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A. Fino, G. Grantcharov, M. Verbitsky Algebraic dimension of nilmanifolds

Algebraic dimension of complex

nilmanifolds

Anna Fino, Gueo Grantcharov, Misha Verbitsky1

Abstract

Let M be a complex nilmanifold, that is, a compact quotient of a
nilpotent Lie group endowed with an invariant complex structure by
a discrete lattice. A holomorphic differential on M is a closed, holo-
morphic 1-form. We show that a(M) ⩽ k, where a(M) is the algebraic
dimension a(M) (i.e. the transcendence degree of the field of mero-
morphic functions) and k is the dimension of the space of holomorphic
differentials. We prove a similar result about meromorphic maps to
Kahler manifolds.
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1 Introduction

1.1 Nilmanifolds: definition and basic properties

A nilmanifold is a compact manifold equipped with a transitive action of
a nilpotent Lie group. As shown by Malcev ([M]), every nilmanifold can
be obtained as a quotient of a nilpotent Lie group G by a discrete lattice

1Anna Fino is partially supported by PRIN, FIRB and GNSAGA (Indam), Gueo
Grantcharov is supported by a grant from the Simons Foundation (#246184), and Misha
Verbitsky is partially supported by RSCF grant 14-21-00053 within AG Laboratory NRU-
HSE.
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Γ. Moreover, the group G can be obtained as so-called Malcev completion
of Γ, that is, as a product of exponents of formal logarithms of elements
Γ. Therefore, any nilmanifold is uniquely determined by its fundamental
group, which is a discrete nilpotent torsion-free group, and any such group
uniquely determines a nilmanifold.

Since the work of Thurston ([T]), geometric structures on nilmanifolds
are used to provide many interesting examples (and counterexamples) in
complex and symplectic geometry. It was Thurston who realized that the
Kodaira surface (also known as a Kodaira-Thurston surface) is symplectic,
but does not admit any Kähler structure. In this way Thurston obtained
a counterexample to a result stated by H. Guggenheimer ([G]) in 1951.
Guggenheimer claimed that the Hodge decomposition is true for compact
symplectic manifolds, but for symplectic nilmanifolds this is usually false.

Before 1990-ies, a “complex nilmanifold” meant a compact quotient of a
complex nilpotent Lie group by a discrete, co-compact subgroup. The first
non-trivial example is given by so-called Iwasawa manifold ([FG]) which is
obtained as a quotient of the 3-dimensonal Lie group of upper triangular 3
by 3 matrices by a discrete co-compact subgroup, for example the group of
upper triangular matrices with coefficients in Z[√−1 ].

Starting from late 1980-ies, a “complex nilmanifold” means a quotient
of a real nilpotent Lie group equipped with a left-invariant complex struc-
ture by the left action of a discrete, co-compact subgroup ([CFG2]). This
is the notion we are going to use in this paper. This definition is much
more general, indeed, left-invariant complex structures are found on many
even-dimensional nilpotent Lie groups which are not complex. The complex
structure on a Kodaira surface is one of such examples.

Complex structures on a nilmanifold have a very neat algebraic char-
acterization. Let G be a real nilpotent Lie group, and g is Lie algebra.
By Newlander-Nirenberg theorem, a complex structure on G is the same
as a sub-bundle T 1,0G ⊂ TG ⊗R C such that [T 1,0G,T 1,0G] ⊂ T 1,0G and
T 1,0G ⊕ T 1,0G = TG ⊗R C. The left-invariant sub-bundles in T 1,0G are the
same as subspaces W ⊂ g⊗R C, and the condition [T 1,0G,T 1,0G] ⊂ T 1,0G is
equivalent to [W,W ] ⊂ W . Therefore, left-invariant complex structures on
G are the same as complex sub-algebras g1,0 ⊂ g⊗RC satisfying g1,0 ⊕ g1,0 =
g⊗R C.

A real nilmanifold is obtained as an iterated fibration with fibers which
are compact tori. It is natural to ask if any complex nilmanifold can be
obtained as an iterated fibration with fibers which are complex tori. The
answer is negative: see e.g. [R].

However, a weaker statement is still true. If we replace fibrations of nil-
manifolds by homomorphisms of their Lie algebras, it is possible to construct
a homomorphism ψ ∶ gÐ→ a to a complex abelian Lie algebra compatible
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with a complex structure. Since a is abelian, kerψ necessarily contains the
commutator [g,g]. Since it is complex, kerψ contains [g,g] + I[g,g].

The quotient algebra g/[g,g] + I[g,g] is called the algebra of holo-

morphic differentials on G, denoted by H1(M). Its dimension is always
positive ([S]).

