
 

 

 

 

This is an author version of the contribution published on: 

Questa è la versione dell’autore dell’opera: 

Gut Microbiota, Immune System and Bone. 

D'Amelio P, Sassi F. 

Calcif Tissue Int. 2017 Sep 30. doi: 10.1007/s00223-017-0331-y. 

The definitive version is available at: 

La versione definitiva è disponibile alla URL: 

[https://link.springer.com/article/10.1007%2Fs00223-017-0331-y] 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302159954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Gut Microbiota, Immune System and Bone 

D'Amelio P
1
,  Sassi F

1
 

1
Gerontology and Bone Metabolic Diseases Section 

Department of Medical Science University of Torino- Italy  

 

 

 

 

Corresponding author and reprint request:  

D’AmelioPatrizia MD, PhD 

Department of Medical Science, 

University of Torino 

CorsoDogliotti 14, 10126 Torino, Italy. 

Tel: +390116336704-Fax: +390116636033 

E-mail: patrizia.damelio@unito.it. 

 

Running title: Microbiota and Bone 

 

 

 

 

  

mailto:patrizia.damelio@unito.it


Abstract 

The gut microbiota (GM) is the whole of commensal, symbiotic and pathogenic microorganisms 

living in our intestine. The GM-host interactions contribute to the maturation of the host immune 

system, modulating its systemic response. It is well documented that GM can interact with non-

enteral cells as immune cells, dendritic cells and hepatocytes, producing molecules as short-chain 

fatty acids, indole derivatives, polyamines and secondary bile acid. The receptors for some of these 

molecules are expressed on immune cells, and modulate the differentiation of T effector and 

regulatory cells: this is the reason why dysbiosis is correlated with several autoimmune, metabolic 

and neurodegenerative diseases. 

Due to the close interplay between immune and bone cells, GM has a central role in maintaining 

bone health and influences bone turnover and density. GM can improve bone health also increasing 

calcium absorption and modulating the production of gut serotonin, a molecule that interacts with 

bone cells and has been suggested to act as a bone mass regulator. Thus, GM manipulation by 

consumption of antibiotics, changes in dietary habits and the use of pre- and probiotics may affect 

bone health.  

This review summarizes evidences on the influence of GM on immune system and on bone 

turnover and density and how GM manipulation may influence bone health. 

 

Keywords: osteoporosis, gut microbiota, bone, immune system, probiotics, inflammation 

  



Introduction 

The whole of the commensal, symbiotic and pathogenic microorganisms living in our intestine has 

been defined gut microbiota (GM), it is acquired at birth and derives almost entirely from the 

mother, it changes accordingly to environmental factors as diet, diseases and use of drugs. The GM 

comprises about 1200 bacterial species, the main phyla represented are: Bacteroidetes, Firmicutes, 

Actinobacteria, Proteobacteria and Verrucomicrobia [1].Some of the identified species and of the 

common bacterial phyla varies between individuals [2], low microbial diversity have been 

identified as a risk factor for different chronic diseases as intestinal inflammatory diseases, obesity 

and insulin resistance [3,4,5,6]. Arumugam and colleagues suggested that individuals can be 

clustered according to the prevalence of different GM phyla and introduced the concept of 

“enterotypes”; according to this definition humans can be stratified on the basis of their microbial 

patterns dominated by Bacteroides, Prevotella or by Ruminococcus [7]. 

In physiological condition GM relationship with host is complex and comprehends various forms of 

symbiotic relationship as parasitic, commensal and mutualistic, GM helps in food digestion, in 

fighting pathogens and, during the first years of post-natal life, contributes to the maturation of the 

host immune system; during the whole life GM interacts with the host and contributes to the 

modulation of gut and systemic immunity. Immune homeostasis disruption is the causal mechanism 

of several chronic non-communicable human diseases (NCDs) as allergy, asthma, some 

autoimmune, cardiovascular and metabolic diseases, and neurodegenerative disorders. These 

disorders are characterized by a low grade of inflammation. Although inflammation and the 

pathways to disease are multifactorial, the altered gut colonization patterns, associated with 

decreasing microbial diversity, are a central theme and are increasingly implicated in the 

physiologic, immunologic, and metabolic deregulation seen in many NCDs. Altered GM-host 

interaction has been indicated as a possible cause of immune deregulation and increased 

inflammation associated with several NCDs [8]. 

