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Abstract 

 Acute Graft-vs.-Host Disease (GVHD) is a serious complication after allografting. 

We carried out an exploratory study to investigate a potential correlation of surface 

antigens on Extracellular Vesicles (EVs) and acute GVHD. EVs were extracted from serum 

samples from 41 multiple myeloma patients who underwent allografting. EVs were 

characterized by flow-cytometry using a panel of 13 antibodies against specific membrane 

proteins which were reported to be predictive of acute GVHD. We observed a correlation 

between 3 potential biomarkers expressed on EVs surface and acute GVHD onset by both 

logistic regression analysis and Cox proportional hazard model. In our study, CD146 

(MCAM-1) was correlated with an increased risk - by almost 60% - of developing GVHD, 

whereas CD31 and CD140- (PECAM-1 and PDGFR-) with a decreased risk - by almost 

40% and 60%, respectively -. These biomarkers also showed a significant change in signal 

level from baseline to the onset of acute GVHD. Our novel study encourages future 

investigations into the potential correlation between EVs and acute GVHD. Larger 

prospective multi-center studies are currently in progress.  
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Introduction 

 Acute and chronic Graft-vs.-Host Disease (GVHD) remain major causes of 

transplant-related toxicity and mortality after allografting1–3. These two syndromes differ in 

clinical characteristics and time of onset. Distinct T cell subsets and cytokines are involved 

in their pathogenesis. Acute GVHD has been associated with increased early mortality. 

The discovery of reliable, non-invasive, prognostic biomarkers of acute GVHD may be a 

major advance to improve clinical outcomes. Several potential biomarkers such as single 

nucleotide polymorphism (SNPs) 4,5, miRNAs6–9, and cytokines, chemokines and their 

receptors10,11, have so far been investigated. Overall, biomarkers may be classified in 

systemic ones, which change their level in response to systemic injury, and organ-specific 

ones which are associated with targeted tissues. Among others, the former include miRNA 

such as miR-423, miR-199a-3p, miR-93, and miR-377; ST2 (suppression of tumorigenicity 

2); and several biomarkers of immune-activation12; while the latter include REG3a, CK-18, 

S100, and TIM-3 for gastro-intestinal GVHD, HGF for liver-GVHD, and elafin for skin-

GVHD12. Several investigational studies showed correlations between single or 

combinations of biomarkers and acute GVHD outcomes. However, no current validated 

test has reliably become available to predict the onset of acute GVHD and/or its response 

to treatment. Extracellular Vesicles (EVs) have recently emerged as a promising new 

category of biological biomarkers in different scenarios. Secreted by many cell types, EVs 

are membrane-enclosed structures which include exosomes, shedding vesicles or 

microvesicles and apoptotic bodies. EVs play an important role in the intercellular crosstalk 

and in direct cell-to-cell interactions, in the interplay between cells and the extracellular 

matrix  - juxtacrine signaling -, in the secretion of soluble factors such as cytokines, 

chemokines, growth factors, and hormones13–15. EVs carry proteins, bioactive molecules, 

DNA and miRNA, and EVs composition may greatly differ depending on patient status and 

cell of origin16.  High concentrations of EVs can be found in blood and urine. Notably, EVs 

can non-invasively be extracted from these body fluids. Cells release EVs under a variety 

of physiological and pathological conditions. Over the past few years, many studies have 

shown that EVs contain nucleic acids and proteins implicated in cancer and in many 

conditions such as neurodegenerative, metabolic, and infectious diseases16–20. 

 In the light of these findings, we carried out an exploratory study to characterize 

EVs surface antigens by flow cytometry and to investigate the potential correlation of 

specific membrane proteins and acute GvHD in a series of multiple myeloma patients who 

underwent allografting21–26. 
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Materials and methods 

Patients, transplant characteristics, and graft-vs.-host disease 

 Forty-one multiple myeloma patients who underwent an allograft at our Center were 

included. Patient and transplant characteristics are reported in Table 1. Overall clinical 

outcomes were reported in previous reports27–32. All patients received G-CSF mobilized 

peripheral blood (PB) stem cells as stem cell source and 37/41 (90%) were prepared for 

transplant with a non-myeloablative/reduced intensity conditioning. Non-

myeloablative/reduced intensity regimens consisted of low dose 200 cGy total body 

irradiation (TBI) with/without fludarabine (no.=33/41, 80%) or with fludarabine/melphalan 

with/without low dose TBI (no.=4/41, 10%). During neutropenia, patients received 

prophylactic cephalosporins. Long-term prophylaxis against Herpes Virus and 

Pneumocystis jirovecii was performed in all patients. Pre-emptive antiviral therapy was 

initiated for positive Cytomegalovirus (CMV) antigenemia and/or for CMV DNA viral load 

>10.000 copies/ml in peripheral blood. Irradiated red blood cell units and buffy-coat 

derived platelet units were transfused for hemoglobin levels of < 8 mg/dl and platelet 

counts < 20.000 / ul respectively or as clinically indicated. Acute GVHD was diagnosed 

according to Glucksberg score and clinical diagnosis of chronic GVHD was scored 

following the NIH indications 33,34. The study was conducted after obtaining informed 

consent and according to the Declaration of Helsinki.  