In this paper, we study algebraic objects (such as meromorphic func-
tions) on complex nilmanifolds. We prove the following theorem.

Theorem 1.1: Let M = G/Γ be a complex nilmanifold, and Σ be a a
foliation obtained by left translates of [g,g]+I[g,g], where I is the complex
structure operator, and g = TeG the Lie algebra of G. Then all meromorphic
functions on M are constant on the leaves of Σ.

Proof: See Subsection 3.3.

1.2 Algebraic dimension and holomorphic differentials

Recall that a positive closed (1,1)-current T on a complex manifold is said
to have analytic singularities (see [Bouck]) if locally T = θ + ddcϕ for a
smooth form θ and a plurisubharmonic function ϕ = c log(∣f1∣2 + ... + ∣fn∣2)
where f1, ...fn are analytic functions and c a constant. Such currents have
decomposition into absolutely continuous and singular part, where the ab-
solutely continuous part is positive and closed.

Definition 1.2: Let M be a complex manifold. The Kähler rank k(M)
of M is the maximal rank of the absolutely continuous part of a positive,
closed (1,1)-current on M with analytic singularities.

Definition 1.3: The algebraic dimension a(M) of a complex manifold
is the transcendence degree of its field of meromorphic functions.

Let X be a complex manifold, and ϕ ∶ X ⇢ Cn a meromorphic map
defined by generators of the field of meromorphic functions. An algebraic
reduction of X ([Ca81], [Ue75]) is a compactification of ϕ(X) in CPn

⊃ Cn.
It is known to be a compact, algebraic variety ([Ca81], [Ue75]).

We should note that the map ϕ is defined for more general spaces X.
For smooth manifolds we’ll use the following [Pet, Definition-Theorem 6.5].

Definition 1.4: Let M be a compact complex manifold. Then there exists
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a smooth projective manifold X, a rational map ϕ ∶ M ⇢ X and a diagram

X ′

M
ϕ

✲

✛

a

X

b

✲

where X ′ is smooth and the top two arrows are proper holomorphic maps
with a a proper bimeromorphic modification, such that the corresponding
fields of meromorphic functions coincide: Mer(M) = Mer(X). We call the
map ϕ ∶ M ⇢X algebraic reduction of M .

Definition 1.5: Let η be a positive (1,1)-form on X. The current Tη is
defined as a∗b

∗η; since pushforward of a form is a current, it is a current,
and not a form. Since a is one-to-one everywhere, except on an analytic
set E ⊂ X ′, the current a∗b

∗η is smooth outside of E. Note also that the
positivity and closedness are preserved, as well as the rank in a general point.
We call Tη the current induced by η on M . It is easy to check that Tη
has analytic singularities if η is closed and positive.

Claim 1.6: Let M be a complex variety. Then the algebraic dimension is
bounded by the Kähler rank:

a(M) ⩽ k(M). (1.1)

Proof: Let ϕ ∶ M ⇢ X be the algebraic reduction map. Pullback of a
Kähler form from X to M is a current of rank dimX at all points where it
is absolutely continuous.

We are going to estimate a(M) in terms of holomorphic differentials on
M .

Definition 1.7: A holomorphic differential on a compact complex man-
ifold is a closed, holomorphic 1-form.

Theorem 1.8: Let M be a complex nilmanifold, H1(M) the space of holo-
morphic differentials on M , and a(M) its algebraic dimension. Then

a(M) ⩽ dimH1(M).

Proof: See Subsection 3.3.
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Remark 1.9: The same estimate holds for complex parallelizable mani-
folds; see [W, Proposition 3.16.1]. Moreover, Theorem 1.1 is also true in
this situation: all meromorphic functions are constant on the fibers of the
Albanese map.

This result is implied by Definition 1.4 and the following expression of
the Kähler rank.

Theorem 1.10: Let M be a complex nilmanifold, H1(M) the space holo-
morphic differentials on M , and k(M) its Kähler rank. Then k(M) =
dimH1(M).

Proof: Consider the projection gÐ→ a, where a = g
[g,g]+I([g,g]) . Since

[g,g] + I([g,g]) is I-invariant, a has a complex structure and this map is
compatible with it. Consider the Chevalley differential d on the Lie algebras
of g and a. Since a is an abelian algebra, any 2-form on a is closed (and gives
a closed 2-form on the corresponding Lie group). Taking a positive definite
Hermitian form, we obtain a positive current of rank dima = H1(M) on M .
There are no currents with greater rank by Proposition 3.15.

The same argument implies the following useful corollary.

