
This is the author’s final version of the contribution published as:

M. Torquati; G. Mencagli; M. Drocco; M. Aldinucci; T. De Matteis; M.
Danelutto. On Dynamic Memory Allocation in Sliding-Window Parallel
Patterns for Streaming Analytics. Journal of Supercomputing

The publisher’s version is available at:
http://dx.doi.org/10.1007/s11227-017-2152-1

When citing, please refer to the published version.

This full text was downloaded from iris -AperTO: https://iris.unito.it/

iris-AperTO
University of Turin’s Institutional Research Information System and Open Access Institutional Repository

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302159697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Noname manuscript No.
(will be inserted by the editor)

On Dynamic Memory Allocation in Sliding-Window
Parallel Patterns for Streaming Analytics

M. Torquati · G. Mencagli · M.
Drocco · M. Aldinucci · T. De Matteis ·
M. Danelutto

Received: date / Accepted: date

Abstract This work studies the issues related to dynamic memory manage-
ment in Data Stream Processing, an emerging paradigm enabling the real-time
processing of live data streams. In this paper we consider two streaming par-
allel patterns and we discuss different implementation variants related on how
dynamic memory is managed. The results show that the standard mechanisms
provided by modern C++ are not entirely adequate for maximizing the per-
formance. Instead, the combined use of an efficient general-purpose memory
allocator, a custom allocator optimized for the pattern considered and a cus-
tom variant of the C++ shared pointer mechanism, provides a performance
improvement up to 16% on the best case.

Keywords Data Stream Processing, Modern C++, Dynamic Memory
Allocation, Multicores, Stream Analytics, Parallel Patterns

1 Introduction

The C++ language is one of the most widely used languages for HPC and
financial computations [5]. A consequence of using C++ is that memory man-
agement has to be managed explicitly even though, starting from C++11
standard, the language has been extended with a set of mechanisms and fea-
tures (e.g., unique and shared pointers) that have considerably alleviated the
burden of memory management. While from one side explicit memory man-
agement is desirable when predictable performance is needed, it does make
programming much more challenging and error-prone. Moreover, operations

M. Torquati, G. Mencagli, T. De Matteis and M. Danelutto
Department of Computer Science, University of Pisa, Italy
E-mail: {torquati, mencagli, dematteis, marcod}@di.unipi.it

M. Drocco and M. Aldinucci
Department of Computer Science, University of Turin, Italy
E-mail: {drocco, aldinuc}@di.unito.it

2 Torquati et. al.

such as memory allocation/deallocation are critical when high scalability and
performance are required because they introduce extra synchronization points
in the applications [12]. This paved the way to general-purpose allocators op-
timized for concurrency such as Hoard [3] and TBB scalable allocator [14].
Conversely, there is a widespread tendency to develop custom allocators built
on top of general-purpose ones, with the goal of taking further advantage of
the application-specific allocation pattern to increase performance.

This work studies how to provide both efficient and simplified dynamic
memory management in the design of a parallel runtime for Data Stream Pro-
cessing programs (DaSP) [2] on multicore platforms. The DaSP paradigm is
characterized by the online processing of data streams that convey tuples of
attributes (records, sensor readings) representing numerical or categorical in-
formation. The main goal of such streaming computations is to extract hidden
knowledge from the most recent data (sliding-window analytics [9]) in order
to assist decision-making processes.

Parallel patterns, expressly designed for real-time streaming analytics, can
help in lowering the complexity of memory management in C++ programs [5] [6].
Our primary objective is to offer to the programmer a framework in which par-
allel patterns for DaSP computations can be easily instantiated by hiding all
low-level implementation details such as tuple distribution and dynamic mem-
ory management. The pattern user must be relieved from dealing with explicit
memory management (unless it is strictly needed by the business logic appli-
cation code). All the issues related to efficient dynamic memory management
should be handled at runtime level, leveraging the detailed knowledge of the
particular allocation scheme directly available from the pattern.

To target performance- and memory-efficient parallel DaSP computations,
the use of dynamic memory operations represents a critical task for several
reasons: i) typical data structures employed in the DaSP domain (e.g., sliding
windows [2]) are dynamic structures whose size can arbitrarily grow or shrink
at run-time; ii) no realistic assumption on the stream length and speed can
be made, and iii) each input tuple has a different lifetime and may be used by
a different set of threads according to the parallel semantics of the pattern.

This work extends [6]. We studied the use of the standard C++ shared
pointers for dealing with memory management in DaSP applications. This re-
quired to deeply change the internals of the reference runtime we have used
(FastFlow [7]1). The results show that this mechanism is not fully appropriate
if the primary target is obtaining the maximum performance. Moreover, we
study in more detail the advantages of using general purpose allocators by ex-
tending the number of allocators tested. The results obtained confirm the ones
obtained in our preliminary work: combining a pattern-tailored custom allo-
cator with a scalable general-purpose allocator improves performance without
increasing memory occupancy significantly. More precisely, at the best case
our implementations perform about 16% better than the implementation of
the patterns based exclusively on the standard C++ allocator. Furthermore, the

1 http://mc-fastflow.sourceforge.net.

On Dynamic Memory Allocation in Data Stream Processing 3

best performance is very close (about 11% smaller) to the one achieved by a
manually configured implementation, where memory is statically preallocated
for each experimental scenario. Generally, this confirms that our approach is
effective in reducing the run-time overhead by still leveraging dynamic memory
to respond to the needs of each particular streaming workload.

The rest of the paper is organized as follows. Sect. 2 provides an overview
of similar works. Sect. 3 describes the parallel patterns. Sect. 4 discusses the
implementations issues and possible solutions. Sect. 5 evaluates the implemen-
tations, and Sect. 6 concludes the paper.

