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Abstract

Within the semiclassical Boltzmann transport theory in the constant relaxation-time approxi-

mation, we perform an ab initio study of the transport properties of selected systems, including

crystalline solids and nanostructures. A local (Gaussian) basis set is adopted and exploited to an-

alytically evaluate band velocities as well as to access full and range-separated hybrid functionals

(such as B3LYP, PBE0 or HSE06) at a moderate computational cost. As a consequence of the

analytical derivative, our approach is computationally efficient and does not suffer from problems

related to bands crossings.

We investigate and compare the performance of a variety of hybrid functionals in evaluating

Boltzmann conductivity. Demonstrative examples include silicon and aluminum bulk crystals as

well as two thermoelectric materials (CoSb3, Bi2Te3). We observe that hybrid functionals, other

than providing more realistic band gaps – as expected – lead to larger band widths and hence allow

for a better estimate of transport properties, also in metallic systems. As a nanostructure proto-

type we also investigate conductivity in Boron-Nitride substituted graphene, in which nanoribbons

(nanoroads) alternate with BN ones.
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I. INTRODUCTION

Properties of solids that are related to the motion of electrons through the material, such

as conductivity or thermoelectricity, evidently are of primary interest for the technological

development. As a direct consequence, the ability to accurately simulate such properties

can be key to foster the development of new materials and devices, as well as to understand

their fundamental physics underpinning the relevant features.

Electrical and thermal conductivities are always taken into account in the design of any

electronic device, either as desired or undesired properties. As an example, great interest

resides in the possibility to have materials with strongly anisotropic conductivities. Similarly,

thermoelectric materials are one among the “hot” topics of today’s science, under the promise

of converting waste heat into useful electricity.1 The most important quantity to look at,

when trying to assess the potential interest of a thermoelectric material, is the dimensionless

figure-of-merit, ZT ,

ZT =
σS2T

κ
(1)

where T is the temperature, S is the Seebeck coefficient (measuring the average entropy

carried by a charge in the material), σ is the electrical conductivity, and κ = κp + κe is the

thermal conductivity which is composed of phonon thermal conductivity, κp, and electronic

thermal conductivity, κe. A large power factor (σS2) means efficiency in the heat-electricity

conversion, while a small thermal conductivity is required to maintain a temperature gradient

and reduce conduction heat losses.2,3

As mentioned above, for the purpose of in silico characterization of crystalline solids

there is much interest in obtaining an estimate of conductivity and thermoelectric power of

materials. ab initio or first principles methods, such as provided by Kohn-Sham Density

Functional Theory (DFT), are widely accepted as the best compromise between cost and

accuracy. So far, to our knowledge, there exist two main codes that can post-process a DFT

wavefunction for evaluating the electron transport properties through the solution of the

Boltzmann transport equation: BoltzTrap4 and BoltzWann.5 From the theoretical point of

view, the critical quantity that has to be calculated is the band velocity, that in atomic unit

(a.u.) is expressed as the derivative of the band energies E(i,k), with respect to a reciprocal

space vector kq

vi,q(k) =
∂Ei(k)

∂kq
. (2)
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The two abovementioned codes use different approaches for evaluation of such derivative.

BoltzTrap relies on a Fourier expansion of the band energies and differentiates numerically.

BoltzWann exploits a maximally-localized Wannier function basis, and after localization the

band derivatives is evaluated analytically at each k point. Both approaches are now well

assessed, but are eventually prone to suffer of stability issues due to the numerical accuracy

of the procedure, entanglement of electronic bands, or rapidly increasing computational cost

with system size and/or tightening of computational parameters.

In this work we exploit the local atom–centered Gaussian basis set implemented in the

CRYSTAL code6 to combine together the possibility to perform analytical derivatives of

the electronic bands (to evaluate Boltzmann conductivity) with the numerical efficiency

in treating non-local exchange and hybrid functionals. This allows us to investigate the

performance of a variety of hybrid functionals in describing the electronic conductivity within

the semiclassical Boltzmann theory.