Corollary 1.11: Let M be a complex nilmanifold, g the Lie algebra of the
corresponding Lie group, and h ∶= [g,g]+I([g,g]) the algebra constructed as
above. Denote by h1 a smallest I-invariant rational subspace of g containing
h. Let T be a complex torus obtained as quotient of g/h1 by its integer
lattice. Consider the natural holomorphic projection Ψ ∶ M Ð→ T . Then
any meromorphic map to a Kähler manifold is factorized through Ψ.

Proof: Let ψ ∶ M ⇢ X be a meromorphic map to a Kähler manifold(X,ω). For general x ∈ X, the zero space of the positive closed current ψ∗ω
contains h, hence the fibers Fx ∶= ψ−1(x) are tangent to h. The smallest
compact complex subvariety ofM containing a leaf of the foliation associated
with h is the corresponding leaf of h1. Passing to the closures of the leaves
of h, we obtain that Fx contain leaves of h1. However, T is the leaf space of
h1.

Remark 1.12: For a general compact complex manifold X, Albanese va-

riety Alb(X) is defined as the quotient of the dual space of the space of
holomorphic differentials H0(X,dO)∗ by the minimal closed complex sub-
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group containing the image of H1(X,Z) under the map

H1(X,Z) →H1(X,C) →H0(X,dO)∗
(see [R]). The Albanese map Alb ∶ X → Alb(X) is give n by integration
along paths starting at a fixed point. It has the functorial property tha t
any map from X onto tori is factored through the Albanese map ([Ue75]).
In [R] (section 2.1) the Albanese variety for a complex nilma nifold M is
described in terms of the space h1 as

Alb(M) = H0(X,dO)∗/(h1)
im(H1(X,Z) →H0(X,dO))∗/p(h1) = T,

where h1 is the same as in Corollary 1.11. Then we obtain that T = Alb(M)
and

a(M) = a(Alb(M)).
2 The averaging formalism

Let M = Γ/G be a compact nilmanifold and ν a volume element on M

induced by a the Haar measure on the Lie group G [Mi]. After a rescaling,
we can suppose that M has volume 1. Notice that the Haar measure on G
is bi-invariant, because G admits a lattice, and any Lie group admitting a
lattice is unimodular.

Given any covariant k-tensor field T ∶ TM × . . . × TM → C∞(M) on the
nilmanifold M , one can define a covariant k-tensor

Tinv ∶ g × . . . × g → R

on the Lie algebra g of G by

Tinv(x1, . . . , xk) = ∫
p∈M

Tp(x1∣p, . . . , xk ∣p)ν,
for every x1, . . . , xk ∈ g, where xl∣p is the restriction of the left-invariant
vector field Xl to p. Clearly, Tinv = T for any tensor field T coming from a
left-invariant one. In [B] it is shown that that if α is a differential k-form on
M , then (dα)inv = d(αinv). Moreover, (αinv ∧ β)inv = αinv ∧ βinv, for every
differential forms α and β on M .

We call the map Av ∶ (T ∗)⊗k Ð→ (g∗)⊗k, Av(T ) ∶= Tinv averaging on a
nilmanifold. The averaging defines a linear map ν̃ ∶ Ωk(M) → Λkg∗, given
by ν̃(α) = αinv for every k-form α ∈ Ωk(M), which commutes with the
differentials.

Moreover, by Nomizu theorem [N] ν̃ induces an isomorphism Hk(M)→
Hk(g) between the kth cohomology groups for every k. In particular, every
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closed k-form α on M is cohomologous to the invariant k-form αinv obtained
by the averaging (see also [Ug]) Indeed, by Nomizu Theorem α = β+dγ, with
β invariant closed k-form. By using the averaging we have αinv = β + dγinv
and so α is cohomologous to αinv.

3 Positive currents on nilmanifolds

3.1 Holomorphic differentials

Recall that holomorphic differentials on a complex manifold are closed,
holomorphic 1-forms.

Definition 3.1: Let M = Γ/G be a nilmanifold. A differential form on M
is called invariant if its pullback to M is invariant with respect to the left
action of G on itself.

Remark 3.2: LetM = Γ/G be a nilmanifold, g the Lie algebra of G. Clearly,
invariant differential forms are identified with Λ∗(g). Moreover, they are
preserved by de Rham differential, which is identified with the Chevalley
differential on Λ∗(g).
Proposition 3.3: Let (M,I) be a complex nilmanifold, and h a holomorphic
differential. Then h is an invariant differential form.

Proof: Let ν be a volume element on M induced by a bi-invariant one
on the Lie group G such that M has volume equal to 1. A holomorphic
differential h is cohomologous to the invariant form hinv obtained by the
averaging process. Since I is invariant, hinv has to be of type (1,0) and
thus h = hinv. Indeed, closed (1,0)-forms cannot be exact, because they are
holomorphic, hence (if exact) equal to differentials of a global holomorphic
function.