 

Serum samples collection  

 Serum samples were obtained from peripheral blood draws. After collection, 

samples were kept at room temperature (RT) for 30 minutes to allow clotting. Serum was 

than obtained by centrifuging at 1,500 x g for 13 minutes in a refrigerated centrifuge and 

stored at −80 °C until use. For each patient, serum samples were collected before 

transplant, and at the following post-transplant days (median): +28; +58; +92; +119; +147; 

and +179, or at disease relapse. 

 

Extracellular Vesicles extraction  

 Patient serum samples (1 ml each) were thawed on ice. EVs were then precipitated 

by adding 250 l of precipitation solution [composition for 20 ml of solution: 5 g of Poly 

Ethylene Glycol (PEG 35,000; Merck KGaA, Darmstadt, Germany) and 0,25 g of 

Protamine-(P) (Sigma-Aldrich, St. Louis, MO) resuspended in deionized water]35. Samples 

were vortexed for 10 seconds and incubated at 4°C for at least 1h and centrifuged at 1500 

©    2017 Macmillan Publishers Limited. All rights reserved.



 5 

x g at RT for 30 minutes. Supernatant was removed and samples centrifuged at 1500 x g 

at RT for 5 minutes. EVs pellets were re-suspended with 150 l of Roswell Park Memorial 

Institute (RPMI) medium supplemented with antibiotics and antimycotic (Penicillin, 

Streptomycin, Amphotericin b), plus 10 % of DMSO, and stored at -80 °C. EV size was 

characterized by Nano-particle tracking (NTA) analysis. Briefly, EV preparations were 

diluted (1∶100-1000) in sterile saline solution 0.9% and analyzed by using a 

NanosightLM10 instrument (NanoSightLtd., MintonPark, United Kingdom) equipped with 

the nanoparticle tracking analyses 2.0 analytic software36.  

Samples of 3 ml from buffy-coat derived platelet Units were centrifuged at 1500 x g 

at RT for 30 minutes to pellet white blood cells. Supernatant was then centrifuged 3 times 

at 2000 x g at RT for 30 minutes to precipitate platelets. Complete depletion of platelets 

was verified using a Sysmex XS-1000i Dasit cell counter before EVs precipitation.  

 

Extracellular vesicles preparation for flow cytometry analysis  

 EVs were characterized by flow cytometry using Fluorescein Isothiocyanate (FITC) 

or Phycoerythrin (PE) conjugated antibodies. Initial screening was carried out on EVs 

extracted from 9 healthy donors and 2 transplant patients, one with GVHD and one 

without, and included a panel of mouse antibodies against the following 23 markers: 

CD44, CD138, CD146, CD120-, CD8, CD81, CD63, CD25, CD31, CD144, CD14, CD15, 

CD42b, CD9, CD3, CD86, CD45, CD40, CD105, CD30, CD106 (all antibodies from 

Miltenyi Biotech, Bergisch Gladbach, Germany), CD140- (BioLegend, San Diego, CA), 

KRT18 (Abnova,Taiwan). Mouse non-immune isotypic FITC or PE IgGs (Miltenyi Biotech, 

Bergisch Gladbach, Germany) were used as negative controls. Hundred l of FACS flow 

dilution buffer (Becton Dickinson Biosciences, San Jose, CA), filtered using a 0,1 m 

syringe, was added to 1-4 l of EVs, and incubated at RT with antibodies in the dark for 20 

minutes. Reactions were stopped by adding filtered FACS flow dilution buffer (400 l in 

control samples with non-immune isotypic IgGs, and 300 l in study samples with 

antibodies), and immediately acquired using a Guava Instrument (GUAVA easyCyteTM 8, 

Millipore).  

 In the light of expression levels between donors and patients (Supplementary 

Figure 2-5), a second panel of 13 potentially informative GVHD biomarkers was selected 

as study panel: CD44, CD138, CD146, KRT18, CD120-, CD8, CD30, CD106, CD25, 

CD31, CD144, CD86, and CD140-.  
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FACS measurements and analysis 

 The Millipore GUAVA easyCyte 8 was cleaned using the Guava® Instrument 

Cleaning Fluid (EMD Millipore, Billiberica, MA, USA) and rinsed several times with 

nuclease free water (AMBION) before each measurement. A filtered FACS Flow solution 

(with a 0.1 m syringe filter) was acquired to set gates and to discriminate true EVs events 

from background noise. Signals from EVs samples incubated with non-immune isotypic 

IgG controls were used to differentiate specific from non-specific antibody binding. A total 

of 5,000 events were acquired each time at low speed for each marker to determine a) 

fluorescence mean value; b) percentage of positive EVs for a given marker; c) total EVs 

concentration; d) and concentration of positive EVs for a given marker. Data were then 

analyzed using the GuavaSoft ImCyt 2.5 program.  

