, —A(p) = v ® v. Then, the form p is called negative.
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Now, let us suppose that p € A3(V*) is such that A(p) # 0. Then, we can consider the linear map
Jp: V — Vsuch that for x € V, J,(x) is defined by

1
Jo(xX) = ——K,(x) e V (2.4)
Y T I
if A(p) > 0, and
1
Jo(x) = ——K,(x) e V (2.5)
S i

if A(p) < 0.
Theorem 2.4 ([17-19]). The unique GL(V) open orbits in A3(V*) are the two following sets
AV ={p e PV* | A(p) >0} and A_(V*)={peA>V*|A(p) < 0},

where A(p) is given by (2.3). If p € A.(V*), then the identity component of its stabiliser is isomorphic to
SL(3, R) x SL(3, R), and there is a coframe {f*, . .., f®} of V* such that p has the following expression:

p = f123 4 456,

If p e A_(V*), then the identity component of its stabiliser is isomorphic to SL(3, C) and there is a coframe
{f1,....f of V* such that

246 136 145 235
p = —f246 4 f136 4 f145 4 235,

Moreover, p € A,(V*) if and only if the map ],, defined by (2.4), is a paracomplex structure on V; and
p € A_(V*) if and only if the map ],, defined by (2.5), is a complex structure on V. In both cases the dual
formp of pis given by p = -J;p.

Remark 2.5. Note that a 3-form p on a 6-dimensional oriented vector space V is stable if and only if A(p) # O.
Moreover, if p € A3(V*) is a 3-form on V, then kp = k_p,s0 K, = K_, and A(p) = A(-p). Thus, if p € A, (V"),
then —p € A, (V*);and if p € A_(V*), then —-p € A_(V*).

2.2 SU(3)-structures as pairs of stable forms in Ag(V*) x A_(V*)

We recall the notion of SU(3)-structure on a vector space V of (real) dimension 6. An SU(3)-structure on V
is a triple (g, J, ) such that (g, ) is an almost Hermitian structure on V, and ¢ = i, +ip_ is a complex
(3, 0)-form which satisfies

Yo A = %aﬁ, (2.6)

where w is the Kdhler form of (g, J), and i, and y_ are the real part and the imaginary part of , respectively.
Itisclearthat w A Y, =wAYP_=0and P_ = Jip,.

Theorem 2.6 ([17, 26]). Let (w, Y-) € Ao(V*) x A_(V*) be such that
wAPp_=0.
Let Jy_ be the complex structure on V defined by (2.5), and let h: V x V — R be the map given by

h(x,y) = w(x,Jy_y)

for x,y € V. Then, if h is positive definite, the stabiliser of the pair (w, Y_) is a subgroup of SO(V, h) iso-
morphic to SU(3), that is, the pair (w, Y_) defines an SU(3)-structure for which Jy_ is the complex structure,
Y=-] :/‘L Y_ + iyp_ is the complex volume form and h is the underlying Hermitian metric. Furthermore, any other
SU(3)-structure is obtained in this way.
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If (w, Y_) is normalized, that is, the condition (2.6) is satisfied, then the dual form @ and the real part ..
of Y are given by

W=*pw, Pi=*p_,

where xy, is the Hodge star operator of h; and there exists a suitable (h-orthonormal) coframe {f1, ..., f®} of
V* such that

12 2 1 145 | (235
w=f2 4+ [0, ho = 204 f10 4 f145 4 f235,

2.3 Stable forms in dimension seven

Let V be a 7-dimensional oriented vector space. For each 3-form ¢ € A3(V*) on V, we can define the sym-
metric quadratic form by, : V x V — A7(V*) by

6by(X,y) = k@ ANly@ A @,

where x, y € V. If ¢ is stable, then (see [17, 26]) the volume form £(¢) defined by the map (2.1) is given by

e(p) = {/det(b¢,).

Then, we can consider the symmetric map g,: V x V — R given by

8o(X, ¥)E(@) = by(x,y), (2.7)
where x,y € V.

Definition 2.7. Let V be a 7-dimensional oriented vector space. A 3-form ¢ on V is called positive if g, is
positive definite; and ¢ is said to be negative if g, is indefinite.

The following result states that the positive and negative forms on V are the unique stable 3-forms on V.

Theorem 2.8 ([17, 26]). There are exactly two GL(V) open orbits in A3(V*) which are defined by
(V") = {p e A3(V*) | 8y s positive definite}

and
I_(V*) = {p € A3(V*) | g, is indefinite}.

If ¢ € I1,(V™), then the stabiliser of ¢ is a subgroup of O(V, g,,) isomorphic to G,, and the dual form ¢ = @ of p is
given by ¢ = %, @, where x, is the Hodge star operator of the metric g,,. Moreover, in a suitable g ,-orthonormal
coframe {f', ..., f7} of V*, the forms @ and ¢ = @ have the following expressions:

12 7, £135 _ F146 _ (236 _ £245
@ = f127 4 247 4 f307 4 f135 — f146 _ f236 _ f245

¢ =f1234 +f1256 +f1367 +]¢'1457 +f2357 _f2467 +f3456-

If ¢ € I1_(V*), then the metric g, has signature (3, 4), and the stabiliser of ¢ is the non-compact group G3. In
this case, there exists a g,-orthonormal coframe {f*, ..., f’} of V* such that the forms ¢ and ¢ = @ are given

by

12 7, £135 _ £146 _ (236 _ £245
@ = —f127 4 U7 4 fOO7 4 135 _ f1A6 _ 236 _ 245,

¢ = %o = f3456 _f1234 _f1256 _f2467 +f1367 +f1457 +f2357-

Remark 2.9. The correspondence {¢ — %, ¢} from the set of stable 3-forms to the one of stable 4-forms is
2: 1, preserves both positivity and negativity, and verifies g, = .. A section of this map is completely
determined by an orientation on V (see [3]).
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3 Coclosed G,-structures and obstructions

In this section we show obstructions to the existence of a coclosed G, form on a Lie algebra with non-trivial
center, but not necessarily nilpotent. First, we recall some definitions and results about G,-structures.

A 7-dimensional smooth manifold M is said to admit a G,-structure if there is a reduction of the structure
group of its frame bundle from GL(7, R) to the exceptional Lie group G,, which can actually be viewed natu-
rally as a subgroup of SO(7). Thus, a G,-structure determines a Riemannian metric and an orientation on M.
In fact, the presence of a G,-structure is equivalent to the existence of a 3-form ¢ (the G, form) on M, which
is positive (in the sense of Definition 2.7) on the tangent space T, M of M at every point p € M.

If ¢ is a G,-form on M, then by (2.7) ¢ induces both an orientation and a Riemannian metric g, on M
given by

68p(X, Y)vol = ixp Aty A @

for any vector fields X, Y on M, where vol is the volume form on M, and tx denotes the contraction by X. Let
x4 be the Hodge star operator determined by g, and the orientation induced by ¢. We will always write ¢ to
mean the dual 4-form of a G, form, that is,
b =xp0.

We say that a manifold M has a coclosed G,-structure if there is a G,-structure on M such that the G, form ¢
is coclosed, that is, d¢p = 0.