This review summarizes evidences on the influence of GM on immune system and on bone 

turnover and density and how GM manipulation may influence bone health. 

 

GM influences immune system 

The interaction between immune system and GM has a central role in the maturation of immune 

system during the early post-natal period [9] and a role in the modulation of immune system and 

response to self-antigens during the whole life [9, 10], thus it has been suggested that dysbiosis may 

play a role in the development of diseases characterized by immune deregulation such as allergies, 

autoimmune, and inflammatory disorders. 

The role of GM in the development and maturation of host immune system in the early post-natal 

life has been demonstrated in germ free (GF) mice, i.d. animal raised in sterile cages that maintains 

sterile gut. The use of this experimental model have shown that the absence of GM negatively 

influences the formation of lymphoid organs, in particular GF mice have defective formation of the 

spleen and mesenteric lymph nodes, the intestinal Peyer’s patch are smaller and displays a reduced 

number of CD4+T cells and reduced production of IgA [11-16]. Also isolated lymphoid follicle and 



cryptopatches are reduced in GF mice [17, 18]. As regards immune cells different GM phyla where 

associated with the development of different T helper (Th) phenotypes: in animal model of 

rheumatoid arthritis (RA) the disease is reduced in GF mice thanks to a reduction of Th 17 [19], 

arthritic phenotypes is restored when GF animals are colonized with segmented filamentous 

bacteria, which enhances the differentiation and function of Th17 cells. In RA patients a 

relationship between the disease and Prevotellaceae has been suggested, in particular Prevotellae 

copri has been associated with increased risk of RA [20, 21], whereas Prevotella histicola seems to 

inhibit the development of arthritis [22].Colonization of GF animals with Bacterioides fragilis 

restores a correct balance between Th1 and Th2 cells and redirect lymphoid organogenesis [14]. 

Resident bacteria as segmented filamentous bacterium and in particular some Clostridia-related 

species, have been associated to Th cells development and to Tregs cells induction [23, 24]. 

GM modulates immune system through the production of molecules with immunomodulatory and 

anti-inflammatory function that are capable to influence immune cells [25, 26]. In particular GM 

produces several metabolites from digested food, by modifying host products and by the novo 

synthesis, amongst these molecules short-chain fatty acids (SCFAs) are the most widely 

investigated in the regulation of inflammation and immune system. It has been demonstrated that 

SCFAs have anti-inflammatory effects on intestinal mucosa, thus protecting the bowel from the 

development of inflammatory bowel disease [27-29] (Fig. 1). 

SCFAs signals to several non-enteral cell types through G-protein-coupled receptors also named 

free fatty acid receptors (FFAR) [30-32], one of these receptors GPR109A/HCA2, is activated in 

immune system by butyrate [33], the signal between GM and immune system is fundamental to 

regulate the homeostasis and to maintain the balance between immune tolerance to commensals 

bacteria and immunity to pathogens. The interaction of butyrate and GPR109A/HCA2 cooperates in 

the generation of immune tolerance and, in particular, mediates Tregs development [28, 29, 34,35]. 