 

Statistical analyses 

 Cumulative incidences of acute and chronic GVHD were calculated from the date of 

transplant to the date of onset of GVHD. The estimations were performed considering 

death from any cause as competing event according to the method by Gooley et al.37. 

Patients alive without GVHD were censored at the date last known to be alive. 

Correlations between biomarkers were evaluated by Spearman's rho correlation 

coefficient. Effects of repeated measurements of each marker on incidence of acute were 

analyzed dividing the follow up of each patient in period of 30 days. Patients were 

classified by presence/absence of GVHD (0=absent, 1=present) during each period. In 

case of more than one measurement for a given marker in the same 30-day periods, the 

closest to the date of transplant was considered. Thus, the probability of developing GVHD 

in each period with respect to marker levels, evaluated as both absolute measure and as 

change from pre-transplant values, was calculated by logistic regression model. Effects on 

GVHD incidence were reported as standardized Odds Ratio (OR), reporting the effect for a 

1- standard deviation (SD) increase for a given variable per 1-point increase (relative 

increase of 100%) and corresponding p value for statistical significance. Given that 

analyses were based on repeated measurements on the same patient, ORs were 

estimated controlling the standard errors with the Huber-White Sandwich Estimator38.  

Sensitivity analyses were performed estimating the ORs after an imputation of missing 

values in each 30-day period using the last observation carried out for each individual 

patient. Moreover, for sensitivity analysis, Cox proportional hazard models for acute GVHD 

were estimated using EVs parameters at each time-point as a time varying covariate and 
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reporting the Hazard Ratios (HRs) for 1-SD increase. All reported p-values were two-

sided.  All statistical analyses were performed using STATA 11.2 (Stata Corp LP).  

 

RESULTS 

Clinical Outcomes 

 Acute GVHD requiring systemic therapy was observed in 23/41 (56%) of patients 

(Table 1). Skin and gastrointestinal tract were the most frequently involved sites. Median 

day of onset (range) was day +40 (+22-+145). Though the analysis of chronic GVHD was 

out of the scope of this study, chronic GVHD was observed in 29/40 (72%) of evaluable 

patients (one patient died within 100 days post-transplant). Cumulative incidences of acute 

GVHD and chronic GVHD at day +100 and +400 respectively were 56.25% and 70.7% 

(Figure 1). Twenty/41 (49%) patients experienced CMV reactivation, but no CMV disease 

within 100 days post-transplant. Median day of CMV reactivation was day +48 (range 27-

81). No other viral infections were documented. Overall, 12/41 (29.2%) patients received 

buffy-coat derived platelet transfusions, only 5/41 (12%) within the 7 days preceding 

sample collection for EVs measurements. 

 

EVs Characterization  

 The initial characterization of EVs surface was carried out with the first panel of 23 

biomarkers previously correlated with GVHD (Supplementary Table 1 and Supplementary 

Figures 2-5). Mean fluorescence measurement and percentage of positive EVs were 

obtained for each marker. Thirteen potentially informative biomarkers were selected for our 

study population in the light of expression levels and their variations over time, and the 

differences between patients and donors (Table 2). Figure 2 illustrates representative 

examples of flow cytometry physical parameter dot plots and of fluorescence distribution of 

EVs after incubation with anti-CD8-FITC, anti-CD31-FITC, anti-CD146-FITC, anti-CD140-

-PE and corresponding negative controls. The difference between the isotype and 

biomarker mean fluorescence distributions represents the biomarker expression level on 

EVs surface. Mean fluorescence, percentage of EVs labelled with anti-CD140--PE and 

total EVs concentration are plotted in Figure 3. Similar plots were obtained for each 

biomarker (Supplementary Figure 1).  

 

Correlation between biomarkers and onset of acute GVHD 
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 Table 3 illustrates the association between variation or absolute levels of each 

marker and onset of acute GVHD. Three biomarkers, CD146, CD31 and CD140-, were 

significantly associated with the onset of acute GVHD by both logistic regression analysis 

and by Cox proportional hazard model.  CD146 fluorescence was associated with an 

increased risk of developing acute GVHD (OR 1.57, p=0.040 by logistic regression 

analysis, and HR 1.60, p=0.031 by Cox model). Furthermore, CD31 fluorescence (OR 

0.55, p=0.052 by logistic regression analysis, and HR 0.67, p=0.089 by Cox model), 

CD140- percentage (by LR: OR 0.30, p=0.003 and by CM: HR=0.77, p=0.014) and 

CD140- EVs concentration (OR=0.40, p=0.063 by logistic regression analysis, and 

HR=0.68, p=0.058 by Cox model) were associated with a decreased risk of acute GVHD. 

