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utilize subjective heuristics to prevent it. For the short term power market we
propose a simultaneous solution for both dispatch and bidding problems.
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are packed into the objective function by the logarithmic barrier approach
and the utility function is approximated by its second order Taylor polyno-
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sequence where the first diagonal dimension is the parameter controlling the
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1 Introduction

The liberalised electricity market poses new challenges to power generating
companies for the electrical grid. A key driver to set up economically efficient
grids is the capacity to store electricity through hydro storage systems and
thereby decouple electricity generation from electricity consumption. So, the
hydro storage system optimization is becoming one of the most challenging
tasks in Energy Finance, as highlighted in [31] and in [17]. While the current
industrial standard for hydro optimization covers linear models, recently risk
aversion optimizations, which are very common in financial portfolio optimiza-
tion, have been introduced into the energy sector, see f.i. [1] and [36].

The aim of this research work is to set up a computational efficiently imple-
mentable concave stochastic dynamic program in order to optimize intraday
electricity trading under risk aversion, and model at the same time water val-
ues for hydro assets. It extends the previous work of the authors ([20]) by
presenting the complete algorithm and constructing numerical examples. Its
two main contributions are:

– The implementation of the optimization algorithm of Blomvall and Lind-
berg on a lattice guaranteeing computational efficiency. To our knowledge
this approach is new and can be utilized for the discretization of virtually
any intertemporal portfolio optimization.

– The introduction of deterministic water values of an hydro infrastructutre
as certainty equivalents of optimal stochastic Lagrangian multipliers cor-
responding to the basin level equations.

The optimization of electricity trading under risk aversion is formulated as
a stochastic multiperiod optimization problem in discrete time for a generic
utility function. More exactly, the objective function is the weighted sum of
the expected utility of the wealth generated by the electricity trading during
each subinterval. The optimization problem is subject to equality restrictions,
such as the equations for the levels of all basins and to inequality restrictions,
such as the lower and upper bounds for the levels of all basins or the limits for
the turbined or pumped water. For linear restrictions and a generic concave
utility function this optimization problem is known to have always a unique
solution, an optimal (stochastic) dynamic dispatch plan. However, in general,
an explicit solution cannot be computed directly but can only be approximated
by a sequence of suboptimal dispatch plans. These can be obtained following
the seminal Blomvall and Lindberg’s ideas (see [9], [10], [11], [12] and [13]),
where inequality constraints are packed into the objective function by means
of an additive logarithmic penalty - a technique known as logarithmic barrier
approach. The optimization problem with the barrier approximates the orig-
inal one and can be solved by a Newton’s scheme, where the utility function
is approximated by its second order Taylor polynomial. This newly obtained
quadratic optimization problem, approximates again the original one, and has
an explicit closed formula solution, which depends on two parameters: the first
one is the parameter controlling the logarithmic penalty and the second one is
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the step parameter in Newton’s scheme. Finally, the optimal solution for the
original problem is obtained as a diagonal sequence over this two parameters.

We provide generic formulae in terms of conditional expectations and thus
not depending on the way the underlying stochastic processes are modelled
for the original deterministic equivalent formulation as in Blomvall and Lind-
berg. In the practical implementation intraday prices and water inflows are
discretized in the space dimensions by means of a “bushy” recombining tree
(meaning by this a k-dimensional lattice with k ąą 1), so that we are not
worried by the dimensionality curse nor we have to deal with heuristic argu-
ments concerning the choice of representative branches in a non recombining
“sparse” tree, as Blomvall and Lindberg implicitly have to deal with in their
original work. For a more recent treatment of scenario reduction techniques in
stochastic programming we refer to [37] and [42].

The obtained algorithm is implemented in Mathematica and applied to
optimize intraday electricity trading and model at the same time stochastic
water values for hydro assets. These are defined as shadow prices, that is the
optimal Lagrangian multipliers associated with the equality restrictions given
by the equations for the basin levels. Deterministic water values are obtained
by passing to the certainty equivalents.

This paper is structured as follows. Section 2 introduces the set up for
discrete intertemporal expected utility optimization of portfolio subject to
constraints, solved by means of an algorithm developed in Section 3, where
Remark 3.1 highlights the differences between Blomvall and Lindberg’s work
and our proposed approach. Section 4 deals with the implementation of the
solution method on a lattice, seen as recombing tree. This is applied in Sec-
tion 5 to the intraday electricity trading to find an optimal strategy and to
determine water values of hydro electric infrastructures to be used for market
bids. Section 6 presents a numerical example. Section 7 concludes.

1.1 A Short Review of the Literature

Energy trading methods have been widely studied in the technical literature
in the past 20 years. References [21], [28] and [46] are some of the few reviews
about different algorithms applied to hydro power planning. Some of these
techniques became standard in solving of medium-term hydro power planning
problems. The pioneering research of R. Bellman ([6]) introduced and made
popular the framework of dynamic programming, which was very soon ex-
tended to stochastic dynamic programming to account for the uncertainties
of the underlying processes. With randomly variable inflows and consumption
(electricity prices were liberalized only in the 1990s) hydro power scheduling
was therefore used as an application example for stochastic dynamic program-
ming from the beginning. But because of its computational challenging nature
the problem was first solved for a single basin configuration only at the end of
the 1960s (see [47]) and was an active field of research during the 1970s and
the early 1980s as the comprehensive reviews [33] and [45] show. The basic
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algorithms were extended to better account for stochasticity, multi reservoirs,
hydro thermal systems, reliability constraints, and improving the model for
water inflows. During the 1990s, thanks to the increase of computing power,
approximate dynamic programming and, in particular stochastic dual dynamic
programming, was in the spotlight. For the techniques allowing to approximate
some of the problem’s elements and reducing the computational time we refer
to the description of many of the algorithms in question, which can be found
in [8] and [38].

Originally, risk aversion was introduced into hydro power production in
order to achieve a certain reliability, which was mainly expressed in terms
of constraints for the optimization problem (e.g. [4], [43] and [44]). With the
liberalization of electricity markets the attention was focused on profit risk
mitigation. In terms of modelling this was achieved first by similar methods,
i.e. by setting target ranges for some variables (e. g. [18]). In more recent
years, following the discussion on coherent risk measures ([3]) first and time
consistency of risk measures ([41]) later, stochastic dynamic programming has
considered risk measures in the objective function depending on the control
rules and on the underlying stochastic processes. Applications to hydro power
production can be found in [15], [40], [14] and [37].

We remark that risk aversion optimization can be formulated by choosing
the objective function as a trade off between reward and risk, or, by setting the
objective function equal to the expected utility for a concave utility function.
The latter is the approach followed in this paper, where by means of risk
averse stochastic dynamic programming applied to the intraday electricity
market, we derive optimal short term dispatch plans and appropriate hydro
infrastructure water values for the day ahead market bids. Of course this model
can be extended to arbitrary long time horizons, for which the risk aversion
plays an even more important role, if the whole dynamics of the hourly priced
forward curve and not just the intraday prices are considered.

In [26] a mixed-integer linear program maximizes the expected profit of
a hydro chain in the day-ahead market, avoiding unnecessary spillages and
considering start-up costs. In [32] expected discounted cash flows of rewards are
maximized without taking risk aversion into account. But, for computational
efficiency, instead of linear programming, an approximated stochastic dynamic
programming algorithm is utilized, which consists in a combination of temporal
difference learning and least squares policy evaluation. In [22] and [23] a two
stage mixed integer-linear program maximizes a trade off between the expected
profit for the one-day operation and a penalty/reward for imbalances in the
future production. Being the objective function linear, there is no explicit risk
aversion. While the first stage determines the one-day production plan and
involves the bidding process, the second stage evaluates the impact of the one-
day production plan on future production. The output is an optimal bid for
the day-ahead market in terms of volumes and prices and an optimal dispatch
plan. For a similar problem set up [31] efficiently solve a stochastic mixed-
integer quadratic program integrating stochastic dynamic programming with
ideas of approximate dynamic programming.
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Recent references giving a thorough overview of producer models for bid-
ding in the auction market with and without a dispatch plan are [22] (mixed
integer programming), [30] (mathematical programming, game theory and
agent-based models), [5] (simulation, various forms of integer programming,
various forms of dynamic programming, equilibrium models, evolutionary al-
gorithms), and [24] (stochastic programming models in short term power gen-
eration scheduling and bidding). Similar problems in economic dispatch are
solved in [2] by means of a oblivious routing economic dispatch algorithm.