Corollary 3.4: Let M = Γ/G be a complex nilmanifold, and g its Lie
algebra, and H1(M) the space of holomorphic differentials. Then

H1(M) = ( g⊗C

g1 + I(g1))
∗

,

where g1 = [g,g] denotes the commutator of g.

Proof: Let h be a holomorphic differential. Since h is invariant then it
can be identified with an element of (g ⊗C)∗. Moreover, h = α + iIα, with
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α ∈ g∗, dα = 0 and d(Iα) = 0. By the conditions

dα(x, y) = −α([x, y]) = 0, d(Iα)(x, y) = α(I[x, y]) = 0,
for every x, y ∈ g, we get α(g1) = α(Ig1) = 0.
3.2 Positive (1,1)-forms on a Lie algebra

Throughout this subsection, we fix a nilpotent Lie algebra g with a complex
structure I ∈ End(g) satisfying the integrability condition

[g1,0,g1,0] ⊂ g1,0.

Definition 3.5: A semipositive Hermitian form on (g, I) is a real form
η ∈ Λ2(g∗) which is I-invariant (that is, of Hodge type (1,1)) and satisfies
η(x, Ix) ⩾ 0 for each x ∈ g. It is called positive definite Hermitian if this
inequality is strict for all x ≠ 0.
Definition 3.6: A subalgebra a ⊂ g is called holomorphic if I(a) = a and[g0,1,a1,0]1,0 ⊂ a1,0.
Claim 3.7: Let a ⊂ g be a vector subspace, and B ∶= a ⋅G the corresponding
left-invariant sub-bundle in TG. Then

• B is involutive (that is, Frobenius integrable) iff a is a Lie subalgebra
of g.

• B is a holomorphic sub-bundle iff a is a holomorphic subalgebra.

Proof: Let x, y ∈ a and denote by the same letters the corresponding
left-invariant vector fields. Clearly, B is involutive if and only if a is a Lie
subalgebra of g. Similarly we have that B is holomorphic if [x+iIx, y−iIy] ∈
a1,0, for every x ∈ g and y ∈ a.

Remark 3.8: Note that V = g(1,0) + a(0,1) is involutive iff a is holomorphic
and V + V = gc. So V is an “elliptic structure” in the terminology of [Jac],
so by [Jac] it defines a holomorphic foliation.

We also note the obvious

Claim 3.9: If V1 and V2 are two elliptic structures in terminology of [Jac]
on a complex manifold, containing the (1,0) tangent bundle, then V1 ∩V2 is
also an elliptic structure.
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Definition 3.10: Let η be a semipositive Hermitian form on (g, I), and
N(η) the subspace in g consisting of all vectors x such that η(x, Ix) = 0.
Then N(η) is called the null-space of η.

In general we have the following

Claim 3.11: The nullspace

N = {x ∈ g ∣ ιxη = 0}
of a closed form η ∈ Λrg∗ is a Lie subalgebra of g.

Proof: Take x, y ∈ N and arbitrary vectors z1, . . . , zr−1 ∈ g. Then, by
Cartan’s formula, dη(x, y, z1, . . . , zr−1) = η([x, y], z1, . . . zr−1) = 0, since the
rest of the terms vanish, because x, y ∈ N . Therefore η([x, y], z1, . . . zr−1) = 0
for any z1, . . . , zr−1 ∈ g, this means that ι[x,y]η = 0, i.e [x, y] ∈N .

Theorem 3.12: Let η be a semipositive Hermitian form on (g, I). Assume
that its nullspace N(η) is a holomorphic subalgebra. Then N(η) contains
g1 + Ig1, where g1 = [g,g].

Proof: When the cohomology class of η is rational, as happens in most
applications, Theorem 3.12 has a simple proof. Since [η] is rational, it can
be represented by a rational form ηQ ∈ Λ2(g). Therefore, the leaves of N(η)
are rational Lie subalgebras in g. By Malcev’s theorem, the leaves of N(η)
are compact. By construction, the leaf space X of N(η) is equipped with a
transitive action by a nilpotent Lie group, hence it is a nilmanifold. Finally,
X inherits the complex structure from X, and η defines a Kähler metric on
X. However, a nilmanifold can be Kähler only if its fundamental group is
abelian ([BG]). Therefore, N(ηQ) contains [g,g].

For general η, Theorem 3.12 has a different (more complicated) proof.
Since N(η) = a is holomorphic, we have

[y + iIy, x − iIx]1,0 ∈ a1,0, (3.1)

for every x ∈ a and for every y ∈ g. By a direct computation we obtain

[y + iIy, x − iIx]1,0 = ([y,x] + [Iy, Ix] + I[Iy,x] − I[y, Ix])
−iI([y,x] + [Iy, Ix] + I[Iy,x] − I[y, Ix]).