Two biomarkers, CD8 and CD25, showed ORs ranging from 0.91 to 1.27 indicating a very 

minimal effect even though a statistically significant p value, p<0.001, was observed. Co-

expression of CD31, CD140- and CD146 on EVs surface by 2-color flow cytometry 

showed a rather high association of CD146 with CD31 (65%) and with CD140- 

(Supplementary Figure 6). 

 A monotonic association between biomarkers was observed by Spearman's rank-

order correlation (Table 4, Supplementary Table 2-4). CD146 fluorescence, percentage 

concentration and relative concentration showed a significant correlation with CD44 

(rs=0.60; rs=0.58, rs=0.70, p=0.001), KRT18 (rs=0.54, rs= 0.49, rs= 0.65, p=0.001), CD106 

(rs=0.61, rs=0.58, rs=0.68, p=0.001), CD31 (rs=0.58, rs=0.53, rs=0.68 p=0.001). CD31 

fluorescence, percentage concentration and relative concentration showed a significant 

correlation with CD44 (rs=0.67, rs=0.60, rs=0.82 p=0.001), KRT18 (rs=0.63, rs=0.52, rs=0.76 

p=0.001) and CD106 (rs=0.74, rs=0.68, rs=0.91, p=0.001). No significant correlations were 

observed between CD140- fluorescence and percentage concentration with other 

biomarkers, whereas CD140- absolute concentration was associated with CD44 (rs=0.67, 

p=0.001), CD146 (rs= 0.50, p=0.001), CD106 (rs=0.85, p=0.001) and CD31 (rs=0.82, 

p=0.001). 

 Finally, CD146, CD31 and CD140- also showed a significant change in signal level 

before the onset of acute GVHD: an increase in CD146 and a reduction in CD31 and 

CD140- respectively (Figure 4).  

 The impact of potential confounding factors such as viral infections and/or 

contamination of EVs from platelet transfusions was also investigated. By logistic and Cox 

regression models, CMV reactivation did not appear a confounding factor for the 

correlation between EVs and the onset of aGVHD (Supplementary Table 5). Moreover, 
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mean EVs concentration was 10 times lower in samples from 5 buffy-coat derived platelet 

Units as compared with that of all 41 patients: 6.13x109 EVs/ml in platelet buffy-coats and 

6.73x1010 EVs/ml in patient serum samples. Importantly, results of our statistical analyses 

were also confirmed when EVs measurements from samples obtained during the 7 days 

following platelet transfusion were not included (Supplementary table 6). 

  

DISCUSSION 

 An ideal biomarker should specifically and sensitively predict the onset of a 

pathological condition and its course, including response to treatment and clinical 

outcomes. Moreover, it should be obtained through non-invasive procedures and 

evaluated through inexpensive standardized assays.  Acute GVHD incidence varies from 

30% to 60%39 and it remains a major cause of transplant related morbidity and mortality 

despite improvements in HLA-typing, donor selection, and GVHD prophylaxis. Several 

studies on its pathogenesis and potential biomarkers have been published. However, 

predictive biomarkers are still lacking and diagnosis and treatment response rely on 

clinical signs and symptoms, and tissue biopsies.  

 We designed a novel study to explore the potential correlation and roles of EVs and 

acute GVHD. Many factors may involve EVs in acute GVHD including their cells of origin 

and their roles in inflammatory processes. Furthermore, EVs can be easily extracted from 

biological fluids such as blood and urine, making them very attractive for diagnostic 

applications. EVs are also characterised by higher stability under various storage 

conditions as compared with soluble molecules. Moreover, we tried to select a 

homogeneous patient population with the same diagnosis of multiple myeloma, 

transplanted with the same stem cell source (mobilized peripheral blood) and prepared in 

the large majority (90%) with a non-myeloablative/reduced intensity conditioning regimen. 

In fact, biomarkers may potentially be influenced by several factors including age, disease, 

conditioning, GVHD prophylaxis, and all other causes of tissue and/or endothelial 

inflammation. Importantly, we ruled out a potential confounding role of CMV reactivation 

and/or other viral infections in our analysis (Supplementary table 5). Moreover, no patient 

with GVHD was treated with mesenchymal cells which express CD146.               

 A strong potential and statistically significant correlation of three biomarkers 

expressed on the EVs surface of our patients who developed acute GVHD as compared 

with those who did not clearly emerged from this study. While awaiting results from 
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prospective studies currently in progress, our preliminary findings are intriguing and highly 

encourage further investigations into the roles of EVs in GVHD.  