The paper is structured as follows. After some preliminaries on semiclassical Boltzmann

transport theory in Sec. II. The working equations are derived and details of implemen-

tation are discussed in Section III. The developed algorithm are then, in Section IV,

applied to the study of prototypical systems, as bulk silicon and aluminum as well as two

thermoelectric materials (CoSb3, Bi2Te3). As a possible real-life application, we finally

investigate conductivity in Boron-Nitride substituted Graphene (BNsG).

II. SEMICLASSICAL BOLTZMANN TRANSPORT THEORY

A detailed description of the semiclassical Boltzmann transport theory is beyond the scope

of this article. However, since it is central to the present discussion, we briefly review its

main results here. The reader is redirected to more specialized textbooks for more details.7–9

The thermoelectric processes linking non-equilibrium coupled processes such as the elec-

trical and heat fluxes10 were studied by Onsager and Callen11–13 in the first half of the XXth

century, in the framework of the thermodynamics of dissipative system. In their model,
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current densities can be expressed asJE

JQ


︸ ︷︷ ︸

current densities

=

 σ σS

TσS κel


︸ ︷︷ ︸

transport coefficients

−∇V

−∇T


︸ ︷︷ ︸

forces

(3)

where JE is the electrical current density, JQ is the heat current density, σ is the electrical

conductivity, S is the Seebeck coefficient, T the temperature, V the electric potential and

κel the electron contribution to the thermal conductivity. Eq. (3) can be derived from

Boltzmann’s semiclassical transport theory,14 providing the expressions of the three so-called

transport coefficients: σ, σS and κel,

[σ]qr(µ, T ) = e2
∫

dE
(
− ∂f0
∂E

)
Ξqr(E) (4)

[σS]qr(µ, T ) =
e

T

∫
dE

(
− ∂f0
∂E

)
(E − µ)Ξqr(E) (5)

[κel]qr(µ, T ) =
1

T

∫
dE

(
− ∂f0
∂E

)
(E − µ)2Ξqr(E) (6)

where µ is the chemical potential or the Fermi level, E is the energy, f0 is the Fermi-Dirac

distribution and Ξ is the transport distribution function (TDF). In the above equations, the

core of the transport coefficients, Ξ, is defined as15,16

Ξqr(E) = τ
∑
k

1

Nk

1

V

∑
i,j

vi,q(k)vj,r(k)δ
(
E − Ei(k)

)
(7)

where vi,q(k) is the velocity of the i-th band calculated along the direction q, τ is the

lifetime which we assumed to be not dependent on k according to the constant relax time

approximation.

III. THEORY AND IMPLEMENTATION

A. Theoretical Framework

We solve the Hartree-Fock or Kohn-Sham equations in the LCAO (Linear Combination of

Atomic Orbitals) approach.17 In LCAO each Crystalline Orbital (CO), ψi(r;k), is expressed

4
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as a linear combination of Bloch functions (BFs), ϕµ(r;k). These, in turn, are formally

defined in terms of local functions, φµ(r), referred to as Atomic Orbitals (AOs):

ψi(r;k) =
∑
µ

cµ,i(k)ϕµ(r;k) (8)

ϕµ(r;k) =
∑
g

φµ(r−Aµ − g) eik·g (9)

where r is a cartesian vector and g is a lattice vector, both in direct space. φµ(r−Aµ−g) is

one – or a contraction of several – Gaussian(s) function centered on an atom having cartesian

coordinates Aµ. The g summation is in principle infinite. However, Eq. (9) is never used

explicitly, and all lattice summations appearing in the working equations (see below) are

screened according to suitable thresholds.

The matrix C(k) of the expansion coefficients of the Bloch functions, cµ,i(k) appearing

in Eq. (8), are calculated by solving the matrix equation for each reciprocal lattice vector,

k:

F(k)C(k) = S(k)C(k)E(k) (10)

where the coefficients are subject to the orthonormality condition

C†(k)S(k)C(k) = 1 (11)

Here S(k) is the reciprocal space image of the overlap matrix between basis functions,

S(k) =
∑
g

S(g) eik·g , (12)

and F(k) is the Fock matrix in reciprocal space:

F(k) =
∑
g

F(g) eik·g . (13)

By iteratively solving (10) we obtain the E(k) is the diagonal matrix of eigenvalues,