How does our work fit into this model landscape? It has the following
characteristics:

– It is a convex risk averse optimization problem.
– It is solved for a generic utility function.
– It utilizes stochastic dynamic programming and the Bellman recursion.
– It is implemented on fully recombining tree avoiding the curse of dimen-

sionality.
– It solves the scheduling and the bidding problem simultaneously.
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1.2 Overview of the Nomenclature and of the Document Structure

T : Final time horizon p2q

t “ 0, 1, 2, 3, . . . , T : Time points p2q

pΩ,A, pAtqt“0,...T , P q : Filtered probability space p2q

E0r¨s : Statistical expectation p2q

Etr¨s : Statistical conditional expectation at time t p3.3q

Z0, Z1, Z2, Z3, . . . , ZT : Risk drivers p2q

K : Dimension of risk drivers p2q

X0, X1, X2, X3, . . . , XT : External states (or risk factors) p2q

N : Dimension of external states p2q

u0, u1, u2, u3, . . . , uT´1 : Control rules p2q

Y0, Y1, Y2, Y3, . . . , YT : Internal states (functions of external states and control rules) p2q

M : Dimension of internal states p2q

U : Utility function p2q

Vt : Portfolio value at time t p2q

C : Set of linear equality and inequality constraints p2q

Cineq : Set of linear inequality constraints p3q

pEtqt Ă RLˆM , pFtqt Ă RLˆN , petqt Ă RLˆ1 : Processes utilized to express linear inequality constraints p3q

Ceq : Set of linear equality constraints p3q

pAtqt Ă RMˆM , pBtqt Ă RMˆN , pbtqt Ă RMˆ1 : Processes utilized to express linear equality constraints p3q

pβtqt“1,...T ą 0 : Positive deterministic weights p2q

µ : Trade off parameter between expected utility and penalty function induced by the restrictions p3q

1 : Vector of ones p3.1q

Φ : Lagrange principal function p3.2q

yět :“ pysqsět, uět :“ pusqsět : Internal states and control rules from time t till the end p3.3q

ht : Quadratic Taylor polynomial of objective function at time t p3.3q

qt : Gradient of ht with respect to internal states yět p3.3q

rt : Gradient of ht with respect to control rules uět p3.3q

Qt, Pt, Rt : Submatrices of the Hessian of ht with respect to internal states and control rules p3.3q

Jt : Value function at time t for the Bellman recursion of the optimization problem p3.4q

qt : Gradient of ht with respect to internal states yt p3.4q

rt : Gradient of ht with respect to control rules ut p3.4q

Qt, P t, Rt : Submatrices of the Hessian of ht with respect to internal states yt and control rules ut p3.4q

pWtqt, pαtqt, pwtqt, pratqt, prrtqt, p rRtqt, prqtq,p rQtqt, p rPtqt : Adapted processes utilized in the inductive assumption for pJtqt p3.4q

u˚
t : Optimal control rule p3.5q

pαtqt, pwtqt, pWtqt : Adapted processes utilized in the Riccati equation p3.5q

L : Lattice p4q

Lt : Time t layer of lattice p4q

k : Number of branches for every node in the lattice p4q

ntpiq : Node in lattice layer at time t p4q

Childrenpntpiqq : Children of node ntpiq p4q

Parentspnspjqq : Parents of node nspjq p4q

Nt : Number of nodes in lattice layer at time t p4q

NT : Number of nodes in lattice p4q

z1t , . . . , z
Nt
t : Simulated values for the risk drivers on the lattice layer at time t p4q

ϵt : Contraction factor for ∆ut which guarantees feasibility in every Newton step p4q

Bpntq : Atom associated to the node nt of the σ algebra At for the time t lattice layer p4q

St : Spot electricity price p5q

GPBid
t ,GPAsk

t : Electricity bid and ask prices in the day ahead market bidding p5q

ΞBid
t , ΞAsk

t : Electricity bid and ask volumes in the day ahead market bidding p5q

ΞSpot, Sell
t , ΞSpot, Buy

t : Electricity sell and buy volumes in the day ahead market p5q

B : Number of basins p5q

gpAsk
t : Stochastic water value p5q

Ft : Forward price p5q

Ψt : Energy volume for the forward market p5q

E0rrs : Reward measure p5q

E0rρs : Risk measure p5q

w : Risk aversion p5q
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Section 6: Numerical Examples

Section 2: intertemporal Discrete-Time Expected

Utility Optimization Problem Set Up

Section 4: Implementation

o Comparison of Discretization Methods

o Lattice Construction

o Filling of the Lattice with State Realizations

o Application of Optimization Algorithm

Section 5: Water Values and Intraday Electricity Trading

o Optimal Electricity Trading Formulated via Section 2

o Definition of Water Values via Shadow Pricing

Section 3: Solution Method

o Interior Point Formulation

o Method of Lagrange Multipliers

o Newton’s Scheme

o Dynamic Programming Solution

o Optimal Control Rules

o Algorithm

Fig. 1 Document Structure

2 Discrete Multiperiod Portfolio Expected Utility Maximization

The purpose of this section is to show how the intertemporal expected util-
ity framework can be used to solve optimization problems for a portfolio of
financial assets (Example 1) or for the power production of an hydro infrastruc-
ture (Example 2). We first introduce the necessary notation for the discrete
time setting given a final time horizon T , time points t “ 0, 1, 2, 3, . . . , T and
a filtered probability space pΩ,A, pAtqt“0,...T , P q with statistical expectation
E0r¨s:

– Risk drivers:
Z0, Z1, Z2, Z3, . . . , ZT , where Zt : Ω Ñ RK is a t-measurable random
variable. The random variables pZtqt are assumed to be i.i.d.

– External states (or risk factors):
X0, X1, X2, X3, . . . , XT , where Xt : Ω Ñ RM is a t-measurable random
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variable. We assume that there exists deterministic functions pftqt“1,...T

such that Xt “ ftpXt´1, Ztq.
– Ex1: Asset values for the different asset classes.
– Ex2: Hourly electricity price for the intraday market, hourly water

inflows for the basins.
– Control rules:

u0, u1, u2, u3, . . . , uT´1, where ut : Ω Ñ RN is a t-measurable random
variable.
– Ex1: Holdings in the different asset classes.
– Ex2: Water processed by the different turbines and pumps of the hydro

infrastructure.
– Internal states (functions of external states and control rules):

Y0, Y1, Y2, Y3, . . . , YT , where Yt : Ω Ñ RM is a t-measurable random vari-
able. We assume that there exists deterministic functions pgtqt“1,...T such
that Yt “ gtpYt´1, ut´1, Xtq.

– Ex1: Wealth level for the portfolio.
– Ex2: Basin levels of the hydro infrastructure.

– Utility function:
a concave, monotone increasing differentiable function U : R ãÑ R

– Portfolio value:
Vt “ VtpXt, ut´1q. If we choose as risk factors Xt the values of base assets,

then N “ M and VtpXt, ut´1q “ u:
t´1Xt.

– Ex1: Total portfolio wealth level at time t.
– Ex2: Wealth generated by the intraday trading during the period rt ´

1, ts.

– Constraints C:
linear equality and inequality constraints in the rules ut.

– Ex1: Self-financing constraint VtpXt, ut´1q “ VtpXt, utq for all t “

0, . . . , T ´ 1 (equality constraint), and lower and upper bounds in the
portfolio holdings (inequality constraints).

– Ex2: Basin level equations (equality constraints), and lower and up-
per bounds for water turbined or pumped as well as for basin levels
(inequality constraints).

– Optimization problem:
given positive deterministic weights pβtqt“1,...T ą 0 modelling the relative
importance assigned to the measurements in the different subintervals, the
optimization problem pP q writes

max
uPC

E0

«

T
ÿ

t“1

βtUpVtpXt, ut´1qq

ff

. (1)

Remark 2.1 The role of internal states is to simplify the representation of
constraints and the recursion formulae, but we could formulate and solve the
optimization problem without introducing them. However, they typically are
quantities of interest for the problem at hand.
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Remark 2.2 The structure of the objective function in the optimization (1)
allows for an application of Bellman’s equation leading to a decomposition in
one step equations with closed or semiclosed solution. This would not work for
a generic utility function for the maximization of the expected utility of the
cumulated values over the different time subperiods.

3 Solution Method

To solve the optimization problem pP q formulated in (1) we modify the model
of Blomvall and Lindberg described in [9], [10], [11], [12] and applied in [13]
by adapting it to our needs. The constraint set C can be decomposed as union
of inequality and equality constraints

C “ Cineq Y Ceq, (2)

where we have set

– Cineq: inequality constraints. In our case they are linear inequalities, which
reads

Cineq :“ tEtYt ` Ftut ´ et ě 0 | t “ 0, . . . , T ´ 1u. (3)

Thereby, pEtqt“0,...,T´1 Ă RLˆM , pFtqt“0,...,T´1 Ă RLˆN and
petqt“0,...,T´1 Ă RLˆ1 are processes adapted to the filtration.

– Ceq: equality constraints, like the selffinancing condition in Ex 1 or the
basin level equation in Ex 2 given by the stochastic dynamics, which reads

Ceq :“ tYt`1 “ gt`1pYt, ut, Xt`1q | t “ 0, . . . , T ´ 1u. (4)

for appropriate choices of the internal states pYtqt and of the functions pgtqt.
The latter typically incorporate the dynamics. Note that u´1 denotes the
deterministic rule in force just before the rule at time 0 is enforced.

The problem can (but must not) be further simplified by choosing a linear
valuation function and a linear dynamics, that is gtpy, u, xq :“ At`1y`Bt`1u`

bt`1pxq and thus

Ceq “ tYt`1 “ At`1Yt ` Bt`1ut ` bt`1 | t “ 0, . . . , T ´ 1u, (5)

where pAtqt“1,...,T Ă RMˆM , pBtqt“1,...,T Ă RMˆN and pbtqt“1,...,T Ă RMˆ1

are processes adapted to the filtration.