 CD146 was associated with an approximately 60% increased risk (Table 3) of acute 

GVHD. This membrane protein, also known as melanoma cell adhesion molecule (MCAM) 

or cell surface glycoprotein MUC18, is used as a marker of endothelial cells, and it is also 

expressed on a subset of CD4+ T cells, and follicular dendritic cells. In 2014, Li et al.44 

investigated the expression profiles on blood cells from 214 recipients of an allograft at the 

onset of acute GVHD. The frequency of Th17-prone CD146+CCR5+ T cells was 

significantly increased in patients with gastrointestinal GVHD and it was higher as early as 

14 days after transplant in patients who would later develop gastro-intestinal GVHD40,41. 

Moreover, an increase of this T cell subset has also been observed in many autoimmune 

diseases and in inflammation driven by autoimmunity42,43. 

 Considering that endothelial damage and neovascularization represent early steps 

in acute GVHD pathogenesis, the use of endothelial markers may be considered a helpful 

support to confirm GVHD diagnosis. Almici et al.44 recently showed that the count of 

CD146+CD106+CD45- circulating endothelial cells (CECs) significantly increased in 

patients who develop acute GVHD. Given that EVs membrane composition relies on the 

cell of origin, CD146(+) EVs may have been shed by a reactive Th17 prone T cell 

population and/or by endothelial cells damaged by cytokine storm and inflammation. 

Interestingly, we also found that CD146 levels were associated with other endothelial 

biomarkers such as CD44 by Spearman's rank-order correlation. CD44, cell-surface 

receptor for hyaluronan (H-CAM) has been correlated with an inhibitory role in 

angiogenesis, endothelial cell vitality and proliferation45.  In our cohort, higher levels of 

CD44+ EVs were observed in patients with acute GVHD. This may be explained with a 

reduction of angiogenesis and impaired endothelial protection. Interestingly, we also 

observed a certain degree of co-expression (>65%) of CD146 and CD31 suggesting that, 

in our patients, EVs may have shared the same endothelial origin (Supplementary figure 

6). These findings should however be confirmed prospectively.      

 CD31 was correlated with an approximately 40% (see Table 3) decreased risk of 

acute GVHD. CD31 is a membrane protein, also known as platelet endothelial cell 

adhesion molecule or PECAM-1, normally found on several cell types including, 

macrophages and Kupffer cells, granulocytes, T cells/ NK cells, megakaryocytes, 

osteoclasts, neutrophils. Platelets also express CD31. We ruled out a potentially significant 

contamination of EVs expressing CD31 from transfused platelet Units. Life-span of 
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transfused platelets ranges from 3 up to 7 days 46.Moreover, a clearance time of only a few 

hours for transfused platelet derived EVs has been reported 47. Only 5 (12%) patients 

received buffy-coat derived platelet Units during the 7 days before EVs evaluation. Our 

statistical analyses were invariably confirmed when EVs measurements obtained during 

the 7 days following platelet transfusions were not included (Supplementary table 6). 

Moreover, mean EVs concentration of samples from buffy-coat derived platelet Units is 10 

times lower than that of our patients.  

PECAM-1 is a member of the Ig gene superfamily expressed at high density on the 

endothelial cell borders and, at a lower density, on hematopoietic cells. CD31 has been 

involved in leukocyte trans-endothelial migration both in vitro and in vivo. Cheung et al. 

showed that CD31-induced-signaling pathway plays a key role in preventing inflammation-

induced endothelial cell death48. CD31 immuno-regulatory role is however not limited to 

endothelial cells as both T cells and antigen-presenting cells can express it 49,50. When 

CD31 signaling pathways are triggered, a partial inhibition of T-cell receptor signalling and 

a reduced production of inflammatory cytokines in dendritic cells may follow. CD31 

prevents lymphocyte hyper-reactivity by increasing the activation threshold of T-cell 

receptor signalling, thus enhancing peripheral tolerance. Moreover, excessive immune-

reactivity and susceptibility to cytotoxic killing was associated with a loss of CD31 function. 

CD31 deficient mice displayed accelerated and pronounced tumour rejection, suggesting 

an immune regulatory role of CD3149,51. Notably, some studies showed that CD31 gene 

polymorphisms in donor-derived leukocytes were significantly associated with the 

pathogenesis of acute GVHD52–54. We clearly observed a reduction of CD31 levels in our 

patients who developed acute GVHD. By contrast, CD31 expression may have had a 

somewhat protective role against inflammation and immunity damage in patients without 

GVHD, in keeping with previous studies.  

 Finally, CD140- was also associated with a decreased risk of acute GVHD (Table 

3). This membrane protein is also known as Platelets Derived Growth Factor Receptor 

alpha (PDGFR). While the beta form of the PDGFR is essential for pericytes recruitment, 

blood vessels maturation and angiogenesis55, the alfa variant is important for fibroblast 

migration and wound healing56.  We observed a reduction of CD140- levels in patients 

with acute GVHD. Zhang et al.57 showed that TNF- decreases the expression of PDGFR-

after fibroblast injury. Pro-inflammatory TNF- has an important role in both initiating 

acute GVHD as well as amplifying the disease process once established58. As TNF- 

levels are significantly higher in patient with acute GVHD59, high levels of TNF- could 
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decrease PDGFR- reducing fibroblast activation and tissue recovery 60. Overall, this may 

result in increased antigen exposure and alloreactivity as seen during acute GVHD. 