Butyrate regulates gene expression by inhibiting histone deacetylases (HDAC) [36], in particular  

butyrate inhibits HDAC1 and HDAC3 [37]. Also propionate acts as a less potent HDAC inhibitor 

[38]. Recently it has been suggested that inhibition of HADAC may increase Tregs development 

and function, hence this could be one of the mechanism by which GM enhances Treg generation in 

the gut [39].It has also been suggested that, depending on the cytokines milieu, interaction between 

SCFA and FFAR influences T cells differentiation not only towards Tregs, but also towards effector 

T cells. Park and colleagues suggested that, in certain conditions, SCFAs may induce T helper 

differentiation into Th1 and Th17 thus increasing the host defenses against pathogens [40]. SCFAs 

as butyrate and propionate also modulates antigens presentation inhibiting the development of 

dendritic cells by HDAC inhibition [41-44] and by interaction with FFAR [34, 45]. 

 

Beyond SCFAs, GM produces other metabolites from digested food that have important 

immunomodulatory function as indole derivatives and polyamines, these metabolites derive from 

dietary tryptophan and arginine respectively and have an indirect immune function. Indoles 

derivatives favor the integrity of the enteral mucosa and the barrier defense towards pathogens by 

stimulating the production of anti-microbial peptides, mucins, and proliferation of intestinal goblet 

cells. Polyamines as putrescine, spermidine, and spermine fulfill important roles in gene expression 

and proliferation; enhance the development and maintenance of the intestinal mucosa and resident 

immune cells (Fig. 1). An immunomodulating role have also been postulated for other GM products 

as metabolized bile acids, however physiological role for this metabolites in health and disease is 

still an open question [46]. 



GF mice have imbalance in T helper cells: reduced Treg, absence of Th17 cells and altered ratio 

between Th1 and Th2 with increased Th2 response [26], in these animals gut colonization with 

Bacteroides fragilis induces the development of Th1 cells thanks to the production of 

polysaccharide A [14]. Polysaccharide A is a bacterial product that influences T cells fate thought 

its interaction with the toll like receptor 2, interacting with T cells it favors immune tolerance by 

inhibiting Th17 differentiation and favoring Tregs activity [47]. Other bacteria, as segmented 

filamentous bacteria and Clostridium spp.,were shown to influence Th phenotype, the first 

stimulates Th17 immune response, through ATP or serum amyloid A production by innate 

immunity cells, whereas the latter promotes Treg cell response trough SCFAs production [23, 48] 

(Fig. 1). 

A recent study by Kim and colleagues suggests that GM may affect also B cells antibody 

production through SCFAs inhibition of HDAC and modulation of gene expression [49] however 

further studies are needed to clarify the underling mechanism. 

 

Taken together these evidences suggest that GM influences T cells differentiation through the 

production of bacterial metabolites as SCFAs and polysaccharide A at least at the intestinal mucosa 

level, and T cells differentiation trough cognate bacterial antigens [50] (Fig. 1). 

The majority of the evidences thus suggested that GM metabolites and antigens may influence 

immune regulation and hence dysbiosis may be the environmental factor responsible for some 

immune and inflammatory disorders, both at gut level as inflammatory bowel disease [51] and 

outside the gut as Rheumatoid Arthritis [52], type1 diabetes [53] and asthma [54]. However organs 

distant from gut, skin and lung are not in direct contact with GM, this implies that GM has the 

ability to communicate to the host immune system in distant organs as well as in the gut. These 

signals have been identified in GM derived products as lipopolysaccharide, SCFAs, and bile acid 

but also circulating antibodies or immune cells [2]. 

 

Relationship between GM, immune system activation and bone loss 

Osteoporosis increases dramatically the risk of fractures: major osteoporotic fractures are a social 

and economic burden, in developed countries, the lifetime risk for osteoporotic fractures at the 

wrist, hip or spine is 30% to 40%, very close to that for coronary heart disease. The number of new 

fractures in 2010 in the EU was estimated at 3,5 million, comprising approximately 620,000 hip 

fractures, 520,000 vertebral fractures, 560,000 forearm fractures and 1,800,000 other fractures [55]. 