E(k) = C†(k)F(k)C(k) (14)

yielding the energy bands. F is the usual Hartree-Fock (or Kohn-Sham) Hamiltonian,

taking into account Ewald summations and spheropole terms for handling the otherwise

non-convergent infinite Coulomb series – see for instance Eq. (5) of Ref. [18] or Eq. (11) of

Ref. [19]; the reader can refer to Ref. [17] for a full discussion on the topic.
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B. Calculation of band velocities

The focus of the present development is in obtaining the band velocities, appearing in

Eq. (7), as derivatives of the electronic bands, as in Eq. (2). By differentiating Eq. (10) with

respect to a reciprocal space vector k, we obtain:

∂F(k)

∂k
C(k)+F(k)

∂C(k)

∂k
=
∂S(k)

∂k
C(k)E(k)+

+ S(k)
∂C(k)

∂k
E(k) + S(k)C(k)

∂E(k)

∂k

(15)

According to Refs. 20, 21 and 22, we express the derivative of the coefficients with respect

to the quasi-momentum index k as:

∂C(k)

∂k
= C(k)Q(k) (16)

The explicit form of the Q(k) matrix can be found in Ref. [23]. However, as we will show

shortly, it will not be needed here.

By multiplying Eq. (15) on the left by C(k)†, and exploiting Eqs. (11), (14) and (16),

we obtain:

C†(k)
∂F(k)

∂k
C(k) +E(k)Q(k) =

C†(k)
∂S(k)

∂k
C(k)E(k) +Q(k)E(k) +

∂E(k)

∂k

(17)

If we are interested only in the diagonal terms of ∂E(k)
∂k

, we can exploit the fact that

Ei(k)Q(k) = Q(k)Ei(k), and then write:

∂Ei(k)

∂k
=

[
C†(k)

∂F(k)

∂k
C(k)

]
ii

−
[
C†(k)

∂S(k)

∂k
C(k)E(k)

]
ii

= vi,q(k)

(18)

that is the desired result where, as anticipated, the Q(k) matrix does not appear anymore,

and hence we have all the required ingredients just from solving the self-consistent field

equations (10). We note that the same result, in a different context, was obtained by

Champagne et al.20 and Otto et al.21

In a local basis set it is trivial to obtain the k−vector derivative of the Fock and overlap

matrices required by Eq. (18). After (13) :

∂F(k)

∂kq
=

∑
g

i gq F(g) e
ik·g (19)
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and similarly

∂S(k)

∂kq
=

∑
g

i gq S(g) e
ik·g (20)

where q is a cartesian direction.

A similar technique as the one outlined in this section has been used in Ref.24 to compute

the real and complex band structures of one dimensional systems.

IV. RESULTS

In this section we present our electron transport calculation on several prototypical solids,

with a focus on the role of the main choices of computational setting, namely the basis set

and Hamiltonian. As we will show, the use of hybrid functionals does make a difference,

specially for semiconductors.

Using Eq. (7), even if within the constant relaxation time approximation, requires the

knowledge of the lifetime τ . Since the ab initio evaluation of such quantity is not yet available

in our approach, we rely here on experimentally determined values, when available. The

values we have adopted are τxx=22fs and τzz=21fs for Bi2Te3, τ=10fs for CoSb3 and Silicon,

τ=8fs for Al. See Supplementary Information for more details.

All results have been obtained with a pre-release version of the CRYSTAL17 program25

featuring the newly implemented DIIS convergence accelerator for periodic systems.26

A. Conductivity

We have computed the electrical conductivity – according to Eq. (4) – for two prototypical

systems: solid Aluminum (fcc lattice), as a representative of a metallic system, and Silicon,

the most representative and well-studied semiconductor.