2 Related work

Stream processing engines have evolved into established solutions suitable to
program applications that receive huge amount of transient data at great
velocity. However, such solutions lack high-level programming interfaces to
easily instantiate parallel versions of compute-intensive functionalities in the
streaming applications. Typically, applications are programmed by expressing
arbitrary topologies of interconnected operators that perform common stream
processing tasks [2] (e.g., filtering, aggregation, sliding-window analytics).

Some recent papers have investigated the definition of recurrent stream
processing patterns. In [15], the authors proposed an interesting C++ library
providing parallel patterns such as filtering, pipeline, stream-reduce and farm.
The patterns are very general and suitable for many common streaming com-
putations. Conversely, it does not provide (in its current version) specific pat-
terns for the Data Stream Processing domain. A fundamental concept like
sliding windows has to be introduced and programmed by hand. Although
written in C++, the library does not provide any specific support for dynamic
memory management. This from one hand is a valuable feature that simplifies
the programming effort (e.g., avoiding memory leaks), from the other hand
pattern specific memory optimizations is left to the programmer. From this
viewpoint, our approach represents a clear departure from this vision.

The work presented in [17] proposed a set of patterns for elastic stream
processing, where the patterns provide a uniform way to solve elasticity and
fault tolerance by overcoming the distinction usually applied of traditional
frameworks. Although interesting and complementary to our work, the pro-
posed patterns are not oriented to the high-level programmer, but they mainly
represent solutions for the design of the run-time support of streaming frame-
works in order to design elasticity and fault-tolerance mechanisms easily within
the Mesos cluster infrastructure.

Patterns for real-time streaming analytics have been studied in [13]. As in
this paper, the authors argue that designing applications from scratch is an
approach neither viable nor effective to develop systems with reduced time-to-
maket. The patterns proposed are recurrent sub-topologies of operators imple-
mented in Apache Storm. Since the framework has a front-end implemented
in Java, memory allocation issues are outside the responsibility of the pattern

4 Torquati et. al.

implementation and are trasparently solved within the JVM by relying on the
standard garbage collector.

The research in [18] described a window-oblivious implementation of stream
join operators. The problem studied by the authors is to dynamically configure
the window size according to the data stream characteristics in such a way as
to obtain acceptable query results. To this end, the data structures support-
ing the operator internal state may be dynamically resized based on real-time
monitored data. The approach lacks generality, since it is designed for window
joins and assumes only sequential processing of complex joins.

Architecture-oriented optimizations for stream processing have been devel-
oped for task scheduling strategies in [11], where each task is properly allocated
in the memory closer to the assigned processing core in charge of computing
it. This approach, is beneficial only for highly NUMA machines and not of
general applicability.

Outside the stream processing domain, there has been a long research
endevour for designing efficient general-purpose dynamic memory allocators.
Examples are Hoard [3], TBB scalable allocator [14] and Jemalloc [10]. Their
goal is to enable better scalability by using thread-private heaps and free lists in
order to significantly cut down synchronization costs. They are general-purpose
allocators aimed at intercepting the use of standard allocation routines in the
code by replacing them without needing to recompile the program.

In addition, the programmer can develop custom allocators optimized for
a particular use. Notable examples are the ones used in standard benchmarks
for parallel architectures, as the 197.parser application of the SPEC suite.
Interestingly, in the work published in [16] the authors gave a brief review
about custom allocators developed for ad hoc purposes, and presented and
optimization methodology based on genetic algorithms to optimize allocation
policies in order to accommodate the needs of each specific application. Fol-
lowing this rationale, our work leverages on the approach of using custom
allocators to lower the dynamic memory overhead in specific parallel patterns
for sliding-window computations, a representative class of streaming queries.

3 Parallel patterns for streaming analytics

Most of the existing stream processing frameworks [2] allow the programmer
to express computations using abstractions modeling directed acyclic graphs,
where nodes are operators processing data tuples exchanged through the arcs
of the graph. Trivial parallelism can be expressed in the case of stateless com-
putations, by replicating the same operator multiple times (task-farm) or by
processing distinct data tuples in parallel by multiple sequential stages (paral-
lel pipeline). Meanwhile, stateful operators represent a more challenging case
from the parallelization standpoint. The notion of state is a sort of internal
knowledge consisting in the history of the past data tuples seen by the opera-
tor, and can be represented as a sliding window of the last received tuples [2].

On Dynamic Memory Allocation in Data Stream Processing 5

Parallel patterns for sliding-window queries have been presented in [9].
Two of them will be studied in this paper. The first, called Key Partitioning
(KP), can be applied in the case of multiplexed data streams, where each
data tuple includes a key attribute. All the tuples with the same key logically
belong to the same group. For example, a stateful operator processing financial
transactions (tuples) computes the average price of the last 100 transactions
having the same stock symbol (an identifier of a publicly traded stock) and
produces a new update every new 10 tuples trading the same stock (sliding
factor). The KP pattern exploits parallelism between window computations
on different stock symbols. The schema is the one of a standard task-farm,
see Fig. 1a, where an emitter (denoted by E) receives the input tuples and
routes them to the worker (an operator replica denoted by W) assigned to the
corresponding key attribute. Each worker is responsible to maintain the last
100 tuples for each of its assigned stock symbols, and to start the processing
each time a new window is complete.

8

6

7

7

6

8

W

E

W

1

F_usr()2345

result 1st window Key 1

result 2nd window Key 1

2

12

result 1st window Key 2

result 2nd window Key 2

1234F_usr()

2345F_usr()

1234F_usr()

(a) Key partitioning.

8

6

7

7

6

8

W

E

W

12

12

F_usr()2345

result 1st window Key 1

result 2nd window Key 1

result 1st window Key 2

result 2nd window Key 2

1234F_usr()

2345F_usr()

1234F_usr()

(b) Window farming.

Fig. 1: Parallel patterns with window length of 4 tuples and slide of 1 tuple.
Tuples of the first and second key are represented by a square and a circle.

