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Abstract o

*

orino, Italy

Within the semiclassical Boltzmann transport theory in the constant relaxation-time approxi-

mation, we perform an ab initio study ol“&ﬁnﬁpom properties of selected systems, including
1

crystalline solids and nanostructures. ]'(m$ ( ssian) basis set is adopted and exploited to an-
.~

\K to access full and range-separated hybrid functionals
m

alytically evaluate band velocities &
(such as B3LYP, PBEO or HSé\‘%&S derate computational cost. As a consequence of the

analytical derivative, our approach is“epmputationally efficient and does not suffer from problems

related to bands crossings:

We investigate and, comipare the performance of a variety of hybrid functionals in evaluating

Boltzmann cond CNK monstrative examples include silicon and aluminum bulk crystals as
well as two t rr@lectrl materials (CoSbs, BisTes). We observe that hybrid functionals, other

iding movre realistic band gaps — as expected — lead to larger band widths and hence allow

fiter im;tfe of transport properties, also in metallic systems. As a nanostructure proto-

type we also iﬁvestigate conductivity in Boron-Nitride substituted graphene, in which nanoribbons

ﬁ
( anoroags
\<

alternate with BN ones.
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Properties of solids that are related to the motion of electrons through the material, such
as conductivity or thermoelectricity, evidently are of primary interest for the technological
development. As a direct consequence, the ability to accurately flulate such properties
can be key to foster the development of new materials and devices; as'well as to understand
their fundamental physics underpinning the relevant features. 3

Electrical and thermal conductivities are always taken inN t in the design of any

)@\an example, great interest

resides in the possibility to have materials with strongly anisotrepic conductivities. Similarly,

electronic device, either as desired or undesired proper

thermoelectric materials are one among the “hot” :‘:o.pics toéay’s science, under the promise

of converting waste heat into useful electricity.’

when trying to assess the potential interest a%n‘(?@lectric material, is the dimensionless

e fﬁ))st important quantity to look at,

figure-of-merit, Z7T',

E«F\\i@ (1)
K

where T' is the temperature, S i t%fbﬂc coefficient (measuring the average entropy
carried by a charge in the materia./\% he electrical conductivity, and k = &, + K. is the
thermal conductivity which is Wd of phonon thermal conductivity, &,, and electronic
thermal conductivity, rge power factor (¢5%) means efficiency in the heat-electricity
conversion, while a s liqj\% conductivity is required to maintain a temperature gradient
and reduce condu t% )0 ses.23

b

As mentione }bK r the purpose of in silico characterization of crystalline solids

i@est in‘obtaining an estimate of conductivity and thermoelectric power of

materials<;b<1 0 or first principles methods, such as provided by Kohn-Sham Density

Functional 60161 (DFT), are widely accepted as the best compromise between cost and

accurQnKSoyar, to our knowledge, there exist two main codes that can post-process a DF'T

wévaune’tion for evaluating the electron transport properties through the solution of the
ol

n transport equation: BoltzTrap* and BoltzZWann.®? From the theoretical point of

Swﬁhe critical quantity that has to be calculated is the band velocity, that in atomic unit

(a.

space vector kg

.) is expressed as the derivative of the band energies E(i, k), with respect to a reciprocal

OE;(k)

Vi q(k) = ok, . (2)
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Publishiffic two abovementioned codes use different approaches for evaluation of such derivative.
BoltzTrap relies on a Fourier expansion of the band energies and differentiates numerically.
BoltzWann exploits a maximally-localized Wannier function basis, and after localization the
band derivatives is evaluated analytically at each k point. Both approaches are now well

assessed, but are eventually prone to suffer of stability issues due %the numerical accuracy

of the procedure, entanglement of electronic bands, or rapidly i re3sin omputational cost

with system size and/or tightening of computational parameters:
In this work we exploit the local atom—centered Gaussi \bs&w implemented in the