For each system we have benchmarked the performance of different Hamiltonians (func-

tionals) and basis sets. We can list the several functionals tested, grouped into different

categories according to the level of approximation and the amount of Hartree-Fock (HF)

exchange included:

• Local Density Approximation (LDA).27,28

7

http://dx.doi.org/10.1063/1.4986398


• Gradient-Generalized functionals: PW9129, PBE30, WCPBE31,32

• Global hybrid functionals containing different percentage of HF exchange: B3LYP,33,34

PBE0,35 PW1PW.36

• Range–separated hybrid functionals either with short-range or long-range HF ex-

change: M06,37 HSE06,30,38 LC-ω-BLYP.39

• Pure Hartree-Fock

Similarly we have adopted basis sets of different quality, either adopting pseudopoten-

tials for core shells or all-electron ones, whose details can be found in the Supplementary

Information.

In Table I we report, for the Aluminum bulk crystal, the value of the electrical conduc-

tivity at the Fermi level. It can be seen that, taking as a reference an experimental value

of 36.5× 106(Ω·m)−1,40 pure functionals such as LDA or PBE systematically underestimate

conductivity, with significant variations according to the basis set, while hybrid functionals

yield consistently higher Fermi-level conductivities, even though the scattering of values for

different basis sets is larger. Hamiltonians with long-range exchange, such as LCω-BLYP

and HF, tend to overestimate conductivity and have convergence problems with more diffuse

basis sets. Here, the overestimation effect comes from the increase in the band width due

to the non-local exchange contribution.

In Figure 1 we report analogous results for bulk Silicon. Here it is seen that the shape of

the conductivity profile is nearly independent on the functional, and mostly on basis sets as

well (only 831G* and TZVP show a marked difference with respect to others). What makes

a difference, here, is the ability of functionals to correctly reproduce the band gap of the

system. The experimental indirect band gap is 1.17eV41 which is correctly reproduced by

hybrid functionals, and particularly HSE06 (see Table II). One might take into account an

expected 0.1eV lowering correction due to spin-orbit coupling.42

B. Thermoelectric materials

In order to further validate the correctness and applicability of the approach presented in

this paper, in Figs. 2 and 3 we present our results for the transport coefficients – Eqs. (4), (5)
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and (6) – for two well-known thermoelectric materials, namely Bi2Te3 and CoSb3. Details

on the adopted basis set, computational parameters and structure can be found in the SI –

however, in analogy with the case of Silicon, results are only mildly dependent on the basis

set quality, and mainly to the extent it affects the band gap. Results are reported for three

temperatures, 300, 500, and 700 K. In the left panel of both figures, the results obtained

with a PBE functional30 are reported, and can be compared with those in Figure 1 and 3

of Ref. [4] and in Figure 4 of Ref. [5]. The evident similarity of our results with previous

approach, despite the difference in the underlying method for obtaining the wavefunctions

(plane wave basis in those cases), is in our opinion a strong validation of the reliability of

the treatment presented in this work. In the right panel of both Figs. 2 and 3 we report the

same results obtained using the PBE035 hybrid functional.

It has to be underlined that the calculations presented here do not include spin-orbit

coupling (SOC). In fact, for such topological insulators SOC has a significant effect in the

correct description of the band gap. As shown by Crowley et al.42,43 SOC lowers the band gap

of Bi2Te3 by about 0.6eV. As a consequence, the band gaps for our calculation are expectedly

larger than the experimental estimates (≈0.15eV for Bi2Te3,
44 0.118eV45 – 0.22eV16 for

CoSb3). Crowley et al.42,43 have also widely discussed how non-hybrid functionals, like

PBE, even if apparently closer to the experimental band gap, contain some wrong physics,

while the band structure obtained by hybrid functionals well compare to the higher-level

(and more expensive) G0W0 calculations.46

C. Graphene/h-BN nanoroads

As a demonstrative application of the new ab initio treatment of conductivity outlined in

this paper, we have tackled the study of 2D heterostructures of Boron-Nitride substituted

Graphene (BNsG), where the substitution pattern is such that nano-stripes of BN and C

alternate in the plane. The structures we have studied are reported in the bottom panel

of Figure 4 and have been picked among the many that have been studied by one of the

authors in a previous work, focused on the peculiar features of their Raman spectrum.47 The

computational setup (basis set, thresholds, geometry) adopted here are exactly the same as

used in that work.