Parallelism in the KP pattern is limited by the number of keys, since all
the windows of the same key are computed serially by the same worker. A
pattern overcoming this limitation is called Window Farming (WF) [9]. In
most of the window semantics, it is possible to statically identify the set of
consecutive windows that will contain a certain data tuple. Given w ≥ 1 and
s ≥ 1 the window length and the sliding factor, the tuple xi will belong to
the windows with identifier j such that j ≥ d(i + w)/se + 1 and j ≤ di/se.
This can be generalized to time-based windows, where the tuple identifier is
a timestamp and w and s are expressed in time units. The idea of the WF
pattern is to pre-assign consecutive windows to the workers, e.g., according to
a round-robin assignment. For each tuple, the emitter determines the windows
containing that tuple, and schedules it to the workers assigned to the corre-
sponding windows. Fig. 1b exemplifies this concept with windows with w = 4
and s = 1. The tuple x2 belongs to the first and the second window that are
assigned to the first and the second worker. Therefore, the tuple is routed to
both the workers that execute the assigned windows using an internal sliding
factor of s× nw, where nw is the number of workers (the parallelism degree).

6 Torquati et. al.

In this paper we are not interested in comparing the two patterns and un-
derstanding their applicability. For example, it is known that the KP pattern
suffers from load imbalance [8,9,5] in the case of skewed distributions of keys
(i.e. when few keys are much more frequent than the others). Instead, in this
work we will focus on how to implement efficiently the two patterns of multi-
cores by focusing on dynamic memory allocation mechanisms and strategies.

3.1 High-level pattern interface

The two patterns have been implemented in FastFlow [7] as high-level parallel
patterns. High-level parallel patterns solve specific yet recurrent problems in
an application domain, and their implementation is developed on top of more
general core patterns like task-farm and parallel pipeline and their composi-
tions. The pattern C++ interface allows the programmer to:

– indicate as a template parameter the type of the input tuple (input t),
the output result type (output t), and the type of the window (window t);

– provide the user function Fusr to be applied at each window activation as
an input parameter of the pattern constructor;

– provide two other functions: Fin takes a reference to an input tuple and
returns a pair of values in which the first one is the unique identifier of the
tuple (or its timestamp) and the second is the value of the key attribute;
Fout does the same for an output result.

Fig. 2 exemplifies the instantiation of the WF pattern in FastFlow. The ap-
plication is a parallel pipeline of three stages. The first and the last one are
sequential operators in charge of producing the data stream by reading the
tuples from a TCP/IP socket (Generator) and to collect the results (Con-
sumer). The second stage is the WF pattern, which is internally implemented
as a task-farm with two threads for the emitter and the collector and nw ≥ 1
identical worker threads.

…
bool ordering=true;
Win_WF<input_t, output_t, CB_Win<input_t>> wf(F_in, F_out, F_usr, nw, win_length,
 win_slide, …, ordering);
// creation of the pipeline
Generator generator(stream_length, num_groups, …);
Consumer consumer(num_groups, …);
ff_Pipe<input_t, output_t> pipe(generator, wf, consumer);
// execute the pipeline and wait its completion
pipe.run_and_wait_end();

template<typename in_tuple_t>
class CB_Win {
public:
 unsigned long expire(){…}
 bool insert(const in_tuple_t& tuple) {…}
 unsigned long get_size() const {…}
 win_container_t& get_content(){…}
 unsigned long reset(){…}
};

template<typename in_tuple_t, typename
 out_result_t, typename win_t, ...>
class Win_WF: public ff_farm<> {
 class WF_Emitter: public ff_node_t<…> {};
 class WF_Collector: public ff_node_t<…> {};
 Win_WF(f_in_t F_in, f_out_t F_out, f_t F_usr,
 int _nw, long _wlen, long _wslide, …,
 bool _ordering=true):ff_farm<>(…){};
 …
};

Fig. 2: Example of pattern instantiation in FastFlow using C++ objects.

On Dynamic Memory Allocation in Data Stream Processing 7

This example instantiates the pattern for count-based sliding windows (im-
plemented by the CB Win data type), where the w and s parameters are ex-
pressed in number of tuples. The window type is passed as a template param-
eter to the WF pattern, and must implement proper methods: i) insert, to
add a tuple to the window container (actually, it is copied in the WF pattern
as shown in Fig. 2, or either copied or moved in the KP pattern); ii) expire,
to evict all the expired tuples; iii) reset, to empty the window (denoted by C).

The pattern is implemented by the Win WF class. The emitter and collector
threads are defined by two inner classes that extend the FastFlow single-thread
operator abstraction ff node t. The emitter implements the distribution logic
shown in Fig. 1b by calling the Fin function to extract the key and the identifier
from each input tuple. The workers are implemented by the Win Seq class
extending ff node t. Each worker maintains a window data structure for each
key, adds the received tuples to the corresponding window, checks whether
the window is triggered and starts the computation of the function Fusr that
reads all the tuples in the window container. The window results are finally
transmitted to the collector which takes care of the result ordering.

4 Patterns implementation and optimizations

In the FastFlow runtime the threads implementing high-level parallel patterns
cooperate by exchanging memory pointers to shared data structures through
push/pop operations on lock-free queues [1]. A critical aspect to be addressed
from the performance viewpoint is the dynamic memory allocation of the
tuples received at a high speed from the stream. To reduce the programming
complexity, our solution is designed with the goal of hiding the way in which
tuples and results are allocated within the pattern.

Once obtained a memory pointer from the input queue, a worker copies (or
moves) the tuple into the corresponding window by calling the insert method.
The designer of the window data structure (e.g., it can be the user himself)
does not need to know how the tuple has been originally allocated by the
previous stages of the application. Similarly, the user function Fusr takes the
result as an input argument passed by reference. Therefore, the user is unaware
of how the result data structure has been allocated, and his function code only
fills its content by reading the actual window container.