CRYSTAL code® to combine together the possibility. to ?f'ﬁrm analytical derivatives of

the electronic bands (to evaluate Boltzmann cond tivitySW h the numerical efficiency

in treating non-local exchange and hybrid funcfionals. is allows us to investigate the

performance of a variety of hybrid functionals i&gi@ the electronic conductivity within

the semiclassical Boltzmann theory.
The paper is structured as follows. ft&ne reliminaries on semiclassical Boltzmann

transport theory in Sec. II. The weorking“equations are derived and details of implemen-
tation are discussed in Section I&e\developed algorithm are then, in Section IV,
applied to the study of prototypic

thermoelectric materials (CoS \B"@Teg). As a possible real-life application, we finally

investigate conductivityr@n—Ni ride substituted Graphene (BNsG).
£

4

II. SEMIC %s L BOLTZMANN TRANSPORT THEORY

A detgélfl\es iption of the semiclassical Boltzmann transport theory is beyond the scope
tic

téms, as bulk silicon and aluminum as well as two

of thiscaxt H6wever, since it is central to the present discussion, we briefly review its
main results ﬁjere. The reader is redirected to more specialized textbooks for more details.”®

@; ermoelectric processes linking non-equilibrium coupled processes such as the elec-
tric heat fluxes'® were studied by Onsager and Callen'! '3 in the first half of the XX

tury, in the framework of the thermodynamics of dissipative system. In their model,
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Jg o oS —-VV
= (3)
Jo ToS ke -VT
~—— —_—— ———

current densities transport coefficients forces

where Jg is the electrical current density, Jg is the heat current él iy, o is the electrical
conductivity, S is the Seebeck coefficient, T the temperature, %e electric potential and

ke the electron contribution to the thermal conductivit \Ex can be derived from
Boltzmann’s semiclassical transport theory,'* providing tQ}.@i ns of the three so-called

. —~
transport coefficients: o, ¢S and kg,

Zqr(E) (4)

. o
oSl n 1) =7 [ &< )(E = W)Zn(E) o)
kel 7) = g [NE() (1 — ez, (1) ()

where p is the chemical potentialor ermi level, E is the energy, fy is the Fermi-Dirac
distribution and = is the tran@li ibution function (TDF). In the above equations, the

core of the transport coefﬁcient%deﬁned as!16

11
@ % Z viq(K)vjr (K)O (E — E;(k)) (7)
/ »J

i‘e{ of the ¢-th band calculated along the direction ¢, 7 is the

where v; ,(k) is
lifetime whic W'e)ass ed to be not dependent on k according to the constant relax time

approximation.

ﬂ /
.\&3
IIT. TI)EORY AND IMPLEMENTATION

NI

Theoretical Framework

We solve the Hartree-Fock or Kohn-Sham equations in the LCAO (Linear Combination of
Atomic Orbitals) approach.!” In LCAO each Crystalline Orbital (CO), 1;(r; k), is expressed
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Publishimg linear combination of Bloch functions (BFs), ¢,(r;k). These, in turn, are formally
defined in terms of local functions, ¢, (r), referred to as Atomic Orbitals (AOs):

Zc,” )0 (r; k) (8)

k) = Zg: pu(t — A, —g) ™8 <\ (9)

where r is a cartesian vector and g is a lattice vector, both in‘d'rxp ace. p,(r—A,—g)is
0

one — or a contraction of several — Gaussian(s) function center atom having cartesian

coordinates A,. The g summation is in principle infinite. c‘)‘\.;vz?/er, Eq. (9) is never used

explicitly, and all lattice summations appearing in the Worying equations (see below) are
screened according to suitable thresholds. (
The matrix C(k) of the expansion coefficiertts of the’ Bloch functions, ¢, ;(k) appearing

in Eq. (8), are calculated by solving the m tion for each reciprocal lattice vector,
k: \
F(k G(.k;: (k)C(k)E(k) (10)
~

where the coefficients are subjec‘&che rthonormality condition

Q\\kSkC(k):1 (11)

Here S(k) is the recip %@ image of the overlap matrix between basis functions,

/ Zﬁ ) ek (12)

and F(k ®TIX in reciprocal space:
K F(K

- ZF(g) ke (13)
g
Q solvmg (10) we obtain the E(k) is the diagonal matrix of eigenvalues,

NI

ielding the energy bands. F is the usual Hartree-Fock (or Kohn-Sham) Hamiltonian,

E(k) = C'(k)F(k)C(k) (14)

taking into account Ewald summations and spheropole terms for handling the otherwise
non-convergent infinite Coulomb series — see for instance Eq. (5) of Ref. [18] or Eq. (11) of

Ref. [19]; the reader can refer to Ref. [17] for a full discussion on the topic.