Therefore, by the condition (3.1) we get

[y,x] + [Iy, Ix] + I[Iy,x] − I[y, Ix] ∈ a, ∀x ∈ a, ∀y ∈ g. (3.2)
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By using the integrability condition

[Iy, Ix] = [y,x] + I[Iy,x] + I[y, Ix]
we have

I[y, Ix] = [Iy, Ix] − [y,x] − I[Iy,x]
and therefore the condition (3.2) becomes

2([y,x] + I[Iy,x]) ∈ a, ∀x ∈ a, ∀y ∈ g,
i.e.

η([y,x], z) = −η(I[Iy,x], z), ∀x ∈ a, ∀y, z ∈ g.
Therefore

η([y,x], I[y,x]) = −η(I[Iy,x], I[y,x]) = −η([x, Iy], [x, y]).
By dη = 0, one gets

η([x, y],w) = η([x,w], y),
for every x ∈ a, y, z ∈ g. Thus

η([x, Iy], [x, y]) = η(ad2x(y), Iy), ∀x ∈ a, ∀y ∈ g
and consequently

η([y,x], I[y,x]) = −η(ad2x(y), Iy), ∀x ∈ a, ∀y ∈ g. (3.3)

By using (3.3), it is possible to show that a is an ideal of g, i.e. that [y,x] ∈ a,
for every x ∈ a and y ∈ g.

Since η is a semipositive (1,1)-form and a is its null-space, the relation
η([y,x], I[y,x]) = 0 implies that [x, y] ∈ a. Therefore, by (3.3), in order to
prove that [y,x] ∈ a, for every x ∈ a and for every y ∈ g, it is sufficient to
show that [x, [x, y]] ∈ a for any x ∈ a. This would follow if we prove that

[a,g1] ⊂ a. (3.4)

Since g is nilpotent there exists s such that gs = {0} and gs−1 ≠ {0} and we
have the descending series of ideals

g = g0 ⊃ g1 ⊃ . . . ⊃ gi ⊃ gi+1 ⊃ . . . ⊃ gs−1 ⊃ gs = {0}.
Now we can prove that [a,g1] ⊂ a by induction on i in the following way:
by using (3.3) we can show that

(A) if the condition [a,gi+1] ⊂ a holds, then the condition [a,gi] ⊂ a

holds.
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Since g is nilpotent there exists s such that gs = {0} and gs−1 ≠ {0}.
At the first step i = s − 1 we have that (A) holds. So by induction we

obtain that (A) holds for i = 0. Consequently, a = N(η) is an ideal of g
and η induces a Kähler form on the nilpotent Lie algebra g/a. By [BG], the
Kähler nilpotent Lie algebra g/a has to be abelian. Therefore g1 ⊂ a. Since
η is (1,1)-form, its null-space a is I-invariant, hence a contains g1 + Ig1.

3.3 Averaging the positive currents

The following result directly follows from the averaging.

Proposition 3.13: Let M = Γ/G be a compact quotient of a unimodular
Lie group G by a lattice Γ and I the complex structure on M obtained
from an invariant complex structure on G. Let Tη be the positive, closed
(1,1)-current induced by the algebraic reduction ϕ ∶ M → X from some
Kähler form η on X (Definition 1.5). If Av(T ) is its average, then Av(T ) is
a semipositive, closed, G-invariant differential form, and its rank is no less
than the rank of the absolutely continuous part of Tη.

Proof: If X and Y are left-invariant vector fields on M , then Tη(X,Y )
is a measurable function when we consider Tη as a form with distributional
coefficients in local coordinates. So Av(T ) is well defined as in Section 2.
Then Av(T ) is a closed invariant form of type (1,1) and the only thing to
check is the statement about its rank. By the definition it follows that
Av(T )(X,IX) = 0⇔ Tp(X ∣p, IX ∣p) = 0 for almost all p ∈M . So X is in the
kernel of Av(T ) only if it is in the kernel of Tp for almost all p.

Remark 3.14: As a corollary we obtain that if such space admits a Kähler
current, it is Kähler. In particular from [DP] it follows that such spaces are
never in Fujiki’s class C. Note that the proof of this fact in [DP] uses also
the Kähler current arising from the pull-back of a Kähler form.

Proposition 3.15: Let T be a positive, closed (1,1)-current on a nilmanifold
M = G/Γ, and F the null-space foliation of its absolutely continuous part.
Then the sub-bunlde associated with F contains a homogeneous sub-bundle
Σ obtained by left translates of g1 + Ig1, where g1 = [g,g], and g is the Lie
algebra of G.