The runtime system is responsible for dealing with the allocation/deallo-
cation of input tuples and output results using strategies enabling fine-grained
scalable parallelism. The general picture of our approach is sketched in Fig. 3
by referring to the example previously shown in Fig. 2.

The programmer is in charge of writing the code of the Generator operator,
and to allocate the input tuples received from the socket. Typically, since a
stream is a large sequence of elements, tuples are stored in contiguous virtual
memory areas or allocated in batches of several tuples. Similarly, the user ex-
pects that the results produced by the pattern are allocated using a desired
allocator, which will be used to free the memory space in the final stage (the

8 Torquati et. al.

external
input

allocator(s)

.

.

.
Generator Consumer

F_usr()=

internal
input

allocator(s)

free

alloc

internal
output

allocator(s)

alloc

free

external
output

allocator(s)

alloc

free

free

alloc

copy copy

E

W

W

C

Fig. 3: General picture of a parallel pattern working on sliding-window com-
putations.

Consumer in the figure). We call these allocators input/output external allo-
cators from the pattern viewpoint (they are provided as input parameters of
the pattern constructor).

The tricky part of the pattern implementation is that input tuples, allo-
cated outside the pattern, must be used within the pattern and deallocated by
the run-time support when they have been used by all the workers in charge
of processing them. This raises two important problems that need to be solved
from the performance perspective:

– ownership passing : in our implementation an entity having a pointer to a
shared data structure in its active scope has the ownership of that data.
Both for the KP and WF patterns, the ownership of the input tuples must
be transferred from the emitter to the workers, and this must be efficiently
implemented. Only the entity owning the data can destroy it and deallocate
the utilized dynamic memory;

– memory allocation: input streams of high-frequency data streaming appli-
cations usually have very fast rates (hundreds of thousands or even millions
of tuples per second). This implies that dynamic memory allocation must
be properly implemented in such a way as to avoid fine-grained synchro-
nizations among threads.

The rest of this section will be devoted to analyzing these two problems
and to designing proper countermeasures.

4.1 Ownership passing methods

The KP and WF patterns have different semantics for how the ownership of
an input tuple is transferred from the emitter to the workers. In the case of
the KP, the unique ownership of the tuple is transferred from the emitter to
one worker, the one assigned to the tuple’s key attribute. In fact, once routed
to the worker, the emitter does not need the tuple anymore, while the worker
is responsible to copy (or move) it in the corresponding window data structure
and then to destroy it by deallocating the corresponding storage.

The WF pattern represents a more interesting case because each tuple
can be forwarded to multiple workers (statically known). The emitter trans-
fers the shared ownership of the tuple to the destination workers that use the

On Dynamic Memory Allocation in Data Stream Processing 9

tuple and perform its destruction/deallocation when all of them have done
with it. Therefore, some form of reference counting is needed to understand
when a worker can destroy a tuple and release its storage. In the current Fast-
Flow release (v2.1.3), lock-free queues work with raw pointers (single machine
word, i.e. 4 or 8 bytes). There are two basic ways to implement the necessary
semantics:

– the first is a workaround, in which the emitter makes some copies of the
input tuple, one for each worker that expects to receive it. A raw pointer to
a distinct copy is then passed to each worker by the FastFlow runtime, and
the worker can update the corresponding window and safely destroy/deal-
locate its copy. Despite its simplicity, this approach pays the extra-overhead
of making multiple copies serially in the emitter;

– the second approach uses a custom wrapper struct built around a tu-
ple and containing: i) a raw pointer to the tuple; ii) an atomic counter
(atomic<size t>) initialized to the number of workers that will receive
that tuple. The FastFlow runtime multicasts the pointer to the same wrap-
per instance to all the workers that should receive the pointed tuple. Each
worker uses the tuple and decreases the counter atomically. The worker who
last decrements the counter, deallocates both the tuple and its wrapper.

Another possibility is to try to exploit the C++11 features offered by the
family of smart pointers and more specifically by shared pointers (shared ptr),
which implement the same concept of our wrapper but with a more power-
ful semantics. A shared pointer object maintains a pointer to a shared data
(resource) and a pointer to a struct (called control block) containing a refer-
ence counter. When a shared pointer is destroyed, the counter is automati-
cally decremented and the resource is destroyed and deleted when the counter
reaches zero. When a shared pointer is copied, the counter is incremented.

4.1.1 Passing C++ shared pointers through lock-free queues

The main technical problem to be solved in the FastFlow runtime is to adapt
the lock-free queue implementation to accept shared pointers instead of raw
pointers without losing the lock-free property. In the native implementation,
the synchronization between the producer and consumer threads is guaranteed
by the write atomicity on single memory words, which is provided by all the
relevant architectures. Since queue slots are raw pointers (whose size is one
word in most architectures), the consumer can “see” an update by the producer
to a queue slot by polling on the slot (until the slot is not null), as shown in
Fig. 4a. In contrast, a shared pointer requires two words to be stored, thus
the simple polling approach is not correct in this case: if the consumer sees an
update to one word of the slot, it does not know if the other words have been
updated or not. More precisely, the polling approach would be correct if one
could guarantee that a particular word is always the last to be written during
a multi-word update; obviously this assumption can not be made in the case
of a system-provided implementation.

10 Torquati et. al.

cache line

P P P…… …

CONS PROD

…

(a) Queue of raw pointers.

cache line

F FXPP XPP XPPF…… …

CONS PROD

(b) Queue of shared pointers.

Fig. 4: Synchronization flags are denoted by F, whereas P represents a shared
pointer word and X are padding words.