Now, let G be a 7-dimensional simply connected Lie group with Lie algebra g. Then a G,-structure on
G is left invariant if and only if the corresponding 3-form is left invariant. According to Theorem 2.8, a left
invariant G,-structure on G is defined by a positive 3-form ¢ € I1(g*), which can be written as

0= 127 4 @347 | o567 | o135 _ o146 _ 5236 _ ,245 (3.1)
with respect to some orthonormal coframe {e!, ..., e’} of g*. So the dual form ¢ = %, has the following
expression:

b= 1234 4 01256 4 1367 | o1457 | o2357 _ n2467 4 53456 3.2)

where e127 stands for el A e2 A €7, and so on.
A G,-structure on g is said to be coclosed (or cocalibrated) if ¢ is coclosed, that is,

d¢ =0,

where d denotes the Chevalley-Eilenberg differential on g*. By [23], we know that if g is nilpotent with rational
structure constants, then the associated simply connected nilpotent Lie group G admits a uniform discrete
subgroup I'. Therefore, a G,-structure on g determines a G, -structure on the compact manifold I' \ G, which is
called a compact nilmanifold; and if g has a coclosed G,-structure, the G,-structureon I' \ G is also coclosed.

In order to show obstructions to the existence of a coclosed G,-structure on a Lie algebra g, let us consider
first the case that g is a direct sum of two ideals h and R, i.e.,

g=hoR,

where h is a 6-dimensional Lie algebra. If ¢ is a 4-form defining a G,-structure on g, and the decomposition
g = b @ R is orthogonal with respect to the underlying metric on g, then

¢:%a}2+l,b_/\dt,

where the pair (w, 1-) defines an SU(3)-structure on b, and ¢ is a coordinate on R. Now, the condition that ¢
is closed is equivalent to both w? and i_ are closed. This means that the SU(3)-structure is half-flat. There are
exactly 24 nilpotent Lie algebras of dimension six that admit a half-flat structure [4]. Hence, if we focus our
attention on decomposable nilpotent Lie algebras, then there are at least 24 nilpotent Lie algebras, of dimen-
sion seven, with a coclosed G,-structure. In Theorem 4.3, we show that those are exactly the decomposable
nilpotent Lie algebras admitting coclosed G,-structures.
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Let g be a 7-dimensional Lie algebra with non-trivial center. If X € g belongs to the center of g, then the
quotient h = g/Span{X} has a unique Lie algebra structure that makes the projection map n: g — b a Lie
algebra morphism. Thus, we have the following short exact sequence of Lie algebras:

0—>RX—g—>h—0.

Moreover, if we assume that g is nilpotent, then every epimorphism g — b, with h of dimension six, is of this
form.

We need also to recall the following result due to Schulte [26, Proposition 4.5]. If ¢ is a G,-structure on a
7-dimensional Lie algebra and we choose a vector X € g of length one with respect to the metric g, determined
by ¢, then on the orthogonal complement of the span of X one has an SU(3)-structure (w, ¥_) given by the
2-form w = tx¢ and the 3-form 1) = —1x¢, where ¢ is the dual 4-form of ¢, thatis, ¢ = x,¢.

Proposition 3.1. Let g be a 7-dimensional Lie algebra with non-trivial center and a 3-form ¢ defining a coclosed
Gy-structureon g.If m: g — b is an epimorphism from g to a 6-dimensional Lie algebra b, with kernel contained
in the center of g, then ¢ determines an SU(3)-structure (w, Y _) on b such that the 3-form i _ is closed.

Proof. Denote by g, the underlying metric on g defined by the G;-structure ¢, and denote by ¢ the dual
4-form of ¢, that is, ¢ = x,¢. Let X be a unit vector in the center of g, and let 1 = 1x(g,) be the dual form
of X with respect to g,. By the aforementioned result of [26, Proposition 4.5], we know that ¢ induces an

SU(3)-structure (w, -) on the orthogonal complement V of the span of X, that is, on ker(n), such that

p=0+p_An,

where & € A*(V*) is the dual 4-form of @ with respect to the metric defined by (@, 1_) on the space ker(1).
Now, consider the Lie algebra b = g/Span{X} and the projection map

m:g—h.

Clearly, h and V are isomorphic as vector spaces. Then, fixing an isomorphism between these spaces and
doing the pullback of the SU(3)-structure (@, Y_) on V, we have an SU(3)-structure (w, t_) on h such that

p=no+aPY_An, (3.3)
where @ € A*(h*) is the dual 4-form of w with respect to the metric defined by (w, ¥_) on b. Thus,
Y- = . (-1x9).
Moreover, we see that
dyp_=0, d(m*o)=n"yY_ndn.
In fact, since d commutes with the pullback, from (3.3) we have
0=d¢ =n"(do) + n*(dp_) An-a“yP_Adn.

Taking the contraction by X, and using that X is in the center of g, that is, ad(X) = 0, we have dij)_ = 0 and
d(m*o) =m*Y_Adn. O

As a consequence of Proposition 3.1, we have the following obstruction to existence of coclosed G,-structures
on Lie algebras with non-trivial center.

Corollary 3.2. Let g be a 7-dimensional oriented Lie algebra with non-trivial center. If there is an element X in
the center of g such that
. (1xk) ¢ A-(b") (3.4)

for every closed 4-form x € A*(g*), where : g — b = g/Span{X} is the projection map, then g does not admit
any coclosed G,-structure.
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Proof. Let X be a non-zero vector in the center of g such that condition (3.4) is satisfied for any closed 4-
form on g. Suppose that there is a 4-form ¢ on g defining a coclosed G,-structure. Then, by Proposition 3.1,
the 4-form ¢ determines an SU(3)-structure (w, _) on h = g/Span{X}, where {_ = .. (-1x¢) by (3.3). Now,
Remark 2.5 and Theorem 2.6 imply that 77..(1x¢) € A_(h*), which contradicts condition (3.4). So, g does not
admit coclosed G,-structures. O

Another obstruction to the existence of a coclosed G,-structure on a Lie algebra is given by the following
lemma.

Lemma 3.3. Let g be a 7-dimensional Lie algebra. If there are non-zero vectors X and Y in g such that
(1xtyx)? = O for every closed 4-form k on g, then g does not admit coclosed G,-structures.

Proof. It follows from (3.2). O

The following result, whilst straightforward, turns out effective to show that some Lie algebras do not admit
coclosed G;-structures (see Proposition 4.2).

Lemma 3.4. Let (h,]) be an almost Hermitian structure on a 6-dimensional oriented vector space V, with or-
thogonal complex structure J, Hermitian metric h and fundamental two-form w(-,-) = h(J -, -). Then, for any
J-invariant 4-dimensional subspace W of V, we have that the restriction to W of the 4-form (xw) is non-zero,
that is, (xw)|w # O, where * denotes the Hodge *-operator of the metric h.

Proof. Since W is J-invariant, there exist non-zero vectors x,y € W such that {x, Jx, y, Jy} is an orthonor-
mal basis of the space W (with respect to h). Let z € V be a unit vector orthogonal to the space W. Then
{x,Jx,y, ]y, z,Jz} is a (real) h-orthonormal basis of V. Therefore,

W)X AJXAY ATy) = w(z A J2) = |z]|* = 1,

which proves that (~w)|w # O. O

4 Decomposable case

In this section we classify the 7-dimensional decomposable nilpotent Lie algebras which admit coclosed G-
structures. Recall that a Lie algebra is called decomposable if it is the direct sum of two ideals.