In the top panel of Figure 4 the computed conductivity is plotted for pure graphene,

9
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Figure 1: Electrical conductivity of bulk Silicon, evaluated for different functionals (panels)

and basis sets (different lines).

and for two heterostructures. The in-plane conductivities in the direction parallel (σxx) and

perpendicular (σyy) to the ribbon are reported for the latter. The well-known behaviour of

graphene in the vicinity of the Fermi level is correctly reproduced by our calculations. As

for the heterostructures, interestingly we see that little above the bottom of the conduction

band, and little below the top of valence band, the nanoribbon shows a conductivity along

the x direction that is comparable to that of graphene. The point of maximum conductivity

is different in the two structures considered (0.8 / 1.2 eV) but the behaviour is similar. On

the contrary, along the y direction the barrier of insulating BN stripes significantly reduces

the conductivity, even more so for the thicker one, as expected. All the computational details

can be found in Supplementary Information.
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Table I: Conductivity of bulk Aluminum at the Fermi level for different functionals and

basis sets. Values in 106(Ω·m)−1, to be compared with the experimental estimate of

36.5× 106(Ω·m)−1.40

DFT Functional
Basis Sets

321’ a) 86-21G* 6311Gd’a) TZVP ECP-21G*

HF / 44.26 / 38.55 40.87

LDA 26.99 25.15 25.75 20.06 24.94

PBE 25.99 24.36 25.22 20.16 24.97

PW91 26.16 24.60 25.36 20.12 24.93

WCPBE 26.01 24.48 25.31 20.15 24.96

B3LYP 31.95 29.05 29.44 23.84 28.75

PW1PW 30.47 27.73 28.55 23.99 29.42

PBE0 31.30 28.24 29.35 25.01 29.63

M06 30.24 27.85 29.17 24.88 28.97

HSE06 28.33 26.12 27.47 22.48 27.17

LC-ωBLYP / 41.93 / 36.28 39.58

a) The most diffuse exponent have been rescaled, see SI for more details.

V. CONCLUSIONS

In this work we have described a novel implementation for calculating band velocities as

the analytical derivative of electronic bands. This was made possible by the adoption of a

basis set of local atom-centered orbitals (Gaussian functions) as adopted by the CRYSTAL

code. Posed in the framework of semi-classical Boltzmann transport theory, this allowed us

to devise a scheme for the calculation of electronic transport and thermoelectric properties

of solids, that is both robust and simple to use – as it requires no input parameters from

the user other than the reciprocal space sampling mesh (and, eventually, a smearing factor

for the distribution function). Rooted in the use of a localized basis set, this approach can

naturally be combined with the efficient use of hybrid functionals.

We have validated the correctness and the reliability of the approach on two well-known

thermoelectric materials, CoSb3 and Bi2Te3, and compared results with those available in the
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Table II: Indirect silicon band gap calculated with different functionals using the 6311Gd’

basis set.

Functional Band Gap (eV)

LDA 0.53

WCPBE 0.53

PBE 0.63

PW91 0.64

HSE06 1.18

PW1PW 1.56

B3LYP 1.78

PBE0 1.77

M06 2.08

LC-ωBLYP 5.52

HF 6.22

literature. In addition, we have documented the effect of basis set and functional choice, with

a focus on the hybrid functionals, on the evaluation of conductivity of a metallic (Aluminum)

and a semiconducting (Silicon) system. Finally, directional electron conductivities of pure

graphene and two boron nitride/graphene 2D structures were successfully computed.

Our results show that hybrid functionals tend systematically increase the Boltzmann

conductivity with respect to local or semilocal functionals, such as LDA or GGA’s. Contrary

to the expected increased localization of the orbitals, the conductivity increase is connected

to the larger band widths obtained with hybrid functionals.

Supplementary Material

See supplementary material for full details on crystal structures and computational

setup.

∗ Electronic address: lorenzo.maschio@unito.it
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Figure 2: CoSb3: electron conductivity (top panel), Seebeck (middle panel) and electronic

thermal conductivity (bottom panel) as obtained for different temperatures and two

different functionals: one pure GGA (PBE) and one hybrid (PBE0). The Seebeck curve for

the PBE functional has been magnified by a factor of 5 in order to bring it to the same

scale as the PBE0 one.
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