Fig. 4b illustrates the solution we adopted to overcome the issue. Each
slot of the queue is composed of several fields, not just one word as in the
standard implementation. The first field is a word representing a boolean flag,
two words are used for the shared pointer, and the rest of the bytes of the slot
are used as a padding space to properly align the data to the cache line size.
On machines with L1 cache lines of size 64 bytes, two queue slots can be stored
per cache line. Each push operation first updates the shared pointer words (in
any order), then sets the synchronization flag. It is important to observe that
on some architectures a memory fence is needed in order to guarantee such
first-then relation. With this protocol, when the producer sees an update to
the synchronization flag, it can safely read the respective shared pointer.

With this slight modification of the FastFlow queue, shared pointers can
be used to exchange the ownership of a shared data structure between threads.
In order to use the new implementation, we have adapted the FastFlow API to
accept shared pointers in addition to standard raw pointers in the definition of
the sequential FastFlow nodes (extending the ff node t class) like the emitter,
worker and collector of our pattern implementation.

4.2 Custom memory allocation of streaming data

The second problem mentioned at the beginning of this section concerns the
efficiency of the dynamic memory allocation mechanism, which is affected by
two main issues:

– the pattern implementation must be aware of how the input tuples have
been allocated in the previous stages of the application (i.e. by the use
of external allocators as shown in Fig. 3). For example, if the storage of
each tuple has been created separately, single tuples must be deallocated in
the workers when they can be destroyed. Instead, if tuples are allocated in
larger blocks, the pattern runtime should keep track of the destroyed tuples
and deallocate the block storage when all its tuples have been destroyed.
This task depends on the external allocation strategy outside the pattern
control, and it is difficult to be managed inside the pattern in a general way.
Moreover, the external allocator could be not efficient to achieve acceptable
performance;

On Dynamic Memory Allocation in Data Stream Processing 11

– in streaming patterns the tuples allocation/deallocation activities are exe-
cuted very frequently in general, according to the input rate of the stream.
The same problem affects the allocation of output results within the pat-
tern, though less severely because just one output result is produced per
window activation (one every s tuples in the case of count-based windows).

To solve both the issues, the pattern runtime uses internal input/output
allocators optimized to manage small objects exchanged according to the
producer-consumer paradigm representative of the streaming context. Once
a tuple is received, the emitter copies it by requesting a memory area to the
internal allocator, and passes a pointer/shared pointer to the worker(s). The
original tuple is deallocated by the emitter using the external input allocator
provided during the pattern construction. Symmetrically, the worker requests
a memory area for allocating a result object to the internal output allocator,
executes the Fusr function and passes a pointer/shared pointer to the result to
the collector, which in turn transmits it to the final stage by eventually copy-
ing it using the external allocator that the user expects to use. This whole
idea is depicted in Fig. 3.

In the next section we will describe the FastFlow custom allocator that
targets the use cases of our patterns

4.2.1 FastFlow allocator

The FastFlow framework provides a custom allocator optimized for the alloca-
tion of small objects used in a producer-consumer way. It is based on the idea
of slab allocator [4]. A slab is a contiguous region of memory split into equal-
size chunks plus a header containing information about how many of those
chunks are in use. Virtual memory is acquired and released per slab using a
general-purpose allocator (by default libc malloc/free calls). The allocator is
implemented as a C++ class that provides malloc-like and free-like methods.

A set of slabs, for a given object size, are pre-allocated in a local cache, so
that when a request to allocate memory for an object of that size is received,
it can be immediately served by using a free chunk. A request to release an
object just produces a new item in the free chunk list without really releasing
virtual memory. Only when all the chunks of a slab have been released, the
slab memory is returned to the general-purpose allocator. This simple process
eliminates the need to search for suitable memory space thus increasing the
performance, reduces memory fragmentation and increases memory re-use [4].

The base FastFlow allocator has been implemented with the idea that only
one thread can allocate memory (mem-producer) and one or more threads
can release memory (mem-consumer(s)). This is the typical scenario of task-
farm and pipeline computations. For implementing these simple scenarios, the
FastFlow allocator internally uses lock-free Single-Producer Single-Consumer
queues [1] (i.e. the same data structure used in FastFlow to implement the
memory channels between pipeline stages). In particular, there is a queue for
each mem-consumer, where the mem-consumer is actually the only producer

12 Torquati et. al.

for the queue. The generic mem-consumer thread notifies the presence of a new
free object to the mem-producer thread by inserting the memory pointer to be
released into its own queue. When the mem-producer threads needs a chunk of
memory, the allocator first checks the presence of a free chunk in its internal
cache, if no chunk is available it tries to pop a new chunk from its input queues,
otherwise it allocates a new slab for that object size and initializes it. The cost
of initializing a new slab is the most expensive operation for the allocator,
fortunately, this cost may be paid only until the system reaches the steady
state. After that point, no new virtual memory is allocated or reclaimed.

In FastFlow, this implementation has been used as a building block for a
more general allocator that has no constraint in the number of producers/-
consumers. This notwithstanding, in this work we considered the base version
which is the most efficient although it is the less user-friendly. This last point is
not a real issue in our case, because the base FastFlow allocator can be easily
adapted to our KP and WF patterns, and most of all, the memory management
of tuples/results is completely transparent to the end-user.

5 Experiments

The architecture used for the experiments is a dual-socket Intel Xeon Ivy
Bridge running at 2.40GHz with 24 cores (12 per socket). Each core has 32KB
private L1, 256KB private L2 and 30MB shared L3. The OS is Linux 3.14.49
x86 64 (CentOS 7.1). We use gcc 4.8.5 with the optimization flag -O3.

We first study the performance of using the C++ shared pointer mechanism
for passing tuple pointers to workers, as we discussed in Sect. 4.1.1. For this
purpose, we used a simple FastFlow synthetic benchmark in which a generator
thread generates a stream of shared pointers towards a farm pattern having
24 workers. Each shared pointer points to a data token of 64 bytes. The farm
scheduler multicasts each input stream element to a subset of the workers; we
call the cardinality of the subset multicast group size.