 In summary, our preliminary findings underline a potential role of EVs surface 

proteins as biomarkers of acute GVHD. Larger prospective multi-center studies are 

currently in progress. Moreover, the characterization of EVs and their "biological" content 

may shed new light on the pathogenesis of several inflammatory complications after 

allografting.    
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Figure Legends 

 

 

Figure 1.   Cumulative incidence of acute GVHD and chronic GVHD.  

a) Day 100-Cumulative incidence of acute GVHD (56.25%; 95% CI, 40.7–71.8%) b). 24 

month-Cumulative incidence of chronic GVHD (70.7%; 95% CI, 56.3–85.2%). 

 

Figure 2.   Extracellular vesicles (EVs) characterization by light scattering and 

fluorescence.  

Physical parameter dot plots of EVs analyzed after incubation with non-immune isotypic 

FITC and PE-IgG (negative controls) by A) light scattering (forward versus side scattering) 

and by B) side scattering versus fluorescence.  

C) (from top to bottom) Physical parameter dot plots (side versus forward scattering, and 

side scattering versus fluorescence), and EVs fluorescence distribution after incubation 

with (from left to right) anti-CD8-FITC, anti-CD31-FITC, anti-CD146-FITC and anti-CD140-

-PE. R1 and R2: gate regions; dashed lines: threshold to discriminate background from 

positive fluorescence signal. In fluorescence distribution panels, the white area represents 

the fluorescence distribution of EVs incubated with non-immune isotypic FITC or PE-IgG 

(negative controls), while the grey area represents the fluorescence distribution of EVs 

labelled with FITC or PE-antibodies.  

 

Figure 3. EVs Mean Fluorescence, percentage of positive EVs and total EVs 

concentration. 

a) EVs Mean fluorescence level b) Percentage of CD140- positive EVs c) Total EVs 

concentration. Red dots are EVs measurements in patients with acute GVHD, while blue 

dots in patients without acute GVHD. 

 

Figure 4.  Signal level before GVHD onset 

a) CD146 and CD31 Fluorescence levels as relative variation from pre-transplant baseline 

values and onset of acute GVHD onset 

b) CD140- Concentration of positive EVs as absolute levels  

Evs Measurements in patients with acute GVHD (red) and in patients without acute GVHD 

(blue)  
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Table 1. Patient and Transplant Charateristics  

 Number (%) 

Patients 41 

Median age, years (range) 53 (range 34-65) 

Male 27 (66%) 

Multiple Myeloma 41 (100%) 

Myeloablative Conditioning 4 (10%) 

 Bu-Mel 2/4 

 Cy-TBI 12Gy 2/4 

Non Myeloablative Conditioning 32 (78%) 

 TBI 2Gy 23/32 

 Flu-TBI 2Gy 9/32 

Reduced Intensity Conditioning 5 (12%) 

 Flu-Mel 1/5 

 Flu-Mel-TBI 2 Gy 4/5 

Donors  

 Matched Unrelated Donor 7 (17%) 

 HLA-identical Sibling 34 (83%) 

Stem Cell Source  

 PBSC 41 (100%) 

Graft-versus-host-disease prophylaxis  

 CyA+MMF 34 (83%) 

 CyA+MTX 2 (5%) 

 CyA+MTX+ATG 3 (7.3%) 

 Tacrolimus+MMF 2 (5%) 

Acute GVHD grade II-IV 23 (56%) 

 Median day of onset (range) 40 (22-145) 

Acute GVHD Grade III-IV 4 (9%) 

No Acute GVHD 18 (44%) 

Chronic GVHD 29/40 (72%) 

 Median day of onset (range) 187 (77-649) 

Severe Chronic GVHD 10 (34%) 

CMV Reactivation (day 0-100 post transplant) 20/41 (49%) 

Median day of CMV Reactivation (range) 48 (27-81). 

CR= Complete Remission; Bu=Busulfan; Mel=Melphalan; Cy=Cyclophosphamide; TBI= Total Body 
Irradiation; Flu= Fludarabine; PBSC= Peripheral Blood Stem Cells; ATG= Antithymocyte Globulin; CyA= 
Cyclosporine A; MMF= Mycophenolate Mofetil; CMV= Citomegalovirus  
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Table 2.  Panel of potential biomarkers (Guava experiments): antigen, alternative 

definition, ligand and distribution, references on potential correlation with acute 

GVHD. 