Proof: Let Av be the averaging map defined in Section 2. The nullspace
of the form Av(T ) is contained in the intersection of all left translates of F ,
hence by Claim 3.9 it is also holomorphic. Then Theorem 3.12 implies that
N(Av(T )) contains g1 + Ig1.
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Proof of Theorem 1.1: Let M Ð→X be the algebraic reduction map
(Definition 1.4), and η the pullback of the Kähler form on X. Averaging
(Proposition 3.13) transforms η into an invariant, closed, semipositive form.
Then η vanishes on Σ by Proposition 3.15.

Proof of Theorem 1.8: Now we can prove Theorem 1.8. Let M =
Γ/G be a nilmanifold, and ϕ ∶ M ⇢ X the algebraic reduction map. The
pullback ϕ∗ωX of a Kähler form ωX is a current T on M (Definition 1.5).
By Proposition 3.15, the rank of its absolutely continuous part is no greater
that

dim
g

g1 + Ig1
= dimH1(M)

(the latter equality follows from Corollary 3.4).

4 Examples

All 2-dimensional compact complex nilmanifolds are classified and corre-
spond to tori and primary Kodaira surfaces. Their algebraic dimension is
known. In this section we’ll consider the algebraic dimension of the complex
nilmanifolds in dimension 3 and note that for other complex homogeneous
spaces the inequality a(M) ⩽ H1(M) may not hold.

Many nilmanifolds admit holomorphic fibrations and we’ll need the fol-
lowing:

Remark 4.1: In general (see [Ue75, Theorem 3.8]), if a complex manifold
M is the total space of a holomorphic fibration π ∶M → B we always have
the inequality

a(M) ⩾ a(B).

4.1 Algebraic dimension of complex 2-tori

Following [BL] we have the following description of the algebraic dimension
of the complex 2-tori.

Let T 4 be the tori defined as R4/Z4 where Z4 is the standard lattice in

R4. Let J ∈ End(R4), J = ( A B

C D
) be a complex structure with A,B,C,D

2×2-blocks and B nondegenerate. From [BL] (p.10) we can identify what is
the period lattice of the complex tori with structure J . If X = C2/(τ, Id2)Z4

is a complex tori defined by a complex 2 × 2 matrix τ , then the complex
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structure Jτ on T 4 such that X ≅ (T 4, Jτ ) as complex manifold is given by

Jτ = ( y−1x y−1

−y − xy−1x −xy−1
) ,

where x and y are the real and imaginary parts of τ . Reversing the con-
struction gives that for J as above,

τJ = B−1A + iB−1.
We also need the relation to complex structures, defined in terms of a basis of(1,0)-forms. If J0 is a fixed complex structure and ωj = ej+

√
−1J0ej , j = 1,2

is a basis of (linear) (1,0)-forms for J0, we define another complex structure
J as

α1 = ω1 + aω1 + bω2

α2 = ω2 + cω1 + dω2

(4.1)

being the basis of (1,0)-forms of J . If X = ( a b

c d
) = X1 + iX2, then the

relation between X and the matrix representing J in the basis (ei, J0ei) is
given by

J = ( Id +X1 X2

X2 Id −X1

)−1 ( 0 Id

−Id 0
)( Id +X1 X2

X2 Id −X1

)

We’ll use the explicit form of J and τJ when X1 = ( 0 a

0 0
) and X2 =

( 0 b

0 0
). Direct calculation (using the fact that X2

1
=X2

2
=X1X2 =X2X1 =

0) gives J = ( 2X2 Id − 2X1

−Id − 2X1 −2X2

) and

τJ = ( i 2a + 2bi
0 i

) = iID + 2X.
To determine the algebraic dimension of (T 4, J), we need first the Neron-

Severi group NS(J) of J . Let τij are the components of τJ and

E =
⎛⎜⎜⎜⎝

0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

⎞⎟⎟⎟⎠
∈M4(Z)

be an integral matrix. Then NS(J) = {E ∈ M4(Z)∣a + dτ11 − bτ12 + fτ21 −
cτ22 + edet(τ) = 0}. With these notations in mind, the algebraic dimension
of (T 4, J) is determined by
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a(J) = 1

2
max{rank(JTE)∣E ∈ NS(J), JTE ⩾ 0},

where the superscript T means transposition. Note that not all complex
structures are described in this way - we have the non-degeneracy condition
on B which is required for (τ, Id2) to be a period matrix. It is well known
that a(J) could be any of 0,1 or 2.