Then, we study the high-frequency trading application described in [8].
The generator receives a stream of financial quotes represented as a tuple of
64 bytes, which are processed by a parallel operator algotrader. The operator
maintains a window of size w = 1, 000 and slide s = 25 for each stock symbol2.
At each window activation the user function aggregates quotes with a resolu-
tion interval of 1 ms and applies a model aimed at estimating the future price
of the stock symbol. The kernel uses the Levenberg-Marquardt regression algo-
rithm implemented by the C++ library lmfit3. This application is fine-grained
(the fitting procedure takes about 300 µsec), therefore it is suited to bring out
the differences between the implementation variants. With respect to the tests
presented in [6], we have globally optimized the number of allocations/deal-
locations performed by just allocating both the tuple and its wrapper with a
single operation.

2 These parameters can be changed, the values used are typical ones [8].
3 http://apps.jcns.fz-juelich.de/lmfit.

On Dynamic Memory Allocation in Data Stream Processing 13

50K

100K

200K

400K

600K

1.20M

2.00M

 0 4 8 12 16 20 24

M
ax

. r
at

e
(m

sg
/s

ec
 -

-
lo

g
sc

al
e)

Multicast group size

Max. sustainable rate (24 Workers)

wrap-std
shp-std

shp-static

(a) C++ shared pointer benchmark.

50K

300K

600K

900K

1.0M

 0 4 8 12 16 20

M
ax

. i
np

ut
 r

at
e

(t
up

le
/s

ec
)

Parallelism degree (number of Workers)

Max. sustainable rate (Window Farming)

WF-wrap_static
WF-wrap_ff

WF-wrap_std
WF-shp_std

WF-cpy_ff

(b) WF pattern

Fig. 5: a) Comparing custom wrappers and C++ shared pointers performance
by varying the number of destination workers. b) Maximum input rate sus-
tained by different variants of the WF pattern.

To avoid memory explosion, we forced the FastFlow runtime to use bounded
queues for all patterns. In particular, the size of the farm’s queues is set to
264K slots so that they are big enough to sustain high input rate avoiding to
block too frequently the emitter thread for lack of queue space. All experi-
ments have been repeated 20 times. They exhibit a small variance, therefore
error bars are not reported.

5.1 Custom wrappers vs. C++ shared pointers

Figure 5a reports the maximum rate measured running the benchmark test.
The farm pattern has a fixed number of worker threads (24) and the test is exe-
cuted by varying the multicast group size. We studied three different scenarios:
a) wrap-std where the standard FastFlow API based on raw pointer queues
is used and each message pointer is wrapped in a structure containing the data
pointer, the allocator that has been used to allocate the entire message (wrap-
per and data), and an atomic counter initialized to the multicast group size;
b) shp-std in which a standard C++ shared pointer is used together with
the FastFlow API based on shared pointer queues, the shared pointer is allo-
cated by using the call make shared which uses the standard C++ allocator;
c) shp-static that is the same of case b) but the shared pointer is allocated
by using the call allocate shared which allows to provide a custom allocator
for allocating the shared pointer. For this test, we implemented a custom al-
locator that pre-allocates upfront all memory needed without releasing it till
the end of the execution. We call this kind of allocator static allocator.

Not surprisingly, the performance of the API based on shared pointers are
worse than those obtained with the raw pointers API. The extra overhead is
not due to the dynamic memory allocator used, in fact by using the static
allocator (shp-static), the performance gain is minimal ranging between 1%

14 Torquati et. al.

and 2%. Instead, we have identified at least two major factors introducing
extra overhead in substituting raw with shared pointers: 1) cache efficiency,
2) shared pointer copies. The former can be easily visualized in Fig. 4. A raw
queue slot occupies one memory word (i.e., 64 bits), therefore a cache line fits
8 slots assuming the widespread 64 bytes L1 cache lines. Conversely, a cache
line hosts 2 shared pointer queue slots, thus resulting in more cache traffic for
a given memory working set. The second factor emerges when considering a
pervasive operation in the FastFlow runtime: copying pointers. For instance,
each push/pop operation requires copying a pointer. Copying a raw pointer
has negligible cost since it amounts to a plain read/write operation in the
worst case scenario (i.e., non-cached memory). On the other hand, copying a
shared pointer requires an atomic update of the memory region holding pointer
meta-data, that are shared by all the threads accessing the pointer.

This notwithstanding, the use of shared pointer significantly simplifies the
code avoiding the explicit management of memory. In this work, our standpoint
is that of the runtime system developer, therefore our main aim is to offer
the most efficient solution without exposing low-level implementation details.
From now on, the custom wrapper solution will be our default one.

5.2 Evaluating the implementation variants

We want to measure the maximum input rate that a pattern implementation
sustains without being a bottleneck. Input tuples belong to 2, 836 uniformly
distributed stock symbols. In all experiments, each thread is pinned on a dedi-
cated core. Hyperthreading is not effective in this application, and considering
the presence of the additional threads (i.e., generator, filter, emitter, collector
and consumer stages), the maximum number of workers that can be used is
19. We do not report here the sustained input rate for the KP pattern because,
as discussed in [6], all different KP parallel variants have very similar behavior
with a maximum scalability close to the ideal one (about 18 with 19 workers).
For this pattern, the memory management is less challenging and the gain
derived from the usage of the internal FastFlow allocators with respect to the
standard one is minimal and about 1.5%.

Fig. 5b shows the highest input rate sustained with a different number
of workers by the WF patterns. We considered five variants for the patter:
WF-wrap static is a hand-made version in which we have statically preallo-
cated memory space to avoid dynamic allocations; WF-wrap ff uses the in-
ternal allocation scheme depicted in Fig. 3 using a custom wrapper for the
tuple; WF-wrap std uses the custom wrapper and libC++ new/delete opera-
tions; WF-shp std uses the shared pointer version and the standard allocator
(make shared); and WF-cpy ff in which the farm emitter executes a copy of
each tuple for each destination worker and uses the FastFlow allocator. The
WF-wrap static versions assume the length of the input stream is known,
which is unrealistic in general. It will be used as a baseline for the comparison.