5
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The focus of the present development is in obtaining the band velocities, appearing in
Eq. (7), as derivatives of the electronic bands, as in Eq. (2). By differentiating Eq. (10) with

respect to a reciprocal space vector k, we obtain:

—agi{k)C(kH—F(k) agf{k) _ azi{k)C(k)E( -
5092 W pgo + S(k)

According to Refs. 20, 21 and 22, we express the derivati Lt\e coefficients with respect

to the quasi-momentum index k as: &5
8
= C( )Q (16)

The explicit form of the Q(k) matrix can he hﬁ%ﬂr—f{ef [23]. However, as we will show
shortly, it will not be needed here.
By multiplying Eq. (15) on the left‘m\ and exploiting Egs. (11), (14) and (16),
we obtain: XS\
k
(k) ag%f&( y & - (17)
T
C (k%k)E Bl + o

If we are interested o y he diagonal terms of Bl we can exploit the fact that

Ei(k)Q(k) = Q(k)

i (18)
\ - |0 ct9B9] = 0,0k

that is the sired result where, as anticipated, the Q(k) matrix does not appear anymore,

en write:

nce wi have all the required ingredients just from solving the self-consistent field
e@uations . We note that the same result, in a different context, was obtained by
C&QL
\m local basis set it is trivial to obtain the k—vector derivative of the Fock and overlap
matrices required by Eq. (18). After (13) :

agne et al.?® and Otto et al.?!

=Y ig,F(g) e*® (19)
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i = i, S(e) e (20)

~—

where ¢ is a cartesian direction. /
A similar technique as the one outlined in this section has been fisediin Ref.24 to compute

the real and complex band structures of one dimensional syst 1s)

IV. RESULTS ‘)\

—~—

—

In this section we present our electron transport ca latio) on several prototypical solids,
with a focus on the role of the main choices of Cempufa?tional setting, namely the basis set
and Hamiltonian. As we will show, the use Mﬁ, unctionals does make a difference,

specially for semiconductors.

Using Eq. (7), even if within the c S&‘elaxation time approximation, requires the
knowledge of the lifetime 7. Since th mb;%w'tz valuation of such quantity is not yet available
in our approach, we rely here oﬁmgtaﬂy determined values, when available. The

values we have adopted are T‘\«K 7,,=21fs for BiyTes, 7=10fs for CoShs and Silicon,

7=8fs for Al. See Supplementary fuformation for more details.

All results have bee og%d with a pre-release version of the CRYSTAL17 program?
featuring the newly@ téd DIIS convergence accelerator for periodic systems.2°
A. Con Ch)m

We hate cofuputed the electrical conductivity — according to Eq. (4) — for two prototypical
systemis: soli éminum (fce lattice), as a representative of a metallic system, and Silicon,
theamo rep)esentative and well-studied semiconductor.

For e%h system we have benchmarked the performance of different Hamiltonians (func-

‘h’eya\s and basis sets. We can list the several functionals tested, grouped into different

categories according to the level of approximation and the amount of Hartree-Fock (HF)

exchange included:

e Local Density Approximation (LDA).2"
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e Global hybrid functionals containing different percentage of HF exchange: B3LYP,33:34
PBE0,* PW1PW.3

e Range—separated hybrid functionals either with short—ran%/ or long-range HF ex-
change: M06,3” HSE06,3*2® LC-w-BLYP.% 3

e Pure Hartree-Fock \

Similarly we have adopted basis sets of different 1}211 either adopting pseudopoten-
tials for core shells or all-electron ones, whose detailg can l%e und in the Supplementary