The integrality condition leads to the fact that generically a(J) = 0. For
a(J) ⩾ 0 from [BL] p.59, we know that a(J) = 1 exactly when the torus
admits a period matrix (τ, Id2) with

τ = ( τ1 α

0 τ2
)

with

α ∉ (τ1,1)M2(Q)( 1
τ2
) ,

where M2(Q) is the set of 2 × 2-matrices. In particular in (4.1), when X =
( 0

√
2 − i
√
3

0 0
), the algebraic dimension of (T 4, J) is one.

4.2 3-dimensional complex nilmanifolds

Definition 4.2: Let g be a nilpotent Lie algebra. A rational structure for
g is a subalgebra gQ defined over Q such that g ≅ gQ ⊗R. A subalgebra h

of g is said to be rational with respect to a given rational structure gQ if
hQ ∶= hgQ is a rational structure for h.

It follows from a result of Malcev [M] that Γ/G is compact, where G
is a simply connected k-step nilpotent Lie group admitting a basis of left
invariant 1-forms for which the coefficients in the structure equations are
rational numbers, and Γ is a lattice in G of maximal rank (i.e., a discrete
uniform subgroup, cf. [Rag]). Such a lattice Γ exists in G if and only if the
Lie algebra g of G has a rational structure. Indeed, If Γ is a lattice of G
then its associated rational structure is given by the Q-span of log Γ.

An invariant complex structure J on a nilmanifold Γ/G is called rational
if it is compatible with the rational structure of G , i.e. J(gQ) ⊆ gQ.
Remark 4.3: LetM = Γ/G be a complex nilmanifold of complex dimension
n endowed with an invariant rational complex structure J . Consider the
surjective homomorphism g→ g/g1J , where g1J = g1 + Jg1. Let G, G1

J and K
be the simply connected Lie groups respectively with Lie algebra g, g1J and
g/g1J , then we have the surjective homomorphism

p ∶ G→K,
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with K abelian. Since J is rational then, by [CF] g1J is a rational subalgebra
of g. Then Γ1 ∶= Γ∩G1

J is a uniform discrete subgroup of G1

J [CG], Theorem
5.1.11. By [CG, Lemma 5.1.4 (a)], p(Γ) is a uniform discrete subgroup of
K (i.e. p(Γ)/K) is compact, cf. [Rag]). By Lemma 2 in [CF] the map

p̃ ∶ Γ/G→ p(Γ)/K
is a holomorphic fibre bundle. Moreover, since K is abelian, p(Γ)/K is a
complex torus T of complex dimension H1(M) = n − dimC g1J . Therefore, if
H1(M) = 1, the torus T is algebraic, and by Remark 4.1 and Theorem 1.8
we have a(M) = 1.
Remark 4.4: LetM = Γ/G be a complex nilmanifold of complex dimension
n endowed with an invariant complex structure J such that Jg1 = g1, then
M is the total space of a holomorphic fibration π ∶M → T, with T a complex
torus of complex dimension H1(M) = n−dimC g1. Therefore, if T is algebraic,
i.e. a(T) = H1(M), we have by Remark 4.1 and Theorem 1.8 we have a(B) =
a(M) = H1(M).

Note that if J is bi-invariant, i.e. if M = Γ/G is complex parallelalizable
then Jg1 = g1. For a general result on the algebraic dimension of complex
parallelalizable solvmanifolds see Theorem 2 and its Corollary in [Sak].

We will apply the previous remarks to complex nilmanifolds of complex
dimension 3.

Example 4.5: Let J be a complex structure on a real 6-dimensional nilpo-
tent Lie algebra. For the notion of “nilpotent complex structure” on a nil-
manifold, please see [Ug]. By [Ug] the complex structure J is either nilpotent
or non-nilpotent and

(a) If J is non nilpotent, then there is a basis of (1,0)-forms (ω1, ω2, ω3)
such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dω1 = 0,
dω2 = E ω1 ∧ ω3 + ω1 ∧ ω3,

dω3 = Aω1 ∧ ω1 + ibω1 ∧ ω2 − ibE ω2 ∧ ω1,

where A,E ∈ C with ∣E∣ = 1 and b ∈ R − {0}.
(b) If J is nilpotent, then there is a basis of (1,0)-forms (ω1, ω2, ω3) sat-
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isfying

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dω1 = 0,

dω2 = εω1 ∧ ω1,

dω3 = ρω1 ∧ ω2 + (1 − ε)Aω1 ∧ ω1 +Bω1 ∧ ω2

+C ω2 ∧ ω1 + (1 − ε)Dω2 ∧ ω2,

where A,B,C,D ∈ C and ε, ρ ∈ {0,1}.
Suppose that the real and imaginary parts of the complex structure

equations constants are rational, then G admits a lattice Γ. LetM = Γ/G be
the compact quotient endowed with the induced invariant complex structure
J .