Osteoporotic fractures impair patients’ quality of life and increase mortality: 20% of elderly patients 

suffering from femoral fractures will die within a year, and 50% of the survivors will lose 

independence. The most frequent cause of bone loss is post-menopausal osteoporosis (PMO) that is 

driven by estrogen deficiency at menopause. In PMO there is an imbalance in bone turnover with 

increased bone resorption and reduced bone formation. It has been demonstrated both in 

experimental models and in humans that estrogen deficiency affects bone cells number and 

activation and bone turnover partially through their effect on immune system [56].During estrogen 

deficiency T cells increase their production of pro-inflammatory and pro-osteoclastogenic 

cytokines, such as TNF alpha and RANKL [57], however the reasons of this increased activity in 

osteoporotic women and not in non-osteoporotic subject is unknown, GM may be involved in the 

mechanism of PMO. 



Some papers suggest that the absence of GM influences bone mass, the majority of the findings 

demonstrate that GF mice have increased bone mass, whereas a single study by Schwarzer and 

colleagues [58] demonstrated that GF mice have a growth retardation due to reduced level of IGF-1 

and, consequently, reduced bone mass. These authors argued that the difference in the results may 

be due to the different genetic background used in the studies. Similarly a study by Yan and 

colleagues reported an effect of GM on IGF-1 and consequently on bone growth, the study 

demonstrated an acute effect of GF colonization with GM obtained from conventional raised mice 

on reduction of bone mass due to increased bone resorption, whereas the long-term colonization 

resulted in a net skeletal growth in young animals [59]. 

Even the studies on mice treated with broad spectrum antibiotics to alter GM bring to different 

conclusions regarding the effect on bone density, these discrepancies are possibly due to differences 

in animal age, sex, and protocols applied for antibiotic treatment [59-63]. 

The majority of the reports suggest that antibiotic treated mice have increased bone density [60, 63, 

64] and also best bone mechanical properties [64] than conventional raised mice. 

GF mice showed a reduced number of osteoclast, lower level of IL-6, RANKL and TNFα in bone, 

these cytokines have a well-known pro-inflammatory and pro-osteoclastogenic effect [65, 66], GF 

mice also displayed alteration of immune system with lower number of CD4+ T cells and no 

difference of CD8+ T cells, these features are normalized by colonization with GM from 

conventionally raised mice [65]. 

Recently elegant studies demonstrated the role of innate immunity in mediating the effect of GM on 

inflammation and on bone metabolism, in particular the role of toll like receptor 5 (TLR5) [64, 66], 

Myd88, Nod1 and Nod2 has been studied.  

TLR5 is the innate immune receptor for flagellin [67] and mice knock-out (KO) for this receptor 

develop an altered GM due to deficits in the immune system. TLR5KO mice have an altered host-

microbe interactions, increased inflammation and metabolic syndrome [68]. It has been 

demonstrated that metabolic phenotype in these mice depends on GM alteration as TLR5KO mice 

raised in GF conditions do not develop the metabolic phenotype [69]. Bone phenotype is 

significantly different in TLR5KO mice as respect to WT, these animals have larger cross-sectional 

area and moment of inertia with a reduction in whole-bone strength. The effect of antibiotic 

treatment and disruption of the GM on bone tissue material properties was different between WT 

and TLR5KO mice, in particular TLR5KO mice display a greater reduction of the whole-bone 

femoral bending stiffness as respect to WT [64]. These differences may be due to several 

characteristics of TLR5KO mice: these mice are mildly obese and it is known that obesity 

influences bone mechanical competence [70]; moreover GM is altered in TLRKO mice that display 

low microbial diversity, that might, per se, influence bone phenotype; finally immune system is 

altered in these animals, these could affect GM-immune system-bone interaction.   

 In order to study the role of innate immunity in mediating the effect of GM on bone health Ohlsson 

and colleagues [66] evaluated the role of Myd88, NOD1 and NOD2. Myd88 is the main mediator of 

TLR activity on inflammatory response [71], however Myd88KO mice behave like WT mice when 

raised in GF environment and display a significant increase in cortical bone mass, this observation 

demonstrates that the effect of the GM on bone mass is independent of Myd88.  