For convenience, from now on we will use the following notation. Suppose that g is a 7-dimensional Lie
algebra whose dual space g* is spanned by {e?, ..., e’} satisfying

de'=0, 1<ic<u4a, de® = e?3, de® = 3%, de’ = e3°,

Then we will write
g=(0,0,0,0, 23, 34, 36),

with the same meaning. Moreover, we will denote by {e1, .. ., e7} the basis of g dual to {e?, ..., e’}.

Proposition 4.1. If g is one of the following 7-dimensional nilpotent Lie algebras:

g1 =(0,0,0,0,12,15,0), 92 =(0,0,0,0, 23, 34, 36), g3 =(0,0,0,12,13, 14,0),
g4 =(0,0,0,12, 14, 24,0), g5 =(0,0,12,13, 14,23 +15,0), g6 =(0,0,12,13, 14, 15,0),
g7 =(0,0,12,13,14,34-25,0), g3=1(0,0,12,13,14+ 23,34 -25,0),

then g carries no coclosed G;-structures.

Proof. Using Lemma 3.3, we will prove that each Lie algebra g, s € {1, ..., 8}, listed in the statement, does
not admit any coclosed G;-structure. For this, we will show that there are non-zero vectors X, Y5 € gs such
that (1x, (ty, Ks))? = 0 for any closed 4-form xs on gs.
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s = 1. A generic closed 4-form x; on g; = (0, 0,0, 0, 12, 15, 0) has the following expression:

35 36 37 45 1247

1246
+ C1246€ + C1247€
34 34

12
+ C1245€
34

1234 12 12 12
K1 = C1234€ + C1235€ + C1236€ + C1237€

1256 1257 1267 1345 1346 1347 1356
+ C1256€ + C1257€ + C1267€ + C1345€ + C1346€ + C1347€ + C1356€

1357 1367 1456 1457 1467 1567 2345
+ C1456€ + Ci1457€ + C1467€ + C1567€ + C2345€

2347 2356 2357 2456 2457 2567
+ C2347€ + C2356€ + C2357¢€ + Ca456€ + Ca457€ + C2567€ s

+ C1357€ + C1367€

where c;ji; are arbitrary real numbers. Now, one can check that if the coefficient c235¢ of k1 vanishes, then

(le3 (le(,KI))Z = O,

that is, gy satisfies the hypothesis of Lemma 3.3 for X; = e3 and Y; = e¢. If c245¢ = 0, then

(e, (tegk1))? = 0.

But if 2356 and c»45¢ are both non-zero, then for X; = ca35¢€4 — Cass56€3 and Yy = eg, we have

(IC2356€4—C245683 (le(, Kl))z =0.
s = 2. A generic closed 4-form x, on g, = (0, 0, 0, 0, 23, 34, 36) has the following expression:

1234 1235 1236 1237 1245

46 1247
K2 = C1234€ + C1235€ + C1236€ + C1237€ + C1245€

12
+ C1246€ + C1247€

6 1347 1357 1367

1356
+ C1356€ + C1357€
346

1345 134
+ C1345€ + C1346€
46

+ C1347€ + C1367€

34 34 2356

2347
+ C2347€ + C2356€

2467 3456 3457
+ Ca467€ + C3456€ + C3457€

5 2
+ C2346€
56

7 2
+ C2345€
67

1456 1
— C1247€ + C1467€

357

23 24
+ C2367€ + C2456€

3567
b

2
+ C2357€

3467

+ C3467€ + C3567€

where c;jji; are arbitrary real numbers. Taking X, = es and Y, = ez, we have (i, (te, K2))%2 = 0.

s = 3. A generic closed 4-form x3 on g3 = (0,0, 0, 12, 13, 14, 0) is expressed as follows:

6 1247

1234 1235 123
K3 = C1234€ + C1235€ + C1236€
6

1237 1245 1246
+ C1237€ + C1245€ + C1246€ + C1247€

34 346 1347 1356
+ C1347€ + C1356€

1567 2345
+ C1567€ + C2345€

2467
)

5 1
+ C1346€
457

1257 1267 1
+ C1257€ + C1267€ + C1345€
367 56

125
+ C1256€

357 467

1 1 14 1 1
+ C1357€ + C1367€ + C1456€ + Ci1457€ + C1467€

2346 2367

2347 2357 2457
+ C2346€ + C2347€ + C2357¢€ + C2367(€ t+e ) + Ca467€

where c;jjiq are arbitrary real numbers. For X3 = e5 and Y3 = eg, we have (i, (te, K3))? = 0.

S = 4. A generic closed 4-form x, on g4 = (0, 0, 0, 12, 14, 24, 0) is expressed as follows:

1234 1235 1236 1237 1245 1246 1247
K4 = C1234€ + C1235€ + C1236€ + C1237€ + C1245€ + C1246€ + C1247€

1256 1257 1345 346 1347
+ C1256€ + C1257€ + C1347€

367

1357

1267 1
+ C1267€ + C1345€ + C1346€

457

+ C1357€

2346 2347
+ C2346€ + C2347€

3567
’

56 467 45

1 1 23
+ Ci457€ + C1467€ + C2345€

2456

14
+ C1456€
36

1
+ C1367€

2357

2367 2457 2467
+ C1367€ + C2367€ + C2456€ + Ca457€ + Ca467€ + C3567€

where c;jjiq are arbitrary real numbers. Then, for X, = e5 and Y, = eg, we have (te, (te, K4))% = 0.

s = 5. A generic closed 4-form x5 on g5 = (0,0, 12, 13, 14, 23 + 15, 0) has the following expression:

3 1247

4 1235 1236 1237 1245 1246
+ C1235€ + C1236€ + C1237€ + C1245€ + C1246€ + C1247€

1256 1257 1345 346 34
+ C1256€ + C1257€

357

12
K5 = C1234€

7 1356
+ C1356€

1567 2345
+ C1567€ + C2345€

2457
b

1267 1 1
+ C1267€ + C1345€ + C1346€ + C1347€

1456 1457 1
+ C1456€ + C1457€ + C1467€

2357 3

367 467

1
+ C1367€

2346 234
+ C1456€ + C2347€

1
+ C1357€

2367
+ C2367€ —(c1567 + C2367)€

- Ci467€
where cjji; are arbitrary real numbers. Then, for X5 = e5 and Y5 = eg, we have (te, (te, Ks5))? = 0.
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§ = 6. A generic closed 4-form k¢ on gg = (0,0, 12, 13, 14, 15, 0) has the following expression:

3 3 36 3 6 1247

1237 1245 124
+ C1237€ + C1245€ + C1246€ + C1247€

1267 1345 1346 1347 1356
+ C1267€ + C1345€ + C1346€ + C1347€ + C1356€

6 6 6

4 1235 12
+ C1235€ + C1236€

1256 1257
+ C1256€ + C1257€

12
Ke = C1234€

6 2345

1357 1367 145 1457 1467 1567
+ C1357¢€ + C1367€ + C1456€ + Ci457€ + C1467€ + C1567€ + C2345€

2347 2367 2457

+ C2347€ + C2367€ —C2367€ ,

where c;ji; are arbitrary real numbers. So, for X¢ = es5 and Yg = ez, we have (i, (te, Ke))? = 0.

s = 7. A generic closed 4-form x¢ on g7 = (0,0, 12, 13, 14, 34 — 25, 0) has the following expression:

3 3 1236 3 1245 1247

5 1237 1246
+ C1236€ + C1237€ + C1245€ + C1246€ + C1247€

1256 1257 1267 1345 1346 1347 1356
+ C1256€ + C1257€ + C1267€ + C1345€ + C1256€ + C1347€ + C1356€

6

1234 12
K7 = C1234€ + C1235€

1457 1467 2345 2346
+ Ci457€ + C1467€ + C2345€ + C2346€

45 3457
’

1357 1367 145
+ C1357¢€ + C1367€ + C1456€

34 35 36

2347 2357 2367 2457
+ C2347€ —C1267€ + C2367€ —C1367€ — C1467€

where c;j are arbitrary real numbers. Thus, (ie; (ie, k7))2 = 0.

s = 8. A generic closed 4-form x¢ on gg = (0,0, 12,13, 14 + 23, 34 — 25, 0) has the following expression:

3 3 3 3 1247

4 1235 1236 1237 1245 1246
+ C1235€ + C1236€ + C1237€ + C1245€ + C1246€ + C1247€

1256 1257 1267 1345 1346 1347 1356
+ C1256€ + C1257€ + C1267€ + C1345€ + C1256€ + C1347€ + C1356€

1357 1367 1456 1457 1
+ C1357€ + C1367€ + C1456€ + Ci1457€ + C1467€

12
Kg = C1234€

467 345 2346

2
+ C2345€ + C2346€

2347 2356 2357 2367 2457 3457
+ C2347€ ~ C1456€ —(C1267 + C1457)€ +C2367€ —C1367€ — Ci467€”",

where c;ji; are arbitrary real numbers. On can check that if the coefficient c1456 vanishes, then
(tes (tegK))> = 0,
that is, gg satisfies the hypothesis of Lemma 3.3 for Xg = e5 and Yg = e¢. If c234¢ = 0, then
(te, (teKg))* = 0.
But if c1456¢ and c»34¢ are both non-zero, then for Xg = ¢cy34¢€5 + C1456€4 and Yg = eg, we have
(1C234e€5+'—‘145s€4(leexg))z =0.
The proof is complete. O
Moreover, using Lemma 3.4, we have the following proposition.
Proposition 4.2. None of the following 7-dimensional nilpotent Lie algebras:
[ =(0,0,0,12,13 - 24,14 + 23, 0),
[,b=(0,0,0,12,14,13 - 24,0),
[3=(0,0,0,12,13 + 14, 24,0)

admits coclosed G,-structures.

Proof. We will prove, by contradiction, that no closed 4-form 75 defines a coclosed G,-structure on the Lie
algebra [5 (s = 1, 2, 3). We proceed case by case.

s = 1. A generic closed 4-form 7, on [; = (0,0,0, 12,13 — 24, 14 + 23, 0) has the following expression:

3 36 3 46 1247

1234 12 1237 1245 12
T1 = C1234€ + C1235€ + C1237€ + C1245€ + C1246€ + C1247€

1256 1257 1267 1345 1346 1347 1356
+ C1256€ + C1257€ + C1267€ + C1345€ + C1346€ + C1347€ + C1356€

5 12
+ C1236€

1357 1367 1456 1457 1467 2345 2346
+ C1357¢€ + C1367€ + C1456€ + Ci457€ + C1467€ + C2345¢€ + C2346€

2347 2356 2357 2367 2456
— C1456€ + C2357€ + C2367€ — C1356€ +(C1357 + C1467 + C2367)€

2467
)

2457
+ C2347€

+ Ca467€
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where cjji; are arbitrary real numbers. Let us suppose that, for some real numbers cjji;, the 4-form 7, defines
a coclosed G,-structure on [;. Since e5 is in the center of [;, Proposition 3.1 implies that

Vi = 1. (le, T1)
is a negative 3-form on the Lie algebra b, = [1/Span{e;}, where rr: [; — b is the projection. Thus,

123 124 125 126 134 135 136 145
V1 = C1237€ + C1247€ + C1257€ + C1267€ + C1347€ + C1357¢€ + C1367€ + Ci1457€
146 234 235 236 245 246
+C1467€7 " + C2347€77" + 23578777 + C2367€777 + (C1357 + C1467 + C2367)€° + Cos67€° .
We claim that the map K,,, defined by (2.2), has the following expression:
Vi Vi
K33 K35 0 0 0 0
Ky} Kvi 0 0 0 O
V1 V1 V1 V1
K33 Ky, K3 Kz, O 0
vy Vi vy V1
K,; K,, K3 K, O 0
Vi V1 Vi V1 V1 Vi
Ky Ks; K53 Ks, Ksz Kgg
Vi Vi Vi 141 Vi V1
K¢y Kg; Kg3 Kgy Kgs Kgg

4 123456 123456
Ky, = (K',)®e =

®e s

wherea, b € {1, ..., 6},and KZ}) is a polynomial function of the coefficients c;jx; that appear in the expression
of vy. In fact, by (2.2), it turns out that

(te,v1) AVy = Z KV et
1<a<é6
Therefore, K} e*® = (1,,v1) A vy A e?. Then, one can check that K} =0 for a = 1,2 and b > 3, and also
K.} =0fora=3,4andb =5, 6. Thus, the claim is true.
Since vq € A_(h1%), (2.5) and Theorem 2.4 imply that v, defines the almost complex structure J,, on b
given by
K}y K5 0 0 0 o0
Ky K3, 0 0 0 0
N R R T T R
FAvOl | Ky Ky Ky Ky 00
Ky Ky K OKYG KG K
Ky Kb K K K& K

]ﬁl =

Therefore, the subspace W = Span{es, e, €5, es} is ], -invariant. Now, consider n = ZZ=1 C,e’, an arbitrary
1-form on [;. According to (3.3), and taking into account the expressions of 71 and v;, we see that the 4-form
0 = m,(11 — m*v1 A1) on b1, has zero component in e3%56. Hence, 0|y = o(es, es, es, eg) = 0, contradicting
Lemma 3.4. Thus, 71 never defines a coclosed G,-structure.

s = 2. A generic closed four-formon [, = (0,0, 0, 12, 14, 13 - 24, 0) has the following expression:

3 3 3 3 1247

1234 1235 12
T2 = C1234€ + C1235€ + C1236€

6 1237 1245 1246
+ C1237€ + C1245€ + C1246€ + C1247€

1256 1257 1267 1345 1346 1347 1356
+ C1256€ + C1257€ + C1267€ + C1345€ + C2456€ + C1347€ + C2456€

3

1357 1367 1456 1457 1467 2345
+C1357€ + (C2467 — C2357)€ + C1456€ + C1457€ + C1467€ +C2345€

2346 2347 2357 2367 2456 2457 2467
+ C2346€ + C2347€ + C2357€ + C2367€ + C2456€ + C457€ + Ca467€ ,

where c;ji; are arbitrary real numbers. Let us suppose that for some real numbers cyj;, the 4-form 7, defines
a coclosed G;-structure on [,. Since ey is in the center of [,, by Proposition 3.1, we have that v, = -7, (i¢, 72)
is a negative 3-form on b, = [/ Span{e;}, where t: [, — b is the natural projection. Thus, v; is given by

123 124 125 126 134 135 136 145
Vo = C1237€ 77 + C1247€ + C1257€ + C1267€" " +C1347€ 7 + C1357€ + C1367€ + Ci457€

146 234 235 236 245 246
+Cra67€ " + C2347€°7" + C2357€777 + C2367€77° + Co457€° 7 +(C2357 + C1367)€° .
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We claim that the map K,,, defined by (2.2), has the following expression:
K% K3 o 0 0 O
K3 K3 0 0 0 0
K% Ky K K 0 0

v 123456 123456
A B A B T A
Ky Kip K3 Ko, Ky Ko
Kg Ko K Kg, Kg K
wherea, b € {1,...,6}and KZZ is a polynomial function of the coefficients c;ji; that appear in the expression

of v,. In fact, by (2.2) it turns out that

(lebvz) ANVy = Z Kzzela6.
1<a<é6
Therefore, K3 e~ = (¢,v2) Av2 A e?. Then, one can check that K3 =0 for a =1,2 and b > 3, and also
K} =0fora=3,4andb =5, 6. Thus, the claim is true.

Since v, € A_(h2*), (2.5) and Theorem 2.4 imply that v, defines the almost complex structure J,, on b
given by

K% K 0 0 0 O

K} K 0 0 0 O

1 Ky, Ky K33 K3, 0 0
WA | K K Ky K 00
K4 K3 KR OKG K3 KD

K& K& K KG KG K

Therefore, the subspace W = Spanf{es, e, es, e} is J,,-invariant. Now, consider n = ZZ=1 C,e’, an arbitrary
1-form on [,. According to (3.3), and taking into account the expressions of 7, and v,, we see that the 4-form
0 = m.(1T2 — m*v; A1) on b has zero component in e34°°, Hence, o|w = o(es, ey, es, eg) = 0, contradicting
Lemma 3.4. Thus, 7, never defines a coclosed G,-structure.

s = 3. A generic closed four-formon [5 = (0, 0,0, 12, 13 + 14, 24, 0) has the following expression:

3 3 36 3

1234 1235 12 1237 1245 1246 1247
T2 = C1234€ + C1235€ + C1236€ + C1237€ + C1245€ + C1246€ + C1247€

1256 1257 1267 1345 46 47 1357
+ C1256€

13 13
+ C1257€ + C1267€ + C1345€ + C1346€ + C1347€ + C1357¢€

36

1367 1456 1457 1467 2345 2346 2347
+ C1367€ + C1456€ + Ci457¢€ + C1467€ + C2345€ + C2346€ + C2347€

2357 2367 2456 2457 2467
+C2357€ +C367€ +C2356€ +(C1367 + C2357)€ +Coue7€7",

where c;ji; are arbitrary real numbers. Let us suppose that for some real numbers cjjx;, the 4-form 73 defines
a coclosed G;-structure on [,. Since ey is in the center of (1, by Proposition 3.1, we have that v = -7, (i¢, 73)
is a negative 3-form on b3 = I3/ Span{e;}, where m: [3 — b3 is the natural projection. Thus, v3 is given by

123 124 125 126 134 135 136 145
V3 = C1237€ 77 +Cr247€ 7" +C1257€ 77 + C1267€ 7 + C1347€ 7 +C1357e777 + 136777 + Cy57€

146 234 235 236 245 246
+Cra467€ "7 + C2347€77" + C2357€777 + C2367€77° +(C2357 — C1367)€° " + Ca467€

We claim that the map K,,, defined by (2.2), has the following expression:

K} K3 0 0 0 0
Ky, K 0 0 0 0
K Ky Ky Ky, 0o
Ky Kpy Ky Ky 00
G OKG KK Ky K

v Vv v v v v
Ka Kg K Ky Kgs Keg

I<V3 _ (Kz?i)) ® e123456 — ® e123456’
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wherea, b € {1, ..., 6},and be is a polynomial function of the coefficients c;ji; that appear in the expression
of v3. In fact, by (2.2), it turns out that

V3 1e@e6
(te,V3) A V3 = Z K e .
1<a<é6

Therefore, K} e*® = (t¢,v3) Av3 A e“. Then one can check that K}, =0 for a =1,2 and b > 3, and also
be =0fora =3,4andb =5, 6. Thus, the claim is true.

Since v3 € A_(h3*), (2.5) and Theorem 2.4 imply that v; defines the almost complex structure J,,, on b3
given by

K} K3 0 0 0 o0

Ky, K3 0 0 0 O

1 Ky, K3 K3 K3, 0 0
W-Aws)l | K Kip Kz K 00
K5y K5, K Ko Ksy K

K Ko K Kg K Kg

Therefore, the subspace W = Span{es, e4, es, es} is ]y, -invariant. Now, consider n = ZLl C,e’, an arbitrary
1-form on [3. According to (3.3), and taking into account the expressions of 73 and v3, we see that the 4-form
0 =m.(13 - m*v3 An) on h3 has zero component in e34°6_ Hence, o|w = o(es, e, €5, eg) = 0, contradicting
Lemma 3.4. Thus, 73 never defines a coclosed G;-structure. O

By Gong’s classification, there exist, up to isomorphism, 35 decomposable 7-dimensional nilpotent Lie alge-
bras. We will show that 24 of these Lie algebras admit a coclosed G,-structure.

Theorem 4.3. Among the 35 decomposable nilpotent Lie algebras, of dimension 7, those that have a coclosed
G -structure are

n; =(0,0,0,0,0,0,0), n; =(0,0,0,0,0,12,0),
n3 =(0,0,0,0,0,12 + 34,0), n4 =(0,0,0,0,12,13,0),
ns =(0,0,0,0,12, 34,0), ng =(0,0,0,0,13 - 24,14 + 23,0),
n7 =(0,0,0,0,12,14 +23,0), ng =(0,0,0,0,12,14 +25,0),
ng =(0,0,0,0,12,15 +34,0), nip =(0,0,0,12,13,23,0),
n11 =(0,0,0,12,13, 24,0), n2 =(0,0,0,12,13, 14 + 23, 0),

niy3 =(0,0,0,12,23,14 +35,0), ni, =(0,0,0,12,23,14 -35,0),

nys =(0,0,0,12,13,14 + 35,0), ng =(0,0,0,12,14,15,0),

ni7 =(0,0,0,12, 14,15 + 24,0), nig =(0,0,0,12,14,15 + 24 + 23,0),

ny =(0,0,0,12,14,15 + 23,0), nyo =(0,0,0,12,14 - 23,15 + 34,0),

ny; =(0,0,12,13,23,14+25,0), ny; =(0,0,12,13,23,14-25,0),

ny3 =(0,0,12,13, 23, 14,0), nyy =(0,0,12,13,14 + 23,15 + 24,0).
Proof. By Propositions 4.1 and 4.2, we know that there are 11 decomposable nilpotent Lie algebras not ad-
mitting coclosed G,-structures. This implies that there are at most 24 decomposable nilpotent Lie algebras
having a coclosed G,-structure. But all the 24 Lie algebras listed in the statement have such a G,-structure.
This is clear on the abelian Lie algebra n; = (0, 0, 0, 0, 0, 0, 0). Moreover, every non-abelian Lie algebra ng,
s € {2,...,24}, listed in the statement, is a direct sum of two ideals hs and R. In fact, ns is an abelian exten-

sion of b,
ns = hs ® Rey,

where b is a 6-dimensional Lie algebra, and e; = % with t a coordinate on RR.
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By [4], we know that hs has a half-flat SU(3)-structure (ws, ;). Thus, the 4-form ¢ on ng, given by