-

Information.
In Table I we report, for the Aluminum bLN{};Q the value of the electrical conduc-
tivity at the Fermi level. It can be seen that, taking as a reference an experimental value
of 36.5 x 105(Q-m)~1,*° pure functiona %A or PBE systematically underestimate
conductivity, with significant variati n%mg to the basis set, while hybrid functionals
yield consistently higher Fermi-lewel ¢ ctivities, even though the scattering of values for
XWL s with long-range exchange, such as LCw-BLYP

and HF', tend to overestimate co%vity and have convergence problems with more diffuse
basis sets. Here, the oy, r@iﬁtion effect comes from the increase in the band width due

different basis sets is larger. Ha

to the non-local exchénge ‘egntribution.
In Figure 1 weAfep ( an?logous results for bulk Silicon. Here it is seen that the shape of
v p%ﬁgs early independent on the functional, and mostly on basis sets as

and TZVP show a marked difference with respect to others). What makes

the conductivi

well (only 8

a differesCe, here, g the ability of functionals to correctly reproduce the band gap of the

syste&‘ihe erimental indirect band gap is 1.17eV# which is correctly reproduced by
n

hyb}i Ctﬁnals, and particularly HSE06 (see Table II). One might take into account an

e({ted)().le\/ lowering correction due to spin-orbit coupling.®?
\

B. Thermoelectric materials

In order to further validate the correctness and applicability of the approach presented in

this paper, in Figs. 2 and 3 we present our results for the transport coefficients — Egs. (4), (5)
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Publishi:mrg' (6) — for two well-known thermoelectric materials, namely BisTes and CoSbsz. Details
on the adopted basis set, computational parameters and structure can be found in the SI —
however, in analogy with the case of Silicon, results are only mildly dependent on the basis
set quality, and mainly to the extent it affects the band gap. Results are reported for three
temperatures, 300, 500, and 700 K. In the left panel of both ﬁg?/es, the results obtained

with a PBE functional®® are reported, and can be compared with.those in Figure 1 and 3

of Ref. [4] and in Figure 4 of Ref. [5]. The evident similarigy ofiglir results with previous
approach, despite the difference in the underlying method™fer obtaining the wavefunctions

(plane wave basis in those cases), is in our opinion a str validation of the reliability of
—

the treatment presented in this work. In the right panel of bgt Figs. 2 and 3 we report the
same results obtained using the PBE0?* hybrid ffinction

It has to be underlined that the calculatih%r’e@ed here do not include spin-orbit
coupling (SOC). In fact, for such topologicakinsulators SOC has a significant effect in the
correct description of the band gap. As shown'y Crowley et al.#>4® SOC lowers the band gap
of BisTeg by about 0.6eV. As a cons uencN,\heNBand gaps for our calculation are expectedly
larger than the experimental es imat}%.wev for BiyTes,** 0.118eV* — 0.22eV16 for
CoSbs). Crowley et al.*?43 aV(S\ idely discussed how non-hybrid functionals, like

PBE, even if apparently closer MXperimental band gap, contain some wrong physics,
while the band structu o‘bﬁed by hybrid functionals well compare to the higher-level

(and more expensive){G, W calculations.*

y
4

C. Grap e% N nanoroads
S a mopst ive application of the new ab initio treatment of conductivity outlined in
Paper,

A
this paper hate tackled the study of 2D heterostructures of Boron-Nitride substituted
Graphene (Bi\TSG), where the substitution pattern is such that nano-stripes of BN and C
ﬁ

a ternat%m the plane. The structures we have studied are reported in the bottom panel

f Figuré 4 and have been picked among the many that have been studied by one of the
Sh&‘s in a previous work, focused on the peculiar features of their Raman spectrum.*” The
computational setup (basis set, thresholds, geometry) adopted here are exactly the same as
used in that work.