NOD1 and NOD2 bind bacterial peptidoglycan and cooperate to inflammatory response after 

bacterial recognition in the cytoplasm activating the NFκB pathway. NOD1 detects diaminopimelic 

acid-type peptidoglycan that is mainly expressed by Gram-negative bacteria [72]. Nod2 detects all 

types of peptidoglycans found in Gram-positive and Gram-negative bacteria [73].GF mice with 

deletion of NOD1 or NOD2 do not have increased cortical thickness nor increased expression of 



TNFα and RANKL, thus the effect of GM on the production of this cytokines and, hence, on bone 

mass is dependent by these molecules. 

To investigate the role of GM in bone loss induced by sex steroid deficiency, this condition was 

induced pharmacologically in GF mice with the GnRH agonists leuprolide by Li and colleagues 

[74].These authors demonstrated that GM plays an important role in sex steroid deficiency induced 

osteoporosis: GF mice are protected against osteoporosis and the increase in bone turnover induced 

by sex steroid deprivation thanks to the lack of increase in TNF, RANKL, and IL-17. The authors 

also demonstrated that sex steroid depletion augments inflammation in the intestine by increasing 

gut permeability to bacterial antigens, namely by decreasing the expression of claudin 2, 3, and 15, 

and of Jam3, which are modulators of intestinal barrier integrity [75, 76].  

In humans scarce data support results obtained in mice, recently Wang and colleagues [77] in a very 

limited cohort suggest that GM component structure and diversity are altered in osteoporosis and 

osteopenia patients as compared with normal controls, however they do not correlate different GM 

components with inflammation and immune system, nor with bone turnover. 

Relationships between immune system, estrogen deficiency, bone loss and GM are summarized in 

Fig. 2. 

 

GM and bone health beyond immune system 

It has been suggested that GM composition and manipulation may affect bone health beyond 

immune system by influencing calcium absorption and the production of gut derived serotonin.  

A post-hoc analyses on the use of Lactobacillus reuteri demonstrated that the use of this probiotic 

in healthy subject increases the level of serum 25OH vitamin D, that influences calcium absorption 

and benefits bone health. The mechanism through which this probiotic influences vitamin D level is 

not clear, however the authors argued that this may be due to a modification in the gut environment 

that specifically favors vitamin D absorption or to indirect effect on increased hepatic 25-

hydroxylase activity or 7-dehydrocholesterol concentration due to reduced absorption of dietary and 

biliary cholesterol [78]. On the other hand the relation between GM and vitamin D may also be 

inverse as it has been proposed that decreased vitamin D intake is associated with different GM 

profile [79, 80]. 

Another possible mechanism through which GM benefits bone health is the increase in calcium 

absorption. It is well known that maintaining a positive calcium balance is important in achieving a 

good peak of bone mass that protects from the development of osteoporosis in older age [81, 82]. 

Dietary intake of fibers influences calcium absorption, after being fermented by GM, fibers improve 

calcium absorption by reduction of gut pH, thus reducing the formation of calcium phosphates and 

increasing the calcium absorption and by increasing the production of SCFAs as butyrate [83]. The 

effect of SCFAs may be more complex that the effect on gut pH and in fact it has been 

demonstrated that SCFAs increase calcium transport trough signaling pathway modulation [84].As 

previously said SCFAs influence bone health also trough immune system modulation, hence dietary 

fibers intake may be responsible for an healthier immune system and reduced inflammation, in fact 

there is a general consensus recognizing that an adequate dietary fiber intake is associated with 

lower risk of chronic diseases as cardiovascular diseases [85]. 