 

Antigen  Alternative 
Definition 

Ligand/Receptor Distribution Reference 

CD44 H-CAM, Pgp-1, 
Hermes antigen, 
ECMRIII 

Hyaluronin,osteopontin, 
fibronectin 

Leukocytes, endothelial, 
epithelial 

cGVHD
22

 

CD138 Syndecan-1 Extra Cellular Matrix Plasma cells, pre-B, 
basolateral surface of 
epithelium, neurons 

aGVHD
26

 

CD146 MUC18, S-endo, 
MCAM, Mel-CAM 

 Endothelial, Melanoma, FDC, 
T

act
 

aGVHD
41

 

KRT18 Keratin 18 Type 
I, Cytokeratin-18, 
CYK18 

C-Cbl, TRADD, 
Collagen, type XVII, 
alpha 1, DNAJB6, Pinin 

Epithelial,  aGVHD
26

 

CD120- 
TNFR-1, 
TNFRSF1A 

TNF, TNF Nucleated cells aGVHD
21

 

CD8 T8, Leu-2 MHC class I T subset, Thimocytes subset aGVHD
26

 

CD30 Ki-1, Ber-H2 CD153 B
act

, T and NK cells, Reed-
Sternberg cells, anaplastic 
large cell lymphoma 

aGVHD
26

 

CD106 VCAM-1, 
INCAM-110 

CD49d/CD29, 

CD49d/7 

Endothelial
act

, FDC aGVHD 

CD25 Tac, p55, IL-2Ra IL-2 T
act

, B
act

, Treg, Lymphoid 
progenitors 

aGVHD
21

 

CD31 PECAM-1, 
endocam, GPIIa 

CD31, CD138 Leukocytes, Platelets, 
Endothelial 

cGVHD
22

 

CD144 VE-Cadherin, 
Cadherin-5 

CD144, -Catenin Endothelial, stem cells aGVHD 

CD86 B70, B7-2 CD28, CD152 Monocytes, DC, B
act

, and T
act

 cGVHD
22

 

CD140- 
PDGFRA, 
PDGFRa 

PDGF-A, PDGF-B, 
PDGF-C 

Mesenchymal, Fibroblasts, 
Glial cells, Monocytes, 
Endothelial 

cGVHD
22
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Table 3. Association between marker levels and acute GVHD. Marker analysis by 

30-day time periods (logistic regression analysis) with/without imputation of previous 

values in case of missing data, and by a time varying approach (Cox model-

proportional hazard model). Significant odd and hazard ratios (OR and HR 

respectively) are highlighted in grey. 

 

 

Logistic regression analysis 
Cox Model 

Without Imputation With Imputation 

Change Absolute Change Absolute Change Absolute 

Marker Type OR p OR p OR p OR p HR p HR p 

Total EVs 
concentration 

 
0.64 0.196 0.49 0.179 0.74 0.207 0.65 0.199 1.15 0.717 0.81 0.318 

CD44  Fluo 1.08 0.821 1.74 0.058 0.92 0.777 1.33 0.242 0.92 0.684 0.93 0.739 

HCAM Pos % 0.98 0.948 1.72 0.066 0.86 0.535 1.24 0.367 0.80 0.333 0.83 0.370 

 Pos Conc 0.76 0.518 1.20 0.618 0.71 0.268 1.01 0.983 0.71 0.327 0.74 0.212 

CD138 Fluo 0.76 0.402 0.81 0.462 0.68 0.107 0.88 0.567 0.76 0.426 1.02 0.922 

Syndecan-1 Pos % 0.86 0.650 0.78 0.349 0.77 0.271 0.77 0.179 0.82 0.517 0.85 0.520 

 Pos Conc 0.60 0.150 0.50 0.160 0.67 0.102 0.63 0.167 1.11 0.810 0.79 0.279 

CD146 Fluo 1.35 0.375 1.40 0.183 1.57 0.040 1.44 0.095 1.60 0.031 1.32 0.147 

MCAM Pos % 1.17 0.635 1.37 0.308 1.41 0.142 1.37 0.176 1.27 0.230 1.19 0.404 

 Pos Conc 0.87 0.659 0.96 0.924 1.11 0.648 1.08 0.801 1.21 0.400 1.04 0.842 

KRT18 Fluo 0.65 0.233 0.86 0.596 0.72 0.183 1.08 0.795 0.75 0.163 1.07 0.729 

Cytokeratin-18 Pos % 0.65 0.240 0.88 0.656 0.73 0.210 1.02 0.946 0.67 0.084 1.01 0.948 