Subsequently, the optimization problem undergoes the following transforma-
tions:

1. (P ): Original problem (1) with a generic concave utility function u and
inequality constraints among others.
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2. (Pµ): Problem with objective function defined as trade-off between the ex-
pected utility and the logarithms of the functions defining the inequality
constraints u. The trade-off parameter is denoted by µ ą 0. The optimiza-
tion problem has equality constraints only.

3. (P̄µ): Approximation of problem Pµ by substituting the objective function
with its quadratic Taylor polynomial.

More exactly, we mean that:

– We write out the expression for the objective function

E0

«

T
ÿ

t“1

βtUpVtpXt, ut´1qq

ff

.

– We extend the objective function by packaging in it all the restrictions C
utilizing the logarithmic barrier approach, which approximates the con-
straints. Thereby, the approximate solution for pP q is the solution for pPµq

for µ ą 0 small enough.
– We approximate the extended objective function by its quadratic Taylor

polynomial and the solution of pPµq is given by a Newton’s scheme sequence
of solutions of problems of the type pP̄µq.

– We find optimal rules for the approximated problem (approximated con-
straints and approximated objective function).

– There are two approximations schemes, one for the constraints and one for
the extended objective function. We choose a diagonal sequence to obtain
a sequence of rules converging towards the optimal rules of the original
problem pP q.

Remark 3.1 The differences between this approach and the Blomvall-Lindberg
original solution are both formal and substantial:

– Blomvall-Lindberg formulate directly the optimization problem on the nodes
of a non recombining tree. We formulate it for a general filtration. This
is a rather a formal distinction, because the formulae are essentially the
same. But it has the advantage of being independent of the way we model
the underlying external risk factors. To this aim, conditional expectations
are introduced.

– The objective function in the Blomvall-Lindberg approach at time t is a
function of the risk factors realizations at time t. The objective function
in our approach at time t is the expectation at time t of the discounted
sums of Blomvall-Lindberg’s objective functions at times s “ t ` 1, . . . , T .
In other words, in the case of the hydro optimization of Ex 2, our model
optimizes at every stage t the expected profit till the final horizon T while
Blomvall-Lindberg’s model optimizes at every stage t the expected profit for
the subperiod rt, t ` 1s.

The remainder of this chapter implements the transformation steps described
above and culminates in the optimal control rules (26) for the problem pP̄µq.
Readers not interested in the mathematical details can skip directly to sub-
section 3.6.
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3.1 Interior Point Formulation

The problem pPµq is an approximation of problem pP q by means of the loga-
rithmic approach, and reads as

max
uPCeq

E0

«

T
ÿ

t“1

βtUpVtpXt, ut´1qq ` µ1:
T´1
ÿ

t“0

logpEtYt ` Ftut ´ etq

ff

, (6)

where 1 :“ r1, . . . , 1s: P RLˆ1 and µ ą 0 is a real parameter.

As long as we move inside the interior of the feasible set EtYt`Ftut´et ą 0
for all t “ 0, . . . , T ´ 1, the logarithm function is well defined. As soon as we
approach to a boundary point, the logarithmic penalty function tends to ´8.
This means that, if the maximum is attained, it must be for an interior point,
which depends on the parameter µ. For µ Ñ 0` this interior point converges
to a point in the feasible set (on the boundary or in the interior), which is the
candidate for the solution to the original problem (1).

If we choose a linear dynamic and a convex utility function, then, by convex
optimization theory ([35],[39] and [34]), the problem

max
Yt`1“At`1Yt`Bt`1ut`bt`1

t“0,1,...,T´1

E0

«

T
ÿ

t“1

βtUpVtpXt, ut´1qq`

`µ1:
T´1
ÿ

t“0

logpEtYt ` Ftut ´ etq

ff

,

(7)

has always a unique solution. As a matter of fact a convex function over
a convex closed domain has always a global minimum. More exactly, if the
sample space Ω is finite, then existence and uniqueness of the solution directly
follows from Kuhn-Tucker’s Theorem, see f.i. Theorem 5.6 in [35]. The general
case is proved in Corollary 3.5.1 of [7].

3.2 Method of Lagrange Multipliers

The problem pPµq in (7) has only linear restrictions, and can therefore be
solved by a closed expression by utilizing the method of Lagrange multipliers.
The Lagrange principal function reads for the Lagrange multiplier λ “ pλtpωqq

Φ pu;λq :“E0

«

T
ÿ

t“1

βtUpVtpXt, ut´1qq ` µ1:
T´1
ÿ

t“0

logpEtYt ` Ftut ´ etq`

´

T
ÿ

t“1

λt pYt`1 ´ At`1Yt ´ Bt`1ut ´ bt`1qq

ff

,

(8)
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and the corresponding Lagrange equations in the unknown optimal process
u “ putpωqqt“0,...,T´1 and unknown optimal Lagrange multiplier λ “ pλtpωqq

$

&

%

BΦ
But

pu;λq “ 0 pt “ 0, . . . , T ´ 1q

BΦ
Bλ pu;λq “ 0.

(9)

3.3 Newton’s Scheme

The second equation in (9) is equivalent to the dynamics (4) and the first
equation of (9) can be solved pathwise in ω P Ω for all processes satisfying
such dynamics as a restriction. If we want to find the zeros of the gradient of
the objective function by means of Newton’s method, then we have to consider
its quadratic Taylor polynomial

htpyět, uětq :“ Et

«

T
ÿ

s“t`1

βsUpVspxs, us´1qq`

`µ1:
T´1
ÿ

s“t

logpEtyt ` Ftut ´ etq

ff

,

(10)

and to express its gradient with respect to the variables yět :“ pysqsět and
uět :“ pusqsět we introduce

q:
t pyět, uětq :“ ∇yět

htpy, uq “ Et

«

T
ÿ

s“t

βs∇xět
UpVspxs, us´1qq`

`µ
T´1
ÿ

t“s

ˆ

1

Etyt ` Ftut ´ et

˙:

Et

ff

,

r:
t pyět, uětq :“ ∇uět

htpy, uq “Et

«

T
ÿ

s“t`1

βs∇uět
UpVspxs, us´1qq`

`µ
T´1
ÿ

s“t

ˆ

1

Etyt ` Ftut ´ et

˙:

Ft

ff

,

(11)
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where the vector divisions are made componentwise. The Hessian of the ob-
jective function reads

Qtpyět, uětq :“ ∇2
yět

htpy, uq “ Et

«

T
ÿ

s“t`1

βs∇2
xět

UpVspxs, us´1qq`

´µ
T

ÿ

s“t`1

E:
t diag

ˆ

1

Etyt ` Ftut ´ et

˙2

Et

ff

,

Ptpyět, uětq :“ ∇uět
∇yět

htpy, uq “

“ Et

«

T
ÿ

s“t`1

βs∇uět
∇yět

UpVspxs, us´1qq`

´ µ
T´1
ÿ

s“t

E:
t diag

ˆ

1

Etyt ` Ftut ´ et

˙2

Ft

ff

,

Rtpyět, uětq :“ ∇2
uět

htpy, uq “ Et

«

T
ÿ

s“t`1

βs∇2
uět

UpVspxs, us´1qq`

´µ
T´1
ÿ

s“t

F :
t diag

ˆ

1

Etyt ` Ftut ´ et

˙2

Ft

ff

.

(12)

The second order approximation of hpy, uq can be described as a function of
the increment in the variables

∆htpyět, uětq :“htpyět ` ∆yět, uět ` ∆uětq ´ htpyět, uětq “

“ q:
t pyět, uětq∆yět `

1

2
∆y:

ětQtpyět, uětq∆yět`

` r:
t pyět, uětq∆uět `

1

2
∆u:

ětRtpyět, uětq∆uět`

` ∆y:
ětPtpyět, uětq∆uět,

(13)

and the matrix
„

Qtpy, uq Ptpy, uq

P :
t py, uq Rtpy, uq

ȷ

(14)

is positive definite for all t, y, u and ω, an so are the matrices Qtpy, uq and
Rtpy, uq. The second order expansion of pPµq in (6) denoted as pP̄µq is the
following quadratic optimization on Ω

max
u“putqt“0,...,T´1

∆yt`1“At`1∆yt`Bt`1∆ut

∆h0py, uq, (15)
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that is

max
u“putqt“0,...,T´1

∆yt`1“At`1∆yt`Bt`1∆ut

ˆ

q:
0∆y `

1

2
∆y:Q0∆y ` r:

0∆u `
1

2
∆u:R0∆u`

`
1

2
∆y:P0∆u

˙

.