In the case (a) we have that H1(M) = 1. In the case (b) we have the
following cases:

(b1) H1(M) = 1 if ε = 1 and ρ2 + ∣B∣2 + ∣C ∣2 ≠ 0
(b2) H1(M) = 2 if ε = 0
(b3) H1(M) = 2 if if ε = 1 and ρ = B = C = 0

Therefore, in the cases (a) and (b1), since J is rational, by Theorem 1.8
and previous remarks, we have a(M) = H1(M) = 1. In the case (b3), G is
the direct product of the real 3-dimensional Heisenberg group by R3.

In the case (b2), ρ2+ ∣B∣2+ ∣C ∣2+ ∣D2∣ = 0, then G is the direct product of
the real 3-dimensional Heisenberg group by R3. If ρ2 + ∣B∣2 + ∣C ∣2 + ∣D2∣ ≠ 0,
then Jg1 = g1 is a rational subalgebra of complex dimension 1 and M is the
total space of a holomorphic fibre bundle over a complex torus T of complex
dimension 2. Therefore, if T is algebraic then by previous remarks we have
a(M) = H1(M) = 2.

An explicit example of the case (b2) is given by the well known Iwasawa
manifoldM . The Iwasawa manifoldM is defined as the quotient Γ/G, where

G =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

1 z1 z3
0 1 z2
0 0 1

⎞⎟⎠ ∣ zi ∈ C
⎫⎪⎪⎪⎬⎪⎪⎪⎭

is the complex Heisenberg group and Γ is the lattice defined by taking zi to
be Gaussian integers, acting by left multiplication. The 1-forms

ω1 = dz1, ω2 = dz2, ω3 = −dz3 + z1dz2
are left-invariant on G. Define a r basis (e1, ..., e6) of real 1-forms by setting

ω1 = ei + ie2, ω2 = e3 + ie4, ω6 = e5 + ie6.
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These 1-forms are pullbacks of corresponding 1-forms on the compact quo-
tientM , which we denote by the same symbols and they satisfy the structure
equations

dej = 0, j = 1,2,3,4,
de5 = e1 ∧ e3 − e2 ∧ e4,
de6 = e1 ∧ e4 + e2 ∧ e3.

The Iwasawa manifold M is the total space of a principal T 2-bundle over
the real torus T 4. The mapping p ∶M → T 4 is induced from the projection(z1, z2, z3) ↦ (z1, z2) and the space of invariant 1-forms annihilating the
fibres of p is given by span⟨e1, e2, e3, e4⟩

Then p ∶M → T 4 induces a complex structure Ĵ on the real 4-dimensional
torus T 4 such that p ∶ (M,J) → (T 4, Ĵ) is holomorphic.

Claim 4.6: For the invariant complex structures on the Iwasawa manifold,
M , a(M) = a(T 4, Ĵ)

Proof: From Theorem 1.1, any meromorphic function is constant on the
fibers of the projection M Ð→ (T 4, Ĵ). This implies that a(M) = a(T 4, Ĵ).

Now consider the possible algebraic dimension of M . First note that
not all complex structures on the base T 4 arise as Ĵ . A description of the
set of such J is given in [KS] and it is known that it has 4 components.
We’ll use one of them to see that that invariant structures on the Iwasawa
nilmanifold can have algebraic dimension 0, 1 and 2. If we start with the
canonical structure on T 4 which corresponds to the standard lattice in R4

it gives the case of algebraic dimension 2. From [KS] formula (10) we know

that the matrix X = ( 0
√
2 − i√3

0 0
) corresponds to a complex structure

on T 4 which is Ĵ for some J on M . On the other side, the period matrix

τ , as explained above is iId + 2X and has τ = x + iy with x = ( 0 2
√
2

0 0
)

and y = ( 1 −2√3
0 1

). So for such τ the algebraic dimension of the base

is 1. In particular we have strict inequalities in Theorem 1.8. Again, the
base generically has algebraic dimension 0, which leads to vanishing of the
algebraic dimension of J on the Iwasawa nilmanifold.

Example (Compact Lie groups) It is well known that every even-dimensio-
nal compact Lie group G admits an invariant complex structure ([Sam]).
The construction uses the structure theory for semisimple Lie algebras and
provides a holomorphic fibration G → Fl to the complete flag manifold
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Fl = G/T , where T is a maximal torus in G. The manifold Fl is algebraic
and its algebraic dimension is equal to its complex dimension. On the other
side, gss = g′, so the space of holomorphic differentials is trivial. Hence
by Remark 4.1, a(M) ⩾ dim(Fl) > H1(M) = 0. Similarly, for non-Kähler
compact complex homogeneous spaces G/H with G compact, the inequality
a(M) ⩽ H1(M) does not hold in general.
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