 Pos Conc 0.55 0.141 0.66 0.315 0.67 0.135 0.93 0.848 0.79 0.465 1.04 0.841 

CD120- Fluo 1.00 0.992 1.09 0.762 0.78 0.457 1.06 0.811 0.71 0.168 0.92 0.700 

TNFR-1 Pos % 1.06 0.892 1.11 0.756 0.84 0.560 0.92 0.724 0.72 0.211 0.80 0.298 

 Pos Conc 0.63 0.166 0.53 0.173 0.69 0.106 0.66 0.197 0.92 0.844 0.79 0.264 

CD8 Fluo 0.91 0.000 1.09 0.779 0.92 0.000 1.09 0.717 2.48 0.633 1.03 0.904 

 Pos % 1.56 0.070 1.37 0.275 1.21 0.181 1.21 0.460 1.20 0.592 1.09 0.714 

 Pos Conc 1.48 0.063 1.22 0.515 1.18 0.196 1.26 0.312 1.21 0.648 1.17 0.438 

CD30 Fluo 0.76 0.472 1.10 0.729 0.84 0.517 1.08 0.729 0.65 0.202 0.91 0.636 

Ki-1 Pos % 0.80 0.534 1.23 0.452 0.92 0.748 1.07 0.766 0.54 0.104 0.85 0.464 

 Pos Conc 0.64 0.258 0.89 0.696 0.84 0.518 0.89 0.642 0.57 0.177 0.86 0.462 

CD106 Fluo 0.68 0.352 0.84 0.592 0.79 0.395 1.07 0.807 0.68 0.222 0.97 0.915 

VCAM-1 Pos % 0.64 0.124 0.85 0.593 0.78 0.246 0.95 0.833 0.72 0.166 0.85 0.481 

 Pos Conc 0.51 0.059 0.51 0.129 0.65 0.077 0.69 0.242 0.72 0.432 0.79 0.297 

CD25 Fluo 0.85 0.563 1.08 0.819 1.27 0.000 1.25 0.392 1.07 0.440 0.97 0.898 

IL-2Ralpha Pos % 1.08 0.757 1.17 0.588 1.34 0.169 1.14 0.553 0.94 0.764 0.84 0.431 

 Pos Conc 0.98 0.935 1.00 0.991 1.32 0.176 1.07 0.783 0.96 0.882 0.86 0.491 

CD31 Fluo 0.67 0.311 1.05 0.867 0.55 0.052 0.93 0.759 0.67 0.089 0.86 0.498 

PECAM-1 Pos % 0.78 0.415 1.10 0.724 0.69 0.130 0.89 0.594 0.64 0.068 0.78 0.250 

 Pos Conc 0.60 0.158 0.61 0.238 0.65 0.067 0.68 0.205 0.71 0.415 0.77 0.219 

CD144 Fluo 0.72 0.331 0.79 0.488 1.01 0.960 0.94 0.811 1.12 0.602 0.95 0.802 

VE-Cadherin Pos % 0.70 0.283 0.68 0.132 0.94 0.838 0.88 0.577 1.15 0.552 1.01 0.969 

 Pos Conc 0.54 0.105 0.49 0.171 0.77 0.398 0.70 0.300 1.18 0.542 0.88 0.541 

CD86 Fluo 1.46 0.015 1.28 0.309 1.22 0.249 0.87 0.571 0.92 0.713 0.82 0.350 

B7-2 Pos % 1.09 0.724 1.34 0.359 0.92 0.717 0.94 0.832 0.63 0.233 0.96 0.858 

 Pos Conc 0.78 0.456 0.67 0.098 0.68 0.231 0.56 0.022 0.65 0.219 0.77 0.263 

CD140- Fluo 1.25 0.477 0.30 0.003 1.19 0.475 0.54 0.035 1.03 0.926 0.75 0.208 

PDGFRa Pos % 1.40 0.154 0.43 0.012 1.30 0.169 0.58 0.037 1.18 0.826 0.77 0.014 

 Pos Conc 0.78 0.580 0.40 0.063 0.85 0.587 0.58 0.094 1.23 0.654 0.68 0.058 
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Table 4.  Spearman Correlation  
(A. EVs Fluorescence, B. EVs Percentage Concentration, C. EVs Concentration) 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
  * correlation significant at 0.001 level. 
 

 

 

 

 

 

 

 

 

 

 

  

A. CD44 CD146 KRT18 CD106 CD31 CD140- 

CD44 1      

CD146 0.60* 1     

KRT18 0.61* 0.54* 1    

CD106 0.62* 0.61* 0.64* 1   

CD31 0.67* 0.58* 0.63* 0.74* 1  

CD140- 0.10 -0.001 0.19 0.21 0.14 1 

B. CD44 CD146 KRT18 CD106 CD31 CD140- 

CD44 1      

CD146 0.58* 1     

KRT18 0.52* 0.49* 1    

CD106 0.56* 0.58* 0.52* 1   

CD31 0.60* 0.53* 0.52* 0.68* 1  

CD140- 0.03 -0.07 -0.01 0.17 0.13 1 

C. CD44 CD146 KRT18 CD106 CD31 CD140- 

CD44 1      

CD146 0.70* 1     

KRT18 0.75* 0.65* 1    

CD106 0.80* 0.68* 0.75* 1   

CD31 0.82* 0.68* 0.76* 0.91* 1  

CD140- 0.67* 0.50* 0.61* 0.85* 0.82* 1 
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