(16)

3.4 Dynamic Programming Solution

We solve pP̄µq by dynamic programming and, to this end, we introduce value
functions

Jtp∆yětq :“ max
u“pusqs“t,...,T´1

∆ys`1“As`1∆xs`Bs`1us

s“t,...,T´1

Et

„

q:
t∆yět `

1

2
∆yět

:Qt∆yět`

`r:
t∆uět `

1

2
∆uět

:Rt∆uět `
1

2
∆yět

:Pt∆uět

ȷ

,

(17)

which allow to formulate Bellman’s backward recursion as

Jtp∆yětq “ max
ut

∆yt`1“At`1∆yt`Bt`1ut

"

q:
t∆yt `

1

2
∆yt

:Qt∆yt ` r:
t∆ut`

`
1

2
∆ut

:Rt∆ut `
1

2
∆yt

:P t∆ut ` Et rJt`1p∆yět`1qs

*

,

(18)
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where

q:
tpyt, utq :“ ∇yt

htpy, uq “ Et rβt`1∇yt
UpVt`1pxt`1, utqq`

`µ

ˆ

1

Etyt ` Ftut ´ et

˙:

Et

ff

,

r:
tpyt, utq :“ ∇ut

htpy, uq “ Et rβt`1∇ut
UpVt`1pxt`1, utqq`

`µ

ˆ

1

Etyt ` Ftut ´ et

˙:

Ft

ff

,

Qtpyt, utq :“ ∇2
yt
htpy, uq “ Et

“

βt`1∇2
yt
UpVt`1pxt`1, utqqq

´µE:
t diag

ˆ

1

Etyt ` Ftut ´ et

˙2

Et

ff

,

P tpyt, utq :“ ∇ut
∇yt

htpy, uq “ Et rβt`1∇ut
∇xt

UpVt`1pxt`1, utqqq `

´µE:
t diag

ˆ

1

Etyt ` Ftut ´ et

˙2

Ft

ff

,

Rtpyt, utq :“ ∇2
ut
htpy, uq “ Et

“

βt∇2
ut
UpVtpxt, utqqq `

´µF :
s diag

ˆ

1

Etyt ` Ftut ´ et

˙2

Ft

ff

,

(19)

assuming that the matrices Rt and Qt have the form

Rt “

„

Rt 0
0 Rt`1

ȷ

Qt “

„

Qt 0
0 Qt`1

ȷ

. (20)

This is equivalent with the
Inductive Assumption: Jt is a quadratic function in ∆yt:

Jtp∆yětq “ Jtp∆ytq “ αt ` w:
t∆yt `

1

2
∆yt

:Wt∆yt, (21)

where pWtqt“0,...,T´1 Ă RMˆM is an adapted, definite matrix valued process
and pαtqt“0,...,T´1 Ă R, pwtqt“0,...,T´1 Ă RMˆ1 are adapted processes.
Using the dynamics ∆yt`1 “ At`1∆yt ` Bt`1ut we can rewrite the value
function (21) as

Jt`1p∆yět`1q “αt`1 ` w:
t`1At`1∆yt `

1

2
∆yt

:A:
t`1Wt`1At`1∆yt`

`
1

2
∆ut

:B:
t`1Wt`1Bt`1∆ut`

` pw:
t`1 ` ∆y:

tA
:
t`1Wt`1qBt`1∆ut.

(22)
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With the definitions

rat :“
T

ÿ

s“t`1

αs rrt :“ rt `

T
ÿ

s“t`1

B:
sw

:
s,

rRt :“ Rt `

T
ÿ

s“t`1

B:
sWsBs rqt :“ qt `

T
ÿ

s“t`1

A:
sws,

rQt :“ Qt `

T
ÿ

s“t`1

A:
sWsAs

rPt :“ P t `

T
ÿ

s“t`1

A:
sWsBs,

(23)

expression(21) for the value function becomes

Jtp∆ytq “ max
∆ut

„

rat ` rq:
t∆yt `

1

2
∆yt

:
rQt∆yt `

´

rr:
t ` ∆yt

:
rPt

¯

∆ut`

`
1

2
∆ut

:
rRt∆ut

ȷ

.

(24)

3.5 Optimal Control Rules

The optimum can be found by differentiating the expression maximized in (24)
with respect to ∆ut:

0 “ ∇∆ut

„

rat ` rq:
t∆yt `

1

2
∆yt

:
rQt∆yt `

´

rr:
t ` ∆yt

:
rPt

¯

∆ut`

`
1

2
∆ut

:
rRt∆ut

ȷ

“ rr:
t ` ∆yt

:
rPt ` ∆ut

:
rRt,

(25)

which means, being Rt symmetric,

∆u˚
t “ ´ rR´1

t prrt ` rP :
t ∆ytq. (26)

Inserting this optimal ∆u˚
t in (24), the value function becomes

Jtp∆xtq “ αt ` w:
t∆xt `

1

2
∆xt

:Wt∆xt, (27)

where

αt :“ rat ´
1

2
rr:
t

rR´1
t rrt,

wt :“ rqt ´ rPt
rR´1
t rrt,

Wt :“ rQt ´ rPt
rR´1
t

rP :
t ,

(28)

The expression for Wt in the third equation of (28) together with (23) is known
as the discrete time Riccati equation in control theory.

Remark 3.2 If Wt is positive definite, if Ws is positive semidefinite for all
s “ t ` 1, . . . , T .



Hydroassets Portfolio Management 17

Fig. 2 Converging Sequence of Optimal Rules (Picture from [10])

3.6 The Algorithm

Newton’s step determination problem pP̄µq in (15) for the barrier subprob-
lem pPµq is solved by (26), where matrices, vectors and constants are defined
recursively by (23) and (28).
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4 Implementation

The purpose of this section is to show that the solution algorithm shown
in Figure 2 can be efficiently implemented by means of time and space dis-
cretization on a lattice, i.e. a particular kind of tree, where each node will host
a realization of risk drivers, risk factors and optimal rules, comparing this
modelling choice with other possible approaches. When we want to implement
discrete time dynamic stochastic programming models, we have basically four
possibilities:

1. The (semi-)closed formula solution:
In some (seldom) cases one can find a set of (semi-)closed formulae repre-
senting the optimal control rules as a functional of conditional expectations
of functions of risk factors. The optimal rules can be therefore explicitly
determined given a probability model for the risk factors. But, in most of
the cases, the computation can be only numerical, and we therefore have
to switch to

2. The graph solution:
There are several possibilities to choose a graph, and for all the nodes of
the graph will have to correspond to the atoms of the sigma algebras of
the filtration pAtqt“0,...T :

(a) The full non recombining tree:
This is the most generic solution, which has the disadvantage of being
implementable in its fully fledged version on high performing computer
only, because the number of nodes in a time layer increases exponen-
tially with time. The alternative is to reduce drastically the number of
branches from every node when time increases. To do so, one has to
develop criteria to generate representative branches. Those criteria are
mostly heuristic.

(b) The grid:
Parallel paths for simulated external states are stored in the nodes. If
we have a (semi-) closed formula for the optimal rules, these can be
computed on every node. If not, then the optimal rule is computed
on the node by solving the Bellman’s backward optimization step by
simulating jumps from that node to all nodes in the following time layer.
This method is computationally effective and is therefore widespread.

(c) The lattice:
We see a lattice with many branches as a totally recombining tree.
Therefore, being the number of nodes in a time layer a linear func-
tion of time, the full fledged model is implementable even on standard
computers. Of course, the main challenge is to fill the nodes with state
realizations in such a way that these are compatible with their dynamics
on one hand, and with the full recombining property of the graph, on
the other. To our knowledge this method is new, and is a generalization
of binomial and trinomial trees’ construction utilized for option pricing.
This is the way we choose here. It has the advantage of being extensible
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to the case where no (semi-)closed solution on the nodes exists, and is
thus a viable implementation method for a numerical solution of Bell-
man’s backward recursion. In contrast to the grid method one does not
have to resimulate the jumps from one node into its children everytime
the algorithm performs an approximation step.

The algorithm for the lattice construction, the simulation of states and the
approximation of optimal control rules is structured into the following steps:

Step 1
We construct the lattice with k branches for every node and final horizon
T . Let es :“ p0, . . . , 1, 0, . . . , 0q P Rk is the sth standard basis vector. For
t “ 0, . . . , T we set

L :“
T

ď

t“0

Lt : lattice,

Lt :“

#

pt, iq P t0 . . . , T u ˆ Nk
0

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

s“1

is “ t

+

: lattice time t layer,

ntpiq “ pt, iq P Lt : node layer at time t

Childrenpntpiqq :“ tpt ` 1, i ` esq | s “ 1, . . . , k u,

Parentspnspjqq :“ tps ´ 1, iq |nspjq P Childrenpps ´ 1, iqqu,

Parentspn0p0qq :“ tu,

(29)

where the number of nodes at time t is

Nt :“ |Lt| “ pk ´ 1qt ` 1 “ Optq, (30)

and the total number of nodes is

NT :“ |L| “

T
ÿ

t“0

Nt “

ˆ

pk ´ 1q
T

2
` 1

˙

pT ` 1q “ OpT 2q. (31)

Geometrically speaking the (infinite) lattice consists in the points in the k-
dimensional space with non negative integer coordinates. The time t layer
of the lattice consists in the points laying on the hyperplane with orthog-
onal vector p1, 1, . . . , 1q passing through the point pk, 0, . . . , 0q.
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Step 2
We introduce the probability space pΩ,P,Aq, where the cartesian product

Ω :“ XT
t“0 Children

t
pn0p0qq, (32)

corresponds to all possibilities of traveling across the lattice from left to
right as times goes by,

A :“ PpΩq (33)

is the sigma algebra of all measurable events, and, the sigma algebra gen-
erated by the lattice nodes in the time layer t, (that is having the nodes as
basis) leads to a filtration pAtqt“0,...,T , where

At :“ σ pLtq . (34)

The probability of every node event is recursively defined as:

P rnts :“
ÿ

nt´1P Parentspntq

P rnt´1s

k

P rn0s :“ 1,

(35)

and that for the elementary event ω “ pn0p0q, n1pi1q, . . . , nT´1piT´1q, nT piT qq

is

P rωs :“
1

kT
, (36)

Step 3
By means of simulations we fill the lattice nodes with realizations of the
risk drivers Z “ pZtqt“1,...,T . Since these are multivariate i.i.d. over time,
these simulations are straightforward: for every t “ 1, . . . , T

1. simulate Nt values z
1
t , . . . , z

Nt
t values with all the same probability.