1
s = wa +15 Adt,

defines a coclosed G;-structure on ng, which completes the proof. O
Corollary 4.4. Any decomposable 2-step nilpotent Lie algebra, of dimension seven, has a coclosed G,-structure.

Proof. Among the 35 decomposable nilpotent Lie algebras, of dimension seven, those that are 2-step nilpo-
tent are the 7 Lie algebras ng, where s € {2, 3, 4, 5, 6, 7, 10}, defined in Theorem 4.3. Thus, all of them carry
coclosed G»-structures. O

5 Indecomposable 2-step nilpotent case

In this section we complete the classification of 7-dimensional 2-step nilpotent Lie algebras which admit a
coclosed G,-structure. We have seen that there are exactly 7 decomposable Lie algebras of this type. In order
to discuss the indecomposable 2-step nilpotent Lie algebras, we refer to Gong’s classification [14] (see also
[5]). This list consists of 131 Lie algebras and 9 1-parameter families. None of the 1-parameter families defines
a 2-step nilpotent Lie algebra. Among the indecomposable Lie algebras (with no parameters), there are only
nine which are 2-step nilpotent Lie algebras. They are the following:

17 =(0,0,0,0,0,0,12 + 34 + 56),

27A =(0,0,0,0,0,12, 14 + 35),

27B=(0,0,0,0,0,12 + 34,15 + 23),

374 =(0,0,0,0,12, 23, 24),

37B=(0,0,0,0,12, 23, 34),
37B1=(0,0,0,0,12 - 34,13 + 24, 14),

37C=(0,0,0,0,12 + 34, 23, 24),

37D =(0,0,0,0,12 + 34,13, 24),
37D1=(0,0,0,0,12 - 34,13 + 24,14 - 23).

Theorem 5.1. Up to isomorphism, the unique indecomposable 2-step nilpotent Lie algebras carrying a coclosed
G,-structure are the following: 17,37A,37B,37B1,37C,37D and 37D1.

Proof. We know that a G,-structure on a Lie algebra g can be defined either by a 3-form or, equivalently, by
a 4-form, which have the expression given by (3.1) or (3.2), respectively, with respect to some orthonormal
coframe {el, ..., e’} of g*. For each Lie algebra appearing in the statement, an appropriate coframe and the
corresponding 4-form are given as follows:
o 17: ¢y = e1234 4 1256 | 1367 | Q1457 4 o2357 _ 02467 | 03456 (o1 02 o3 o4 o5 o6 7},
o 37A: ¢, = e1234 4 @1257 _ 1356 _ 1467 _ g2367 | o2456 4 03457 103 ol o2 oh o5 b o7}
37B: by = 1234 4 1457 4 2357 4 g(euse _ e1356 4 1267 4 p1367 | p2456) | \/Tf(e3456 _ Q2467 4 3467
{el, g(e2 —-é3), g(e2 +e3), et e5, e e},
o 37Bl:py = 1234 4 @1267 4 1357 4 1456 | 02356 _ g245T 4 o3467 (ol of o2 o3 5 b o7}
o 37C: s = —e1234 _ 1267 | 1357 4 ol456 _ 02356 | o245 4 o3467 (02 o3 oh ol g6 o5 o7}
37D: g = e1234 1 1267 1 3467 4 \/77(91356 + e1357 4 1456 _ 1457 | 02356) _ %7(92357 _ @2456 _ p2457)
{e!, %(@ +eh), e?, */77(63 —e"), e’ e e},
o 37D1:¢h; = —e1234 _ @267 _ 1356 4 1457 _ 2357 _ g2456 | 03467 (ol o3 o2 o4 o5 g6 7},
It is straightforward to verify that each ¢; is closed on the corresponding Lie algebra.

It remains to prove that the Lie algebras 27A and 27B do not admit any coclosed G;-structure. To this
end, we show that for these Lie algebras the hypothesis of Lemma 3.3 is satisfied for X = eg and Y = e;. In
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fact, let a be a generic closed 4-form on 27 A. Then, one can check that a has the following expression:

34 35 36 37 45 46 1247

12
+ C1246€ + C1247€

1347 1356
+ C1356€

12
+ C1245€

1346
+ C1346€

12
+ C1237€
1345

12 12
+ C1235€ + C1236€

1256 1257
+ C1256€ + C1257€

1357 1367 14
+ C1357€ + C1367€ + C1456€

12
a = C1234€

+ C1345€ + C1347€

457 1567 2345

56 1
+ Ci1457€ + C1567€ + C2345€

2346 2347 2356 2357 2456 2457
+ C2346€ + C2347€ + C2356€ + C2357€ + C2456€ + Ca457€

3456 3457

+(C1247 — €2357)€°"°" + C3457€7 777,

where cjjiq are arbitrary real numbers. Thus, (e, (te, @))% = 0. A generic closed 4-form f on the Lie algebra 27B
is expressed as

1234 1235 12
B = c1234€ + C1235€ + C1236€

1256 1257 1
+ C1256€ + C1257€ + C1345€
1357 367

36 37 45 46 1247

12
+ C1246€ + C1247€
34 1356

12
+ C1245€
34

12
+ C1237€

34

5 1346 1347
+ C1346€ + C1347€ + C1356€

1456 1457 2345
+ C1456€ + Ci457€ + C2345€

2356 2357 2456 2457
+ C2356€ + C2357€ + C2456€ + Ca457€

3456 3457
+(C1256 + C1457 — C2347)€ + C3457€ >

1
+ C1357€ + C1367€

46 347

23 2
+ C2346€ + C2347€

where c;jq are arbitrary real numbers. Hence, (t¢, (e, 8))* = 0. O

6 Coclosed G,-structures inducing nilsolitons

In this section we prove that any 2-step nilpotent Lie algebra, admitting a coclosed G, -structure, also has a nil-
soliton inner product determined by a coclosed G,-structure. This result is not true for higher steps. Indeed,
we give an example of a 3-step nilpotent Lie algebra supporting a nilsoliton and coclosed G»-structures but
none coclosed G;-structure induces a nilsoliton.