On Dynamic Memory Allocation in Data Stream Processing 15

The WF pattern stresses the memory hierarchy more with respect to the
KP one. With the used window length and slide, each tuple is transmitted on
average to all the workers, and all of them perform simultaneously a copy in
the corresponding window. With an input rate of λ tuples/sec, WF performs on
average nλ copies per second while KP requires only λ copies. Furthermore, the
WF pattern requires an order preserving collector, which is not needed in KP.
This introduces extra overhead to maintain the priority queues with additional
results copies. This justifies why the scalability is not optimal in this case (14.5
with 19 workers) even with the static allocator.

The worst variant is the one where the farm emitter executes a copy of
each tuple to the destination workers. While this keeps the deallocation easier
and less costly, it makes the emitter service time proportional to the number
of copies. This is the reason why the curve in the figure drops for parallelism
degrees greater than 8 (WF-cpy ff). The shared pointers version scales better
up to 10 (WF-shp std) workers and then drops down more quickly due to the
higher costs of managing the shared pointers. The custom wrapper solution,
used with the FastFlow internal allocator, provides the best results. The dis-
tance with the static version is about 17% and the gain derived from the usage
of the FastFlow allocator on the standard allocator is about 10%.

5.3 Use of existing allocators

The idea to use custom allocators for the producer-consumer scheme is effective
in optimizing the scheduling/release of input tuples and output results, and
in recycling their memory areas. In contrast, general-purpose allocators are
application-wise and can further speedup the execution of dynamic memory
allocations everywhere in the application code (e.g., inside the function Fusr).
To cover the possible optimization of dynamic memory allocations in all the
parts of the application, we studied the combined use of the custom allocator
on top of general-purpose ones specifically targeted for parallel processing.
In particular, we considered the use of Hoard [3] (version 3.11), TBB scalable
allocator [14] (version shipped with Intel Parallel Studio 2017 – 2017.0.098)
and Jemalloc allocator [10] (version 4.4.0), which are widely used in multicore-
based parallel programming. All of them can be used as drop-in replacement
for standard allocation calls 4.

Figure 6a shows the results only for the WF pattern for space reasons. By
enabling Jemalloc and TBB allocators we obtain a performance increase of
about 10% up to 16 and 17 workers, but then the performance drops. Instead,
the Hoard allocator provides only a marginal improvements with respect to
the standard allocator, but it keeps scaling up to 19 workers providing a 6%
better performance. All external allocators tested intercept and replace all the
dynamic memory allocation calls in the pattern, i.e., also the ones in the lmfit

4 By setting the LD PRELOAD environment variable to force loading the allocator library
before libc.

16 Torquati et. al.

50K

300K

600K

900K

1.0M

0 4 8 12 16 17 18 19 20

M
ax

. i
np

ut
 r

at
e

(t
up

le
/s

ec
)

Parallelism degree (number of Workers)

Max. sustainable rate (Window Farming)

WF-wrap_static
WF-wrap_hoard

WF-wrap_std
WF-wrap_tbb

WF-wrap_jemalloc

(a) Rate with different external allocators.

50K

300K

600K

900K

1.0M

0 4 8 12 16 17 18 19 20

M
ax

. i
np

ut
 r

at
e

(t
up

le
/s

ec
)

Parallelism degree (number of Workers)

Max. sustainable rate (Window Farming)

WF-wrap_static
WF-wrap_ff+hoard

WF-wrap_ff
WF-wrap_ff+tbb

WF-wrap_ff+jemalloc

(b) Combining FF with other allocators.

Fig. 6: Effect of using different external allocators in the WF implementation.

600K
700K
800K
900K
1.0M

M
ax

. i
np

ut
 ra

te
 (t

up
le

s/
se

c)

WF pattern with different allocators

(19)

(18) (19) (17) (16) (19)
(19)

(16) (17)

WF-static
WF-std

WF-hoard
WF-tbb

WF-jemalloc
WF-ff

WF-ff+hoard
WF-ff+tbb

WF-ff+jemalloc

Fig. 7: Maximum rate sustained by the WF pattern with different memory
allocators. On top of the bar is reported the number of workers needed.

function called by the workers. Thus, the idea is to use together both an in-
ternal allocator tailored for the inter-thread interaction scheme of the pattern
and an external general purpose allocators for optimizing user’s functions. Fig-
ure 6b shows the results obtained combining the FastFlow allocator with some
external allocators. The outcome of this approach is a 16% improvement on
the standard version obtained combining the Hoard allocator and the Fast-
Flow allocator. The loss of this solution with respect to the reference static
one is only 11%. The Jemalloc and TBB allocators do not produce the same
effects as the Hoard allocator. Although they provide very good performance
up to 16 and 17 workers respectively, when used together with the FastFlow
allocator the performance decreases though less quickly. This issue is proba-
bly due to the interferences between the two allocators that are particularly
relevant when the number of worker threads is high.

To allow a direct comparison of the best results obtained on the reference
static version, Fig. 7 summarizes the maximum performance achieved by the

On Dynamic Memory Allocation in Data Stream Processing 17

WF pattern when using different memory allocators and their combined use
with the FastFlow allocator.

Finally, we have evaluated the different versions also regarding memory
occupancy. Table 1 shows an experiment in which the application is fed by
a real financial dataset from the NASDAQ market5, composed of about 50M
quotes generated with an accelerated (50×) variable rate. We tested the WF

pattern in different variants, executed with 8 workers (the minimum to sustain
the peak rate). The data reported in the table are the memory consumption
in the steady-state phase. As can be seen, the differences among allocators are
minimal and not significant on modern multicore platforms. The performance
benefits are achieved without increasing memory consumption significantly.