2. set Ztpn
k
t q :“ zkt for all nodes in Lt, the layer at time t.

These are simulated values for the risk drivers on the nodes.

Step 4
We compute the corresponding realizations of the external states (risk fac-
tors) X “ pXtqt“1,...,T , by translating the dynamics at elementary event
level Xtpωq :“ ftpXt´1pωq, Ztpωqq to the nodes as

Xt`1pnq :“
ÿ

nPParentspn̄q

ppnq
ř

nPparentspn̄q ppnq
ft`1pXtpnq, Zt`1pnqq. (37)

Step 5
We pick a µ “ µStart ą 0 and a positive sequence pµjqjě0 such that
µ0 “ µStart and µj Ñ 0` pj Ñ `8q.
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Step 6
We pick initial values for the control variables ut and the internal states yt.

Step 7
For the value µ we compute all the realization of the processes in (23) and
(28) by inserting the realizations of all control rules and both internal and
external states.

Step 8
We compute ∆u˚

t and check if it is approximatively very small. If not then,
for ∆ytp∆u˚

t q and do the increase step

ut ÞÑ ut ` ∆u˚
t

yt ÞÑ yt ` ∆ytp∆u˚
t q,

(38)

update µ according to the sequence in (5) and jump to point p7q. If ∆u˚
t

is too big, so that ut ` ∆u˚
t and yt ` ∆ytp∆u˚

t q lie outside the feasible
set, then ∆u˚

t has to be substituted by ϵt∆u˚
t for an appropriate ϵt Ps0, 1r

small enough. Typically, ϵt depends on the node where it is computed.

Remark 4.1 There are different possibilities to choose ϵt to guarantee feasi-
bility. Blomvall and Lindberg propose to choose the same ϵt for all t and all
nodes by looking at the largest ϵ such that ut ` ϵ∆u˚

t is still feasible for all
nodes and all times, and then set ϵ :“ minpξϵ, 1q for a ξ Ps0, 1r. We, instead,
proceed layerwise. Assuming that up to time layer t´ 1 the appropriate choice
has already being made, in order to find a node dependent ϵt for all nodes in
the time layer t we look for a node dependent ϵt such that ut ` ϵt∆u˚

t and
us are feasible for all s “ t ` 1, . . . , T ´ 1. This can be efficiently achieved
by a linear program, where the objective function is not really relevant. For
a fixed ξ Ps0, 1r we then set ϵt :“ minpξϵt, 1q for all nodes in the layer, and
repeat the procedure for the next time step. This refined procedure guarantees
a faster convergence then Blomvall and Lindberg’s when the maximizer lies on
the boundary of the feasible set.

Remark 4.2 Why does the implementation on the lattice work? When im-
plementing the dynamics, there is a fundamental difference between the non
recombining tree and the lattice. The value of a process on a node depends on
the values of the process on the parent nodes. In the non recombining tree case
a node has only one parent, while in the lattice case a node can have several
parents. But in both cases the process values on the nodes are expressed by
conditional expectations. More exactly, we have the situation summarized in
Table 1.
An internal state variable defined as Yt`1 “ gt`1pYt, ut, Xt`1q for determinis-
tic functions gt for t “ 1, . . . , T , typically utilized to define constraints. On the
nodes it is represented by Ytpnq “ ErYt|Bpnqs, and at elementary event level it
has the dynamics

Yt`1pωq “ gt`1pYtpωq, utpωq, Xt`1pωqq, (39)
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Symbol Description Mapped to

Ω Space of all All possibilities of travelling
elementary events through the lattice from left to right

nt Node An atom Bpntq of the σ-algebra
for the time layer t containing that node

Y pnq Value on the node n Y pnq “ ErY |Bpnqs ‰ Y pωq for ω P n
of any random variable Y

Xtpnq Value on the node n Xtpnq “ ErXt|Bpnqs

of the external state Xt

Table 1 Lattice Variables

which becomes the external state variable dynamics at node level

Yt`1pnq :“ ErYt`1|Bpn̄qs “
ÿ

nPParentspn̄q

ppnq

ppn̄q
ErYt`1|Bpnqs “

“
ÿ

nPParentspn̄q

ppnq
ř

nPparentspn̄q ppnq
gt`1pYtpnq, utpnq, Xt`1pnqq.

(40)

This holds for a generic dynamics of the internal states and hence for the
implemented linear dynamics gtpy, u, xq :“ Aty ` Btu ` btpxq.

5 Application: Water Values and Intraday Electricity Trading

The algorithm presented in the preceding section can be utilized to optimize
intraday electricity trading and model at the same time water values for hydro
assets.

Everyday by 11:00 CEST all the participants to the Swiss electricity spot
market have to submit to the energy exchange their aggregated bids for the
day-ahead both demand and supply. These, in the ”ask”-case specify for every
hour of the following day, from 00:00 till 24:00´ CEST the quantity of en-
ergy ΞAsk

t in MWh that one participant is willing to deliver during that hour
t “ 0, . . . , 23 if the electricity price St then is greater than or equal to a cer-
tain value GPAsk

t , called generation water value. In the ”bid”-case the electric
market participants specify for every hour of the following day the quantity
of energy ΞBid

t in MWh that the participant is willing to buy during that
hour t “ 0, . . . , 23 if the electricity price St then is smaller than or equal to
a certain value GPBid

t , called delivery water value. For every hour the energy
exchange aggregates all asks and all bids two monotone step functions, the
ask curve and the bid curve, representing the quantity of energy deliverable
(ask) or requested (bid) as a function of the price. The intersection point of
the two curves, i.e. the market clearing price at time t is the spot price which
will hold for the hour t of the next day. The 24 spot prices for the day-ahead
are published at around 11:15 CEST of the current day. Note that all of the
market participants are due to deliver or to buy the quantities of energy spec-
ified during the bidding process, but at the market clearing price determined
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Restriction Description

Hydro-infrastructure dynamics Equations connecting basin levels
and water inflows or outflows

Lower and upper bounds Limits for turbines and pumps
for the energy produced

Table 2 Restrictions

by the energy exchange for the day-ahead spot prices. However, the auction is
not physically binding, that is, energy must not necessarily be produced but
can be bought and delivered.

All the trades for the day ahead settled between 11:15 and 23:59 CEST,
where energy quantities ΞSpot, Sell

t and ΞSpot, Buy
t will be sold and respectively

bought at hour t of the next day at price St have to be taken into account by
the trading strategy of the intraday - given what the spot desk has done. Given
a certain utility function U : R ãÑ R, the relevant optimization problem at
23:59 CEST of the day before pt “ 0) reads for T :“ 24 and t0 :“ 1

max
putqt“t0,...,T´1

Restrictions

E0

«

T
ÿ

t“t0

βtUpVtpXt, ut´1qq

ff

(41)

and we make the choices needed to model the intraday-spot P&L in

– βt :“ 1 for all t,
– Xt is the intraday price holding during st ´ 1, ts,
– We assume that we have B basins, labelled with b “ 1, . . . , B. Basin b

is connected with Nb turbines/pumps. Turbine/pump jb “ 1, . . . , Nb pro-

cesses ub,jb
t energy at time t. The aggregated processed energy quantity at

time t for basin b is given by ub
t :“

řNb

jb“1 u
b,jb
t and for the whole hydro

infrastructure by ut :“
řB

b“1 u
b
t .

– VtpXt, ut´1q :“ ut´1Xt ` pΞSpot, Sell
t ´ ΞSpot, Buy

t qSt is the portfolio profit
and loss for both spot and intraday desks.

The optimization problem reads after these choices

max
putqt“t0,...,T´1

Restrictions

E0

«

T
ÿ

t“t0

Uput´1Xt ` pΞSpot, Sell
t ´ ΞSpot, Buy

t qStq

ff

. (42)

The restrictions are listed in Table 2 and explained in detail here below.

– The dynamics of the hydro infrastructure connecting:

– the basins’ volumes,
– the water inflows,
– the water outflows (turbined water, overspills).