In the top panel of Figure 4 the computed conductivity is plotted for pure graphene,
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ol LDA D

v e

20 | WCPBE . E

Figure 1: Electrical conductivi Wk Silicon, evaluated for different functionals (panels)

and basis sets (different lines).

and for two heterostructires. ‘The in-plane conductivities in the direction parallel (o,,) and

perpendicular ( y\)% {bbon are reported for the latter. The well-known behaviour of
cini

~y

for the hegerost

graphene in of the Fermi level is correctly reproduced by our calculations. As

tures, interestingly we see that little above the bottom of the conduction

ittle bélow the top of valence band, the nanoribbon shows a conductivity along

the x irecti%1 that is comparable to that of graphene. The point of maximum conductivity

if differentsn the two structures considered (0.8 / 1.2 V) but the behaviour is similar. On
the nt)ary, along the y direction the barrier of insulating BN stripes significantly reduces
ﬁmductivity, even more so for the thicker one, as expected. All the computational details

camv be found in Supplementary Information.

10


http://dx.doi.org/10.1063/1.4986398

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishing

Table I: Conductivity of bulk Aluminum at the Fermi level for different functionals and
basis sets. Values in 105(2:m)~!, to be compared with the experimental estimate of

36.5 x 106(€2-m) .40

Basis Sets /
DFT Functional \

321’ @) 86-21G* 6311Gd’® TZVP ECP-21G* 3
HF / 44.26 / 38.59 40.87
LDA 26.99 25.15 25.75  20.06 24.94 ‘)\
PBE 2599 24.36 25.22  20.16 2497, -
PWI1 26.16  24.60 25.36  20.12 24%93 3

WCPBE 26.01 24.48 2531  20.15 QZLQ%
B3LYP 31.95 29.05 29.44 23.82%@
PW1PW 3047  27.73 28.55 3%\ 42
PBEO 31.30 28.24 29.35 % 29.63

MO06 30.24  27.85 29: 73

[\]

. 28.97
-~

HSE06 28.33  26.12 AT\, 2248 2717
LC-wBLYP / 41.93&\ 36.28  39.58

a) The most diffuse expo en‘»ﬁe been rescaled, see SI for more details.

V. CONCLUSIONS ¢

V.

In this wor ﬁNdescribed a novel implementation for calculating band velocities as
the analytigalsderivative of electronic bands. This was made possible by the adoption of a

loéal atem-centered orbitals (Gaussian functions) as adopted by the CRYSTAL

basis set
code. fPosed 1 e framework of semi-classical Boltzmann transport theory, this allowed us

toedevise a S)ﬂeme for the calculation of electronic transport and thermoelectric properties

‘olidssthat is both robust and simple to use — as it requires no input parameters from
T'hﬁ u\ser other than the reciprocal space sampling mesh (and, eventually, a smearing factor
for the distribution function). Rooted in the use of a localized basis set, this approach can
naturally be combined with the efficient use of hybrid functionals.

We have validated the correctness and the reliability of the approach on two well-known

thermoelectric materials, CoSbs and BiyTes, and compared results with those available in the

11
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Table II: Indirect silicon band gap calculated with different functionals using the 6311Gd’

basis set.

Functional Band Gap (eV)

LDA 0.53 /
WCPBE 0.53 \
PBE 0.63

PW91 0.64 \

HSE06

PWI1PW 15 5
B3LYP

PBEO *\4{;;_
LC-w 552

HF\\ 6.22

literature. In addition, we ha Q}&ed the effect of basis set and functional choice, with
a focus on the hybrid functionals, en the evaluation of conductivity of a metallic (Aluminum)

il)i-casbsystem. Finally, directional electron conductivities of pure

and a semiconducting
graphene and two bgron niteidé/graphene 2D structures were successfully computed.
Our results show t hfbrid functionals tend systematically increase the Boltzmann

conductivity %M to local or semilocal functionals, such as LDA or GGA’s. Contrary
i

to the expected increased localization of the orbitals, the conductivity increase is connected

to the lafger Band
£

-

idths obtained with hybrid functionals.

Supp ?ntary Material

)

SSe pplementary material for full details on crystal structures and computational

N
setup.

* Electronic address: lorenzo.maschio@unito.it

12
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