S H T J FF+S FF+H FF+T FF+J

Memory (MB) 2498 2524 2253 2320 2643 3093 2390 2480

Table 1: Memory used by the WF pattern with different allocators (S:standard,
H:Hoard, T:TBB, J:Jemalloc, FF:FastFlow). The WF pattern uses 8 workers.

6 Conclusions and future work

This paper discusses dynamic memory management effects in C++ DaSP
applications for computing sliding-window analytics in real-time. We studied
different design choices proposing optimizations techniques for stream par-
allel patterns implemented by using the FastFlow runtime framework. The
experiments show that the combined use of a custom allocator tailored for
the patterns together with a scalable general-purpose allocator and a custom
variant of the C++ shared pointer mechanism allows achieving a performance
improvement on the version using just the standard allocator and the C++
shared pointer mechanism.

Our work deserves future extensions. The approach and the presented cus-
tom allocator are tailored for two parallel patterns that represent suitable ways
to parallelize a wide class of streaming problems. However, other parallel pat-
terns can be identified, typically with less general applicability but potentially
able to achieve better performance: e.g., the patterns based on the pane-based
model enabling reuse of partial computations between subsequent windows [9].
We plan to study how our custom allocation scheme can be adapted in order
to be beneficial in those cases, also by studying other streaming workload
scenarios in addition to the financial application described in this paper.

Acknowledgements This work has been partially supported by the H2020 RePhrase
(ICT-2014-1) project.

5 Daily trades and quotes of 30 Oct 2014 downloadable at http://www.nyxdata.com.

18 Torquati et. al.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: An efficient
unbounded lock-free queue for multi-core systems. In: Proc. of 18th Intl. Euro-Par 2012
Parallel Processing, LNCS, vol. 7484, pp. 662–673. Springer (2012)

2. Andrade, H., Gedik, B., Turaga, D.: Fundamentals of Stream Processing. Cambridge
University Press (2014). Cambridge Books Online

3. Berger, E.D., McKinley, K.S., Blumofe, R.D., Wilson, P.R.: Hoard: A scalable memory
allocator for multithreaded applications. SIGOPS Oper. Syst. Rev. 34(5), 117–128
(2000)

4. Bonwick, J.: The slab allocator: An object-caching kernel memory allocator. In: USENIX
summer, vol. 16. Boston, MA, USA (1994)

5. Danelutto, M., Matteis, T.D., Mencagli, G., Torquati, M.: Parallelizing high-frequency
trading applications by using c++11 attributes. In: Trustcom/BigDataSE/ISPA, 2015
IEEE, vol. 3, pp. 140–147 (2015)

6. Danelutto, M., Mencagli, G., Torquati, M.: Efficient dynamic memory allocation in data
stream processing programs. In: UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, 2016
IEEE, pp. 1181–1188 (2016)

7. Danelutto, M., Torquati, M.: Structured parallel programming with ”core” fastflow. In:
V. Zsók, Z. Horváth, L. Csató (eds.) Central European Functional Programming School,
LNCS, vol. 8606, pp. 29–75. Springer (2015)

8. De Matteis, T., Mencagli, G.: Keep calm and react with foresight: Strategies for low-
latency and energy-efficient elastic data stream processing. In: Proceedings of the
21th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2016. ACM, New York, NY, USA (2016)

9. De Matteis, T., Mencagli, G.: Parallel patterns for window-based stateful operators
on data streams: an algorithmic skeleton approach. International Journal of Parallel
Programming (to appear) (2016)

10. Evans, J.: Scalable memory allocation using jemalloc (2011). Facebook notes
11. Falt, Z., Krulǐs, M., Bednárek, D., Yaghob, J., Zavoral, F.: Towards efficient locality

aware parallel data stream processing. Journal of Universal Computer Science 21(6),
816–841 (2015)

12. Michael, M.M.: Scalable lock-free dynamic memory allocation. SIGPLAN Not. 39(6),
35–46 (2004)

13. Perera, S., Suhothayan, S.: Solution patterns for realtime streaming analytics. In: Pro-
ceedings of the 9th ACM International Conference on Distributed Event-Based Systems,
DEBS ’15, pp. 247–255. ACM, New York, NY, USA (2015). DOI 10.1145/2675743.
2774214. URL http://doi.acm.org/10.1145/2675743.2774214

14. Reinders, J.: Intel Threading Building Blocks, first edn. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA (2007)

15. del Rio Astorga, D., Dolz, M.F., Sanchez, L.M., Blas, J.G., Garćıa, J.D.: A C++ Generic
Parallel Pattern Interface for Stream Processing, pp. 74–87. Springer International
Publishing, Cham (2016). DOI 10.1007/978-3-319-49583-5 5

16. Risco-Mart́ın, J.L., Colmenar, J.M., Hidalgo, J.I., Lanchares, J., Dı́az, J.: A methodol-
ogy to automatically optimize dynamic memory managers applying grammatical evo-
lution. Journal of Systems and Software 91, 109 – 123 (2014)

17. Sattler, K.U., Beier, F.: Towards elastic stream processing: Patterns and infrastructure.
In: G. Cormode, K. Yi, A. Deligiannakis, M.N. Garofalakis (eds.) BD3@VLDB, CEUR
Workshop Proceedings, vol. 1018, pp. 49–54. CEUR-WS.org (2013). URL http://dblp.

uni-trier.de/db/conf/vldb/bd32013.html#SattlerB13

18. Wu, J., Tan, K.L., Zhou, Y.: Window-oblivious join: A data-driven memory management
scheme for stream join. In: 19th International Conference on Scientific and Statistical
Database Management (SSDBM 2007), pp. 21–21 (2007). DOI 10.1109/SSDBM.2007.43