The basin b level dynamics pY b
t qt“t0,...,T´1 is given for all t “ t0, . . . , T ´ 1

by
Y b
t`1pωq “ Y b

t pωq ´ ub
tpωq ` ibt`1pωq (43)
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where the process pibtqt“t0`1,...,T denotes the exogenous dynamics of basin
b inflow, and the level lower and upper constraints are given for all t “

t0, . . . , T ´ 1 by
Y b,Min ď EtrY

b
t`1s ď Y b,Max, (44)

for specified constants Y b,Max ą Y b,Min ą 0 which are (flexible) basin char-
acteristics. Remark, that, being the basins’ inflows uncertain, we cannot
express (44) as a predictable constraint for the water turbined or pumped,
but the consequences on the optimal solution are typically not material,
because the inflow volatility is small and we can assume for most applica-
tions that the inflow is deterministic and given as a table characterizing
the basins’ system.
In contrasts to financial applications we do not have here the self financing
constraint, because we can decide to turbine/pump or not in a certain
period independently of what has been done before or what will be done
afterwards, as long as the basin constraints are not binding.

– Lower and upper bounds for the energy produced by each turbine
every hour. Note that negative lower bounds account for pumping. These
bounds capture expected potential market liquidity restrictions in the day
ahead market and, for all t “ t0, . . . , T ´ 1, jb “ 1, . . . , Nb, b “ 1, . . . , B,
read as:

ub,jb,Min ď ub,jb
t pωq ď ub,jb,Max. (45)

Finally we make the following modeling choices for the intraday price stochas-
tic dynamics:

dXt “ XtrµtpXtqdt ` σtpXtqdWts, (46)

where µt : R Ñ R and σt : R Ñ RKˆq are functions with appropriate
regularity and pWtqtě0 is a K-dimensional standard Brownian motion with
respect to the statistical measure P . We assume that, for the short future
period, the intraday price dynamics is approximatively driftless, i.e. µt

.
“ 0.

We can assume one risk driver (i.e. K :“ 1) and a deterministic volatility, that
is

σtpXtpωqq ” σt P R. (47)

A better way to model intraday prices Xt is by modelling their spreads Zt :“
Xt ´ St to spot prices St

dZt “ ZtrνtpZtqdt ` ηtpZtqdWts, (48)

where νt : R Ñ R and ηt : R Ñ R with appropriate regularity. Again, the
spread dynamics is approximatively driftless, i.e. νt

.
“ 0 and we assume a

deterministic volatility, that is

ηtpZtpωqq ” ηt “

b

σ2
t ` χ2

t ` 2ρtσtχt P R, (49)

where χt denotes the instantaneous volatility for the log return of spot prices,
and ρt the correlation between log return of spot and intraday prices. Note
that to model intraday prices via their spread to spot one needs a spot price
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model first. In particular one has to model the expected spot prices in the day
ahead market.

Now we proceed to model water values for the hydro infrastructure de-
scribed so far. Before 11:00 CEST we can utilize (42) to determine the gen-
eration water values GPAsk

t for t “ 0, . . . , 23 for the day ahead for the hydro
infrastructure, whose bids we will aggregate in our bid for the energy exchange.
We exclude for the moment the spot desk whose trades for the day ahead have
not been established yet from (42). We define the water values as the shadow
prices associated to the basin levels dynamics (43), that is the value of the
Lagrangian multipliers associated to (43) for the optimal solution: they repre-
sents the instantaneous change per unit of constraints (43), in [MWh], in the
objective function value of (42), in [EUR], for a variation of the constraints,
i.e. the marginal utility of relaxing the basin level constraints. Therefore, after
having expressed the basin level dynamics (43) with the equivalent expression

ppωqrY b
t pωq ´ Y b

t´1pωq ` ub
t´1pωq ´ ibtpωqs “ 0, (50)

for all t “ 1, . . . , T and b “ 1, . . . B, we obtain a Lagrangian principal function
for the basin constraints

Φpu, λq :“
ÿ

ωPΩ
t“1,...,T
b“1,...,B

ppωq
“

Uput´1pωqXtpωqq ´ λb
tpωqpY b

t pωq ´ Y b
t´1pωq`

`ub
t´1pωq ´ ibtpωqq

‰

,

(51)

where u “ pub,jb
t pωqq is the energy corresponding to the water turbined or

pumped and λ “ pλb
tpωqq is the set of Lagrangian multipliers for the basin

levels. The optimal solution satisfies the equations
$

&

%

BΦpu,λq

Bub
t´1pωq

“ ppωqrXtpωqU 1put´1pωqXtpωqq ´ λb
tpωqs “ 0

BΦpu,λq

Bλb
tpωq

“ ´pY b
t`1pωq ´ Y b

t pωq ` ub
tpωq ´ ibtpωqq “ 0,

(52)

which leads to
λb
tpωq “ XtpωqU 1put´1pωqXtpωqq. (53)

The choice of the reformulation (50) takes the probability for the constraint to
be binding into account and leads to the meaningful definition for the shadow
price. Therefore, the stochastic water values are the same for all basins in the
hydro infrastructure and read

gpAsk
t pωq :“ XtpωqU 1pu˚

t´1pωqXtpωqq, (54)

where u˚ is the solution of the optimization problem (42) satisfying all con-
straints, both equality and inequality ones. We can use these stochastic water
values to define production water values for the bid, by taking as possible
definition the certainty equivalent of gpAsk

t :

GPAsk
t :“ U´1E0

“

UpgpAsk
t q

‰

. (55)
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Being the utility function U monotone increasing and concave the risk add
on U´1E0

“

UpgpAsk
t q

‰

´ E0

“

gpAsk
t

‰

is non negative and accounts for the risk
aversion.

If the initial basin levels are distant enough from the lower and upper
bounds, then we can assume that during the 24 hours of the optimization
interval the basin level constraints are not binding and thus

ub,jb,˚
t pωq ” ub,jb,Max. (56)

To our knowledge the expression “water value” was introduced for the first
time by Larsson and Stage in [29]. For a treatment of water values defined by
means of Lagrangian multipliers in a cost minimization problem see [16] and
an approach consisting in a time dependent shadow pricing of water in profit
maximization problem can be found in [27].

We can consider the joint intraday and spot desks in the determination of
water values. The joint optimization problem at a certain hour before 11:00
CEST (t=0) reads for T :“ 48 and t0 :“ 24

max
putqt“t0,...,T´1

pΞtqt“t0,...,T´1

Restrictions

E0

«

T
ÿ

t“t0

Uput´1Xt ` Ξt´1Stq

ff

, (57)

where pStqt“t0`1,...,T denote the (till 11:15 CEST) stochastic spot prices for
the day ahead, and pΞtqt“t0,T´1 the stochastic quantities of energy turbined
for the spot market. The restrictions are those of (42), where ut is substituted
by ut `Ξt. A computation analogous to the one for (54) leads to the following
stochastic and deterministic water values for all basins in the hydro power
plant:

gpAsk
t pωq :“

1

2
pXtpωq ` StpωqqU 1pu˚

t´1Xtpωq ` Ξ˚
t´1pωqStpωqq

GPAsk
t :“ U´1E0

“

UpgpAsk
t q

‰

,
(58)

where u˚, Ξ˚ is the solution of the optimization problem (57) satisfying all
contraints, both equality and inequality ones. As in the intraday case, if the
initial basin levels are distant enough from the lower and upper bounds, then
we can assume that during the 24 hours of the optimization interval the basin
level constraints are not binding and thus

ub,jb,˚
t pωq ` Ξb,jb,˚

t pωq ” ub,jb,Max, (59)

for all basins and turbines.

Remark 5.1 (Strategy Extension: Accounting for Hourly Forward Trades)
The models (42) and (57) can be utilized at any hour 0, . . . , 11 of the current
day to find stochastic and deterministic water values for the hours t1, . . . , 24u`

24 of the day ahead. Immediately after 11:15 CEST the day ahead spot prices
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are known. At any hour t11, . . . 48u it is possible to initiate forward transac-
tions with one hour in t0, . . . , 23u `24 as delivery period. This means, at time
t of the day ahead the (deterministic) energy quantity Ψt will be delivered for
the price Ft established when the transaction was closed. In order for the allo-
cation strategy to take this aspect into account, we choose T :“ 48 and t0 :“ 24
and modify the optimization model (42) to

max
putqt“t0,...,T´1

Restrictions

E0

«

T
ÿ

t“t0

Uput´1Xt ` Ψt´1Ftq

ff

, (60)

where pFtqt“t0,...,T denote the deterministic forward prices for the day ahead,
and pΨtqt“0,T´1 the deterministic quantities of energy turbined for the forward
market, established at a certain hour (t “ 0) of the day before. Of course
one can add pΨtqt“t0,...,T´1 to the optimization variables and run the at time
t12, . . . , 23u the algorithm solving (60) is to find both optimal rules for the
turbined quantities in the intraday market in the day ahead and deterministic
optimal forwards for the day ahead. From the equality

Ψ*
t “ Ψ In Force

t ` ∆ΨForward,*
t , (61)

one reads off the energy quantity ∆Ψ*
t to be hedged with the new forward trans-

action at time t0 with delivery period rt, t ` 1s. Model (60) can be further
extended to account for intraday, forward and spot transactions, as well.

Remark 5.2 The model proposed is intrinsically balance-energy neutral for
the balance group which the hydro infrastructure belongs to. A balance group
is a set of electricity meters measuring 15 min consumption and production
for net users. The transmission system operator makes sure that every balance
group is in an equilibrium state, by adding or subtracting electric energy in
such a way that the total sum of energies vanishes for every quarter of an
hour. Of course this comes at a certain expensive price with which the TSO
charges the balance group owner, which can be (but not necessarily is) the
hydro infrastructure owner as well. Thus, there is an incentive not to generate
or at least to reduce balance energy, in order to minimize costs.