Another possible mechanism through which GM influences bone health is mediated by its effect on 

the production of gut serotonin (5HT). In the recent past a dual effect of serotonin in the regulation 

of bone mass has been described depending on the site of production of this molecule [86]. In this 

review we are interested in the role of gut derived 5HT (g5HT), that is influenced by GM, as a bone 

mass regulator. Enterochromaffin cells of the duodenum are responsible for the synthesis of g5HT 

that is partially modulated by GM as SCFAs increase the synthesis of g5HT [87, 88]. It has been 

shown that 5HT interacts with bone cells and, in particular, decreases osteoblast proliferation via 

activation of 5-HT1B receptors on pre-osteoblasts [89, 90].These observations suggest that 

regulation of g5HT by GM may be a potential therapeutic strategy to improve bone health, indeed, 

in animal models of ovariectomy induced bone loss, pharmacological inhibition of g5HT synthesis 

results in prevention of osteoporosis mediated by increased bone formation [91]. 

However data on the effect of 5HT on bone health are quite controversial, Cui and colleagues [92] 

showed that mice KO for 5HT receptor 1 have no bone phenotype and that inhibition of this 

receptor with LP923941, an enantiomer of LP533401 used in a previous study with opposite results 

[91], decreases circulating 5-HT, but has no effect on bone density. Different results obtained may 

be explained by different techniques used [93]. 

 

Relationships between GM and bone turnover beyond immune system are summarized in Fig. 3. 

 

GM manipulation and bone health 

GM composition may be manipulated in several ways as the use of broad spectrum antibiotics, 

change in dietary habits and, more easily, by the use of prebiotics and probiotics, change in GM 

composition may affect bone health. The majority of experimental data produced in mice 

demonstrated that modulation of GM by the use of probiotics is able to increase bone mass and to 

reduce sex steroid associated bone loss [74, 94-96]. Probiotics used were different in different 

studies, both a single strain or a mixture of strains, the most used were Lactobacilli spp. that were 

demonstrated to have the higher anti-inflammatory and bone protective effect. McCabe and 

colleagues suggested that short-term oral administration of the Lactobacillus reuteri enhanced bone 

density in male, but not in female mice [97], however in estrogen-deficient female mice the 

administration of this probiotic prevented bone loss [95]. In a further study the authors suggested 

that L. reuteri is active on bone health also in intact females providing the presence of an 

inflammatory status, the authors speculated that estrogen deficiency is comparable to a mild 

inflammatory status, thus explaining their previous findings on intact female [98]. 

Also some data on the use of yogurt that contains different probiotics, but is also a source of 

calcium and proteins that are fundamental for bone health, have been produced [99]. All these 

studies showed a protective effect of probiotic yogurt on bone health, moreover it has been 

demonstrated that dairy products consumption in early life led to a higher peak bone mass [100]. 

Also in adults older than 60 years consumption of dairy products was associated to increased bone 

density and lower risk of osteoporosis [101-104]. The use of probiotics has been proposed also as 

adjuvant treatment in focal bone loss as alveolar erosion in periodontitis, the ability of different 

Lactobacilli strains in reducing osteoclast number, alveolar erosions and tooth movement in rat and 

mice has been demonstrated [105-107]. In humans a recent meta-analysis concludes that current 



evidences suggest a possible use of probiotics as adjuvant therapy in gingivitis and periodontitis 

[108]. 

In a geriatric population the administration of Lactobacillus helveticus increases serum calcium 

[109]; in a prospective double-blind, placebo-controlled randomized clinical trial the administration 

of Lactobacillus casei Shirota in 417 elderly patients with a distal radius fracture accelerates the 

healing process [110]. Also in osteopenic women the administration of a multispecies probiotic (6 

different species) increases markers of bone formation, decreases TNF alpha level, but has no effect 

on bone density during a 6 months period [111]. 