Let n be a nilpotent Lie algebra. According to Lauret [21], an inner product g on n is called nilsoliton if its
Ricci endomorphism Ric(g) differs from a derivation D of n by a scalar multiple of the identity map I, that is,
if there exists a real number A such that

Ric(g) = AI + D.

Not all nilpotent Lie algebras admit nilsoliton inner products, but if a nilsoliton exists, then it is unique up to
automorphism and scaling [21].

Theorem 6.1. Any indecomposable 2-step nilpotent Lie algebra admitting a coclosed G,-structure also has
a coclosed G,-structure inducing a nilsoliton.

Proof. By Theorem 5.1, we know that, up to isomorphism, the Lie algebras 17,374, 37B,37B1,37C, 37D
and 37D1 are the unique indecomposable 2-step nilpotent admitting coclosed G,-structures. For each of
these Lie algebras, defined in Section 5 in terms of a basis {el, ..., e’} of the dual space, we consider a new
basis {f1, ..., f’} and a coclosed G,-structure defined by a 3-form @; (1 < i < 7) which determines the inner
product so that the basis {f', ..., f’} is orthonormal. The basis {f/}, the G,-structure ¢; and the appropriate
coframe defining ¢; are given as follows:

e 17:fi=el,1<i<6,f" = Ye’ Then

17 = (0, 0,0,0,0,0, ﬁle + \/TngA T %}56)

and
01 :f127 +f347 +f567 +f135 _f146 _f236 _f245, {fl’fZ’fB’flL’fS,fé,jﬂ}.
e 37A:ft=el,1<i<4,fl= e, 5<j<7. Then,

374 =(0,0,0,0, Yef12 Vo523 &gty
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¢ = _f137 +f247 +f567 _f126 _f145 _f235 —f346, {f3,f1,f2,f4,f5,f6,f7}-

e« 37B:fi=el,1<i<4,fo= ‘/T§e5,f6 = %geé,ﬂ = %e?Thus,

37B=(0,0,0,0, 12, Y10£23 45 ¢34y

and
Q3 = _f146 _f236 f567 ﬁ(leB f125 _f135 _f137 _f245) + \/Ti(leﬂ +f345 +f347),
I 22 -, @+ £ 1. 5. )
e 37Bl:fl=el,1<i<4,fl= e’5<]<7so
37B1 = (O, O, O, 0’ vio (le f34) %)O(le +f24), \{_1700]:14)
and

04 =f125 +f345 +f567 + \/Tf(_f136 +f137 +f146 +f147 +f236) + g(fZ37 +f246 _f247),

{fl’ﬁ(f?) +f4)1f2’ﬁ(f3_f4)’f5’f6’f7}'
e 37C:fl=el,1<i<4fi= —ef 5<j<7.Thus,
37€=(0,0,0,0, Y2(f12 4 f34), ¥2f23 N2 p24)

and

:f147 +f237 +f567 +f125 _f136 +f246 +f345’ {fl,f4,f2,f3,f5,f6,f7}-

o« 37D:fl=el,1<i<4,fl = e’5<]<7Then
37D =(0,0,0,0, 2 (F12 4 f34, o f13 Vop24)

and

Q6 = _f147 +f237 _f567 +f125 +f136 +f246 _f345, {fzyf3yf4yf1,f6,f5,f7}-

o 37D1:fl=el,1<i<4,fl= e’5<]<7Hence

37D1 = (0,0,0,0, B(f12 - 34, L (f13 4 f24) No(p14 _ f23))

and

®7 =f137 +f247 _f567 +f125 +f146 _f236 _f345 {fl f3 f2 f4 fS _f6 f7}
It is straightforward to check that each ¢; is coclosed and induces the inner product g; = Zle(ff )2. By [8],

each g; is a nilsoliton on the corresponding Lie algebra, which completes the proof.

O

Remark 6.2. Note that for each of the Lie algebras 17-37D1, considered in the previous theorem, the change
of basis from {e'} to {f'}, given in the proof of Theorem 6.1, defines an automorphism of the Lie algebra, but
it is not an isomorphism between the G,-structure defined in the proof of Theorem 6.1 and the G,-structure

defined in the proof of Theorem 5.1. In fact, these structures define different metrics.

Theorem 6.3. Any decomposable 2-step nilpotent Lie algebra has a coclosed G,-structure inducing a nilsoliton.

Proof. By Corollary 4.4, any decomposable 2-step nilpotent Lie algebra admitting a coclosed G;-structure is
isomorphic to one of the following seven Lie algebras ng, s € {2, 3, 4, 5, 6, 7, 10}, defined in Theorem 4.3.
For each of these Lie algebras, we consider the G, form ¢, and the appropriate coframe defining ¢, given as

follows:
° nz: (p =

o N3 = el 4 @37 _ @567 o135 | o146 _ o236 4 o245 (ol o2 o3| _oh o5 6 _eT},

_el137 _ o247 _ o567 4 0126 | o145 _ 0235 _ 0346 (o1 03 o2 ok o6 _p5,
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o g = el 4 @237 4 @567 _ @126 _ o135 | o245 _ 0346 (ol oh o2 o3 _eb o5 o7}
ns: @ = g(euS +e126 4 o135 _ o136 _ p245 | o345 | o346 | o246) | o147 4 o237 | o567
{el, e2, */77(e5 +e%), e3, ‘/77(e5 —e%), e, e’},
o g =el2T 4 @347 4 @567 o235 4 0246 _ 136 _ o145 (ol 02 o6 o5 o3 o o7}
o npg=el3T 4 24T _ 567 _ gl125 o146 | o236 4 0345 (ol 03 o2 of o5 o6 o7}
o Mo p = —elT — @257 _ 367 | p126 _ o135 | o234 _ o456 (ol oh o3 o6 _o5 o2 T},

Itis straightforward to check that each form ¢ is coclosed on the corresponding Lie algebra, and it defines
the metric g = Zzzl(ei)z, which is a nilsoliton as it is proved in [27]. O

Finally, we show an example of a 3-step nilpotent Lie algebra admitting coclosed G,-structures and a nilsoli-
ton which is not determined by any coclosed G,-structure.

Example 6.4. Consider the 3-step nilpotent decomposable Lie algebra ng defined in Theorem 4.3 as
ng =(0,0,0,0,12,14 + 25,0),
with respect to a basis {el, . .., e’} of the dual space n;. Clearly, in the basis
{flzel’fZ :gez,fa :e3,...,f7 :e7},
the Lie algebra ng is defined by the structure equations
(0,0,0,0, V2f12, f14 1 V/2f%5 0).

By [13], the inner product
7
g=Y (")
i=1

is a nilsoliton on ng, and so it is unique up to scaling and automorphism of the Lie algebra [21].

On the other hand, by Theorem 4.3, ng admits a coclosed G,-structure. However, we will show that the
Lie algebra ng does not carry any coclosed G-structure inducing the nilsoliton g. For this, we consider the
G;,-structure defined by the 3-form

Qo = €127 4 347 1 567 4 o135 _ o146 _ 0236 _ o245
Denote by  the Hodge operator defined by ¢g. By using [3, formula (3.6)], we know that every positive 3-form
¢ on ng, compatible with the previous metric g and orientation, can be written as

@ = (a® - |a]®)po + 2a * (a A Qo) +i(aoa),

where a is a constant, « is a 1-form satisfying a® + |a|? = 1, and i(a - a) is a 3-form depending on a and ¢.
Consequently,
x@ = (a® - |a|?) * @o + 2a(a A Qo) + *i(a o q).