Remark 5.3 If we assume that the utility function U : R ãÑ R can be written
as as

U “ r ´
w

2
ρ, (62)

where r is an increasing concave function, ρ is an increasing convex function
and w ą 0 the risk aversion parameter, then the optimization problems an-
alyzed so far can be rewritten in terms of risk-reward optimization, as it is
customary in financial portfolio theory.

Definition 1 (Risk and Reward) The functional

– Reward : L2pΩ,A, P q :Ñ R, R ÞÑ RewardpRq :“ E0rrpRqs is termed as
reward measure,
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Fig. 3 Intraday Prices

Quantity Value

Max 86.91 EUR/MWh
Min 0.56 EUR/MWh
Mean 37.40 EUR/MWh
Volatility 123.87 EUR/MWh
Volatility of hourly log returns 19.97%

Table 3 Intraday prices statistics

– Risk : L2pΩ,A, P q :Ñ R, R ÞÑ RiskpRq :“ E0rρpRqs is termed as risk
measure.

The optimization problem (42) reads then as a trade-off between total risk and
total reward

max
putqt“0,...,T´1

Restrictions

«

T
ÿ

t“1

βtRewardput´1Xtq

ff

´
w

2

«

T
ÿ

t“1

βtRiskput´1Xtq

ff

. (63)

6 A Numerical Example

We utilize the weighted averaged September 2015 data from Epex Spot Intra-
day Continuous for the CHMarket, downloaded from www.epexspot.com/en/market-
data/intradaycontinuous/intraday-table/2015-09-30/CH. These weighted av-
eraged intraday are plotted in Figure 3 and have descriptive statistics as in
Table 3.

We construct a simple hydro infrastructure as described in Table 4 and
test two possible intraday price dynamics as shown in Table 5.



Hydroassets Portfolio Management 29

Symbol Description Value

B Number of basins 1

Y Max Basin level maximal capacity 160GWh

Y Min Basin level minimal capacity 40GWh

uMax Turbine maximal capacity 500MW

uMin Turbine minimal capacity (no pumping) 0MW
Y0 Two possible basin starting level 80GWh and 41.5MWh
it (No) Inflow 0MWh

Table 4 Basin Parametrization

Model Description Parameters

Model 1 Driftless geometric Brownian motion as in (46) σt “ 19.97%
K “ 1

Model 2 Driftless spread to spot as in (48) ηt “ 4.12 EUR/MWh,
E0rSts “Sep 2015 means

Table 5 Intraday Dynamics Xt Models

Symbol Description Value

t Valuation time 0 (08:00)
X0 Intraday price starting value weighted average

price 08:00-09:00
t0 Initial time day ahead 24
T Final time day ahead 48
k Number of branches out of a leaf in the lattice 15

Table 6 Lattice Parametrization

Utility Function Definition Parameters

Linear Upvq :“ v
Exponential Upvq :“ 1 ´ expp´αvq α ą 0: Arrow-Pratt relative risk aversion
Logarithmic Upvq :“ logpvq

Hyperbolic Upvq :“ 1
γ
vγ γ Ps0, 1r

Table 7 Utility Functions

For every day in the sample we compute the optimal dynamic strategy
and the water values for the day ahead market using the weighted average
electricity price between 08:00 and 09:00 for the current day. More precisely,
we make the choices for the lattice specified in Table 6.

As expected, when the chosen starting level is 80GWh and thus the basin
level constraints can never become binding, the optimal strategy is the same
for all utility functions in Table 7 and reads

u˚
t pnq “ 500MWh for all times t and nodes n. (64)

To back test the results for the optimal strategy we apply it to the histori-
cal realizations of the intraday prices. More exactly, we express the discretized
optimal rules as function of the discretized intraday price of the preceding
period and compute the optimal rule with the realized price by linear inter-
polation. Then, for every day in the back test, we pass through the different
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Hours Linear Exp 0.0001 Exp 1.00 Log Hyp 0.50 Hyp 0.75 Hyp 0.95

1 34.511 0.001 0.000 0.002 0.260 2.987 21.141

2 33.132 0.001 0.000 0.002 0.255 2.901 20.345

3 32.208 0.001 0.000 0.002 0.252 2.842 19.810

4 31.480 0.001 0.000 0.002 0.249 2.794 19.386

5 31.080 0.001 0.000 0.002 0.248 2.767 19.150

6 31.357 0.001 0.000 0.002 0.249 2.786 19.312

7 31.717 0.001 0.000 0.002 0.250 2.809 19.521

8 31.971 0.001 0.000 0.002 0.251 2.825 19.668

9 32.595 0.001 0.000 0.002 0.253 2.865 20.031

10 33.561 0.001 0.000 0.002 0.257 2.927 20.591

11 34.623 0.001 0.000 0.002 0.261 2.995 21.207

12 35.491 0.001 0.000 0.002 0.264 3.049 21.709

13 36.518 0.001 0.000 0.002 0.267 3.113 22.300

14 37.597 0.001 0.000 0.002 0.271 3.180 22.922

15 38.669 0.001 0.000 0.002 0.275 3.246 23.540

16 39.923 0.001 0.000 0.002 0.279 3.324 24.262

17 41.240 0.001 0.000 0.002 0.284 3.405 25.020

18 42.732 0.001 0.000 0.002 0.289 3.496 25.876

19 44.441 0.000 0.000 0.002 0.294 3.598 26.854

20 46.013 0.000 0.000 0.002 0.299 3.692 27.752

21 47.760 0.000 0.000 0.002 0.305 3.795 28.748

22 49.799 0.000 0.000 0.002 0.311 3.912 29.906

23 51.839 0.000 0.000 0.002 0.317 4.029 31.060

24 54.035 0.000 0.000 0.002 0.323 4.151 32.297

Table 8 Water Values GPAsk
t for September 2, 2015, Driftless GBM dynamics, initial basin

level 80GWh

hours choosing the optimal quantity of water to be turbined according to the
dynamic control rule established before. The wealth generated for every hour
for all days is depicted in Table 10.

If we set the initial basin level constraint near to the lower bound, the
optimal strategy looks different: it becomes truly stochastic, tries to exploit
the price dynamics and, of course, depends on the the utility function chosen.
In the following toy examples with the parametrization specified by Table
11 we depict the realizations of prices, optimal turbined quantities and basin
level with the hyperbolic utility function with γ :“ 0.95, once with the driftless
geometric Brownian motion (Figures 4, 5, 6) and once with the spread to spot
dynamics (Figures 7, 8, 9). In both cases we notice that the lower basin level
bound becomes binding on some nodes on the final time layer t “ T , which
-due to the intertemporal nature of the optimization- has consequences on all
earlier turbined quantities for t “ 0, . . . , T ´ 1 in some nodes, which do not
reach their possible maximum even though there is still enough water in the
basin. This phenomenon is the current “price” of future constraints.

Remark 6.1 (Algorithm Parameter Choices) Following Blomvall and Lind-
berg we choose µj :“ µ0 expp´jq for mu0 :“ 10´12. Note that we take only one
Newton step before reducing µj. As soon as µj ă µCP :“ 10´16 we assume that
we have reached the close proximity to the so called central path and continue
with Newton steps up to a maximum of 100.
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Hours Linear Exp 0.0001 Exp 1.00 Log Hyp 0.50 Hyp 0.75 Hyp 0.95

1 25.729           0.001             0.000 0.002             0.225             2.403             16.007           

2 22.450           0.001             0.000 0.002             0.211             2.169             14.061           

3 22.671           0.001             0.000 0.002             0.212             2.186             14.196           

4 25.975           0.001             0.000 0.002             0.227             2.425             16.160           

5 34.464           0.001             0.000 0.002             0.262             3.002             21.149           

6 39.993           0.001             0.000 0.002             0.282             3.358             24.365           

7 41.709           0.001             0.000 0.002             0.288             3.466             25.358           

8 41.365           0.001             0.000 0.002             0.287             3.445             25.159           

9 40.437           0.001             0.000 0.002             0.284             3.386             24.622           

10 40.747           0.001             0.000 0.002             0.285             3.406             24.802           

11 39.535           0.001             0.000 0.002             0.281             3.329             24.100           

12 38.179           0.001             0.000 0.002             0.276             3.243             23.313           

13 36.985           0.001             0.000 0.002             0.271             3.166             22.619           

14 36.079           0.001             0.000 0.002             0.268             3.107             22.091           

15 35.939           0.001             0.000 0.002             0.268             3.098             22.010           

16 38.180           0.001             0.000 0.002             0.276             3.243             23.313           

17 41.036           0.001             0.000 0.002             0.286             3.424             24.968           

18 43.912           0.000             0.000 0.002             0.296             3.603             26.629           

19 43.347           0.000             0.000 0.002             0.294             3.568             26.303           

20 40.053           0.001             0.000 0.002             0.283             3.362             24.400           

21 38.274           0.001             0.000 0.002             0.276             3.249             23.368           

22 35.537           0.001             0.000 0.002             0.266             3.072             21.776           

23 31.893           0.001             0.000 0.002             0.252             2.832             19.646           

24 28.504           0.001             0.000 0.002             0.238             2.601             17.655           

Table 9 Water Values GPAsk
t for September 2, 2015, Spread to spot Dynamics, initial basin

level 80GWh

Remark 6.2 (Computational time of the Mathematica prototype) We
run the prototype on a Lenovo computer with Intel Core i7 ´ 3740QM CPU
@2.70 GHz. Typically, it takes between 4 and 6 minutes to compute the peda-
gogical examples of Figures 4, 5, 6 and 7, 8, 9 for the toy lattice parametriza-
tion specified by Table 11, and between 7 and 8 hours to compute the realistic
example for the lattice parametrization specified by Table 6. We observe that,
the more constraints are binding, the longer the computational time is. Since
our Mathematica code is not optimized, we are confident that a reimplemen-
tation in a faster language (e.g. C) and the utilization of better hardware can
drastically improve the performance.