Another method to influence GM is the administration of prebiotics, prebiotics are complex 

carbohydrate and fibers, that influence composition and/or activity of GM in a way that favors host 

health. To generate beneficial metabolic products GM need substrate availability, prebiotics 

partially provides these substrates, and can be used to modify the GM components and their 

metabolites. To be classified as prebiotic a substance should meet these criteria: be resistant to low 

gastric pH, hydrolysis by mammalian digestive enzymes, and not be absorbable by humans, be 

fermented by GM and stimulate the growth and activity of gastro intestinal tract [112]. Prebiotic 

supplementation in animal models favors the proliferation of Bifidobacteria and increases SCFAs 

production. As regards the effect of prebiotics on bone health some experimental studies showed 

that they improved calcium absorption and bone density in animal models [113, 114].In humans the 

supplementation with different probiotics as galacto-oligosaccharide and a mixture of short- and 

long-chain inulin-type fructans in adolescent girls improved calcium absorption and improved bone 

density [115, 116]. Recently the corn-derived non-digestible carbohydrate, soluble corn fiber (SCF), 

has been evaluated for its ability to increase calcium absorption and improve bone health in 

humans. In particular SCF administration enhances calcium absorption and its consumption is 

associated with a favorable change in GM, namely increased presence of Bacteroidetes and 

Firmicutes known to ferment starch and fiber [117, 118]. In the study by Whisner and colleagues 

[117] increase in calcium absorption was positively correlated with bone formation marker, also the 

changes observed in GM phyla proportion was associated with calcium absorption, Parabacteroides 

significantly increases with larger SCF doses and negatively correlated with calcium absorption. 

Firmicutes positively correlated with calcium absorption. The results of this elegant study suggests 

that the role of GM in calcium absorption is complex and due to different species. 

Prebiotic fiber may influence bone metabolism both by the change in composition of GM favoring 

microbes with higher anti-inflammatory potential and by increasing SCFAs production thus 

increasing the calcium absorption. It has also been suggested that prebiotics could have direct effect 

on immune system modulation and an anti-pathogen effects regardless to their effect on GM [119]. 

However, until now, in human studies on prebiotics only calcium absorption, markers of bone 

metabolism and bone density were investigated, whereas immune phenotype and inflammation 

were not. 

 

Conclusions 

GM is becoming one of the new players in the regulation of bone turnover by modulating immune 

system and controlling inflammation and also by influencing calcium absorption and vitamin D 

level.  



Dysbiosis may favor bone loss in aged people and after menopause ,manipulation of GM may 

become a future adjuvant treatment in preventing osteoporosis, osteopenia and other diseases 

characterized by focal bone loss as periodontitis.  

In the last years several data obtained in animal models strongly supported the role of GM in the 

control of bone turnover, less data have been published in humans, field in which confirmatory 

studies are needed. In particular large clinical trials are needed to clarify the efficacy of prebiotics 

and probiotics in favoring bone health during growth, aging and post-menopausal bone loss.  
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Figure legends 

Fig. 1 The cartoon summarizes how gut microbiota influences enteral barrier integrity and immune 

system through the production of several metabolites 

Abbreviations used: enteral cells (EC), goblet cells (GC), antigen presenting cells (APC); T 

regulatory cells (Treg); T helper-1 (Th1), Thelper-17 cells (Th17), Short Chain Fatty Acid (SCFAs) 

 
  



Fig. 2 The cartoon summarizes the complex relationships between immune system, estrogen 

deficiency-bone loss and gut microbiota: enteral barrier integrity, cytokine production, immune and 

bone cells are involved 

Abbreviations used: gut microbiota (GM) enteral cells (EC), antigen presenting cells (APC); T 

regulatory cells (Treg); T helper-1 (Th1), Thelper-17 cells (Th17), osteoblasts (OBs), osteoclasts 

(OCs) 

 
  



Fig. 3 The cartoon summarizes the link between gut microbiota and bone turnover beyond immune 

system  

Abbreviations used: gut microbiota (GM), enteral cells (EC), enterochromaffin cells (ECC), 

osteoblasts (OBs) 

 
 

 

 

 

 

 

 

 

 