Consider a generic 1-form a = 2]721 ajel, with a; € R. Since

i(aoa)= Z ajaxe A (le,@o),
1<j,k<7

we obtain the following explicit expression for ¢:

x@ = (a’ - |a]?)e>*C + (2aas + a5 — a6 — aza7)e>®’

+(2aa; — a7 + asas — azag)eY + (a® - |a)?)et?°0 + (a® - |a|?)e?3>7

2347 2567

+ (2aar + a1a7 + azag + az0s)e
4567 1457

+ (2aas + a1a7 — az3ag — a4As5)e

1367 + (a2 _ |a|2)e

2467

+ (2aas — a106 — 205 + azaz)e
1567

+(a® - lal*)e

1234

+ (Zaaq — &7 — 305 + A4Q¢)e +(—a” + |a|”)e +(a” —|aj~)e
(2 ) (-a® +lal?) (a® - |al?)
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1236 + ( 1246

2-am — a7 + A30s5 + Az0g)e
1237

+(2-aa; —ara7 — azas — Az xg)e

1235 4 (2aas — a1a5 + ar g — A4A7)e

1247

+(2-aa; + a1a7 + Az3®g — Azxs5)e

1246

+ (2aay - a1a7 + a3 — AzAs€ + (2aas + a1ag + ar205 + azaz)e

+(2aas + a1a5 — Aty — Aga7)e?? + 2aag — a1y — a203 + asaz)er?e’

+(2aas + a1ag — 2 ts — asa7e>*® + (2aas — aras — ayag + azaz)et >4
+(=2aag + a1a, — a205 + asaz)e3%(-2aa; — a1a2 — aza, — asag)e 3>’
1456 1467

+ (-2aas — a1a3 — a4 — Agay)e + (Qaa7 + a10; — a3a4 — as0ag)e

2345 2346

+ (-2aa4 + a1 — Q205 + Az7)e
2356

+ (2aas + a1as + ara¢ + azaz)e

+(2aa; — a1as + aza, — asag)e?>e7

2457

+ (-2aas + a1a3 + AL, — Ag7)e

2456

+ (2aag + a1a4 — aza3 — asaz)e + (2aa; — a1a2 — a3a4 + asag)e

3457 3467

+ (2aas — a1a3 + ara4 — AgQ7)e + (2aag + a1a4 + a203 + asaz)e

Therefore,

d(x@) = —(a® - |a|*)V2e'P%7 — 2aa, - a1ag — ar a5 + aza7) V2e2467

+(-2aa;V2 - V2aia; + V2aza, + V2asag - 2aa; - a1 a7 — azag — agzas)et S’

+(-2aa3V2 + V2aias5 + V2ara6 - V2a4a;7 + 2aas — a1a3 — ara4 + agaz)et>®

—(Zaa3 + A1Q5 — A& — Ay A7 e +a —-|a e
(2 )\/3 12367 ( 2 | |2)\/§ 12346

+(2aasV2 - V2 a3 + V24 — V2aga7 + 2aa; — a1as + aza, — asag)e?>H

+(2aagV2 + V2a1a4 + V2aa5 + V2asaz)e?>*7 + (=2aas — a1as + arag + azaz)e>*7 .

Then we see that d(=¢) = 0 is equivalent to the following system:

a’-lal* =0,

aon,; — d10g — 0 As + azay =0,

2aas + a105 — arag — Aza7 =0,

B 2aa6\/§+ \/Eala4 + \/Eazog + \/§a5a7 =0,

—2aa3V2 + V2a1a5 + V2a206 — V20407 + 2aas — a1a3 — azay + agaz =0,

2aa5V2 - V2a1a3 + V24 — V2aga7 + 2aa; — a10; + aza, — asag = 0,

—2aa;V2 - V2a105 + V2aza4 + V2asag — 2aas — a1a7 — azag — azas = 0,

L

in the variables a, aj, j = 1, ..., 7. We can show that the above system has no solution. In fact, from the first
equation it follows that a? = |a|?, so it is not restrictive to suppose that 2a = 1. By the second, third and fourth
equations, we obtain

—A1Ae7 — Q20507 + X1 A5 — A2 Ag
a; = A1 + A5 — A3A7, A3 =

» Qe =—-0s5a7.
1+a2

By the last equation (d(x¢))12457 = 0, we get a% = -1, and so ng does not admit any coclosed G,-structure
inducing the nilsoliton.

7 Contact metric structures induced by coclosed G,-structures

In general, the existence of a coclosed G;-structure is independent of the existence of a contact form. We
recall that a contact metric structure on a Riemannian manifold (M, g) is a unit length vector field ¢ such that
the endomorphism ¢ defined by g(¢-,-) = %dn( -, -) and the 1-form n = (¢, -) are related by

P’ =-ld+nef.
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A contact metric structure (M, g, &, ¢) is called K-contact if the Reeb vector field ¢ is Killing, and it is said to
be normal if the induced almost complex structure J on the product manifold M x R is integrable. A Sasakian
manifold is a normal contact metric manifold.

A natural question is whether on a 7-manifold there exists a contact metric structure such that the metric
is induced by a coclosed G;-structure. For 2-step nilmanifolds we can show the following.

Proposition 7.1. If a 2-step nilmanifold T \ G admits an invariant contact metric structure (g, &, ¢) such that
the metric g is induced by a coclosed G,-structure, then G is isomorphic to the 7-dimensional Heisenberg Lie
group. Moreover, ' \ G has an invariant Sasakian structure.

Proof. Since the involved structures are invariant, we can work at the level of the Lie algebra g of G. In [20],
Kutsak showed that a decomposable 7-dimensional nilpotent Lie algebra does not admit any contact struc-
ture, and the only indecomposable 2-step nilpotent Lie algebra admitting a contact form is the Lie algebra 17,
which is the Lie algebra of the 7-dimensional Heisenberg Lie group. Therefore, the result follows by Theo-
rem 5.1. O

Note that, by [1], the Heisenberg Lie algebra 17 is indeed the only 7-dimensional nilpotent Lie algebra ad-
mitting a Sasakian structure. So a natural problem is whether on a (not Sasakian) 7-dimensional nilpotent
Lie algebra there exists a K-contact metric structure such that the metric is induced by a coclosed structure.

Example 7.2. Consider the following indecomposable 3-step nilpotent Lie algebra
n=(0,0,0,12,13,0,16 + 25 + 34).

By [15], we know that n admits a K-contact metric structure defined by g = 21-7:1(e”)2 and the Reeb vector
¢ = e;. We can show that g admits a coclosed G,-structure ¢, whose underlying metric coincides with g.
Indeed, consider the 3-form

@ = —el67 _ @37 4 o457 _ o124 _ p135 _ 0256 346

One can check that g, = g and that the Hodge dual *¢ of ¢, given by

1236 _ ,1456 _ 1257+ 1347+ 2467+ 2357’

e e e e e

*gD:e

is closed.
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