7 Conclusion and Further Research

A stochastic multiperiod portfolio optimization problem in discrete time for
a generic utility function is discretized in the space dimensions by means of a
lattice. Inequality constraints are packed into the objective function by means
of a logarithmic penalty and the utility function is approximated by its second
order Taylor polynomial. A sequence of solutions of the approximated problem
converging to the optimal solution of the original problem is constructed and
coded in an algorithm in Mathematica. We implement the algorithm on a
lattice and apply it to intraday electricity trading. We obtain:
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– a novel, computationally efficient implementation of a risk averse intertem-
poral portfolio optimization for the intraday market, and

– deterministic water values of an hydro infrastructure for the day ahead
market bids as certainty equivalents of optimal stochastic Lagrangian mul-
tipliers corresponding to the basin level equations.

In a next work we will:

– compare the lattice implementation with the grid implementation, for both
the semi-closed formula and the generic case.

– investigate the specific case of a quadratic utility function which needs
no Newton-Scheme, being its second order Taylor polynomial the utility
function itself, and, in particular, the dynamic mean variance case, for
which in [19] a semi-closed solution was already provided.

– analyze the case of the maximization of the expected utility of the cumu-
lated values over the different time subperiods, when the utility function is
a trade-off between expectation and a dynamic risk measure, thus allowing
for Bellman’s recursive approach.

– construct an example where the pumping mode will occur in the optimal
solution.

– analyze the present costs of future constraints.
– utilize the algorithm to compute opportunity costs to price ancillary ser-

vices.
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[26] J. GARCÍA-GONZÁLEZ, A. MATEO and E. PARRILLA, Risk-Averse Profit-Based
Optimal Scheduling of a Hydro-Chain in the Day-Ahead Electricity Market, EJOR, Vol.
181, No. 3, (1354-1369), 2007.



34 Simone Farinelli, Luisa Tibiletti

[27] A. HORSLEY and A. WROBEL, Profit-Maximizing Operation and Valuation of Hy-
droelectric Plant: A new Solution to the Koopmans Problem, Journal of Economic Dy-
namics and Control, Vol. 31 No. 3, (938-970), March 2007.

[28] J. W. LABADIE, Optimal Operation of Multireservoir Systems: State-of-the-Art Re-
view, Journal of Water Resources Planning and Management, Vol. 130, No. 2, (93-111),
March 2004.

[29] Y. LARSSON and S. STAGE, Incremental Cost of Water Power, Trans AIEE, (361-
365), August 1961.

[30] G. LI, J. SHI and X. QU,Modeling Methods for GENCO Bidding Strategy Optimization
in the Liberalized Electricity Spot Market-A State of the Art Review, Energy, Vol. 36,
No. 8, (4686-4700), 2011.
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Symbol Description Value

t0 Initial time day ahead 0
T Final time day ahead 6
k Number of branches out of a leaf in the lattice 4

Table 11 Lattice Parametrization
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Fig. 4 Intraday Prices, Driftless GBM dynamics
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Fig. 5 Optimal Turbined Water, Driftless GBM dynamics, initial basin level 41.5MWh
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Fig. 6 Basin Level, Driftless GBM dynamics, initial basin level 41.5MWh
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Fig. 7 Intraday Prices, Spread To Spot dynamics
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Fig. 8 Optimal Turbined Water, Spread To Spot dynamics, initial basin level 41.5MWh



42 Simone Farinelli, Luisa Tibiletti

V
@
8
0
,
1
<
D
®
8
4
1
5
0
0
.
0
0
<

V
@
8
1
,
1
<
D
®
8
4
1
1
9
5
.
1
0
<

V
@
8
1
,
2
<
D
®
8
4
1
1
9
5
.
1
0
<

V
@
8
1
,
3
<
D
®
8
4
1
1
9
5
.
1
0
<

V
@
8
1
,
4
<
D
®
8
4
1
1
9
5
.
1
0
<

V
@
8
2
,
1
<
D
®
8
4
1
1
7
2
.
0
2
<

V
@
8
2
,
2
<
D
®
8
4
0
9
3
3
.
5
6
<

V
@
8
2
,
3
<
D
®
8
4
0
8
5
4
.
0
7
<

V
@
8
2
,
4
<
D
®
8
4
0
9
1
7
.
3
6
<

V
@
8
2
,
5
<
D
®
8
4
0
8
3
2
.
4
7
<

V
@
8
2
,
6
<
D
®
8
4
0
9
0
1
.
1
6
<

V
@
8
2
,
7
<
D
®
8
4
1
1
0
7
.
2
2
<

V
@
8
3
,
1
<
D
®
8
4
1
1
4
8
.
9
3
<

V
@
8
3
,
2
<
D
®
8
4
0
9
8
9
.
9
6
<

V
@
8
3
,
3
<
D
®
8
4
0
6
7
2
.
0
2
<

V
@
8
3
,
4
<
D
®
8
4
0
5
7
0
.
1
5
<

V
@
8
3
,
5
<
D
®
8
4
0
4
6
2
.
5
0
<

V
@
8
3
,
6
<
D
®
8
4
0
4
5
7
.
1
0
<

V
@
8
3
,
7
<
D
®
8
4
0
5
5
0
.
7
1
<

V
@
8
3
,
8
<
D
®
8
4
0
6
3
9
.
6
2
<

V
@
8
3
,
9
<
D
®
8
4
0
9
4
6
.
7
6
<

V
@
8
3
,
1
0
<
D
®
8
4
1
0
8
4
.
1
3
<

V
@
8
4
,
1
<
D
®
8
4
1
1
2
5
.
8
5
<

V
@
8
4
,
2
<
D
®
8
4
1
0
1
9
.
8
7
<

V
@
8
4
,
3
<
D
®
8
4
0
8
3
4
.
4
0
<

V
@
8
4
,
4
<
D
®
8
4
0
6
1
2
.
7
8
<

V
@
8
4
,
5
<
D
®
8
4
0
3
8
4
.
7
6
<

V
@
8
4
,
6
<
D
®
8
4
0
2
0
4
.
5
4
<

V
@
8
4
,
7
<
D
®
8
4
0
1
9
6
.
2
0
<

V
@
8
4
,
8
<
D
®
8
4
0
2
5
7
.
8
2
<

V
@
8
4
,
9
<
D
®
8
4
0
4
3
9
.
5
9
<

V
@
8
4
,
1
0
<
D
®
8
4
0
6
7
7
.
5
8
<

V
@
8
4
,
1
1
<
D
®
8
4
0
7
9
3
.
0
0
<

V
@
8
4
,
1
2
<
D
®
8
4
0
9
6
9
.
4
7
<

V
@
8
4
,
1
3
<
D
®
8
4
1
0
6
1
.
0
5
<

V
@
8
5
,
1
<
D
®
8
4
0
6
2
5
.
8
5
<

V
@
8
5
,
2
<
D
®
8
4
0
5
5
5
.
1
9
<

V
@
8
5
,
3
<
D
®
8
4
0
5
0
0
.
0
0
<

V
@
8
5
,
4
<
D
®
8
4
0
5
0
0
.
0
0
<

V
@
8
5
,
5
<
D
®
8
4
0
3
8
1
.
8
2
<

V
@
8
5
,
6
<
D
®
8
4
0
2
7
9
.
0
4
<

V
@
8
5
,
7
<
D
®
8
4
0
1
9
9
.
0
7
<

V
@
8
5
,
8
<
D
®
8
4
0
1
1
8
.
7
4
<

V
@
8
5
,
9
<
D
®
8
4
0
1
3
7
.
7
4
<

V
@
8
5
,
1
0
<
D
®
8
4
0
2
4
6
.
3
8
<

V
@
8
5
,
1
1
<
D
®
8
4
0
3
4
0
.
5
5
<

V
@
8
5
,
1
2
<
D
®
8
4
0
4
1
0
.
1
9
<

V
@
8
5
,
1
3
<
D
®
8
4
0
5
0
0
.
0
0
<

V
@
8
5
,
1
4
<
D
®
8
4
0
5
0
0
.
0
0
<

V
@
8
5
,
1
5
<
D
®
8
4
0
5
0
0
.
0
0
<

V
@
8
5
,
1
6
<
D
®
8
4
0
5
6
1
.
0
5
<

Fig. 9 Basin Level, Spread To Spot dynamics, initial basin level 41.5MWh


