
Journal of Advanced Research 8 (2017) 649–653

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
Short Communication
Comparing intensities and modalities within the sensory attenuation
paradigm: Preliminary evidence
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It is well-documented that the intensity of a self-generated somatosensory stimulus is perceived to be
attenuated in respect to an identical stimulus generated by others. At present, it is not clear whether such
a phenomenon, known as somatosensory attenuation, is based not only on feedforward motor signals but
also on re-afferences towards the body. To answer this question, in the present pilot investigation on
twelve healthy subjects, three types of stimulations (sensory non-nociceptive electrical – ES, nociceptive
electrical – NES, and vibrotactile – VTS) and intensities (1 = sensory threshold ⁄ 2.5 + 2 mA, 2 = sensory
threshold ⁄ 2.5 + 3 mA, 3 = sensory threshold ⁄ 2.5 + 4 mA for ES and NES; 1 = sensory threshold ⁄ 2 Hz,
2 = sensory threshold ⁄ 3 Hz, 3 = sensory threshold ⁄ 4 Hz for VTS) have been directly compared in a
somatosensory attenuation paradigm. The results show that the attenuation effect emerged only with
electrical stimuli and that it increased with higher intensities. These pilot findings suggest that, depend-
ing on the type and the intensity of stimulation, re-afferences can have a role in somatosensory attenu-
ation. Additionally, it is possible to speculate the effect is present only with electrical stimuli because
those stimuli are prospectively judged as potentially dangerous. This, in turn, would optimize planning
successful reactions to incoming threatening stimuli.
� 2017 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

It is often thought that the sensory consequences of our own
willed actions are unimportant and therefore should be discarded.
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Indeed, this is not trivial but, rather, well known in the scientific
literature as sensory attenuation. Self-directed, intended stimuli
are attenuated compared to the same stimuli generated by others
(both phenomenologically and anatomo-functionally [1–5]).

Sensory attenuation is vital for survival, since attenuation of
self-generated stimuli allows enhanced salience of unexpected
external events. This, in turn, makes us able to distinguish between
sensations generated by our own actions and sensations resulting
from external causes. It is notable that despite these considerations,
which suggest the universality of such phenomena among sensory
domains, current findings remain scant. Indeed, sensory attenua-
tion has been clearly demonstrated within auditory and tactile
domains (e.g., [6–8]) but few data are available within the visual
domain [9,10]. With respect to the interpretation of such a phe-
nomenon, a first explanation states that it depends entirely on
motor-related signals which would modulate the activity evoked
by the incoming sensory signals. Such a hypothesis is rooted in evi-
dence showing that various levels within themotor hierarchy affect
sensory attenuation. For instance, the phenomenon emerges when
actual sensory consequences of a voluntary action match the pre-
dicted consequences [7–11]. Nonetheless, since the phenomenon
also arises when there is no physical contact, it has also been linked
to motor predictions [1,11–13]. Additionally, prior belief of author-
ship [14], subliminal action priming [15] or expectation of move-
ment [16] are known to modulate sensory attenuation. However,
an alternative explanation pinpoints the role of re-afferent signals
towards the body which, in turn, would mask the sensory probe.
Accordingly, passive movements may also attenuate self-
generated stimuli [17], and the type of movement may reduce the
intensity of self-generated stimuli [16]. Overall, at present, it is
not clear whether and to what extent re-afferences contribute to
the emergence of sensory attenuation.

Capitalizing on all of these considerations, in the present study
it has been further investigated the role of re-afferences per se in
sensory attenuation. Specifically, it has been explored whether
and how sensory modality and stimulus intensity affects the emer-
gence of the phenomenon. Three somatosensory stimulations,
often used in previous studies (i.e., sensory non-nociceptive elec-
trical, nociceptive electrical and vibrotactile) [3,9,10,17–28], and
three different intensities have been directly compared within a
sensory attenuation paradigm (i.e., comparing self-versus exter-
nally generated stimuli). Importantly, since the two stimulus fea-
tures were equiprobable within each block, any type of efferent
signal prior to action was prevented.

Subject and methods

Twelve right-handed [29] healthy participants (7 females, mean
age: 21.96 years; mean education level: 16.04 years) were
recruited for the experiment, and each signed an informed consent
statement to participate in the study approved by the Bioethical
Committee of the University of Turin.

Participants were seated with their hands on a table and were
instructed to always keep their sight in a specific point between
their hands. During the experiment, the lateral digital nerve of the
right (dominant) indexfingerwas stimulatedby attached electrodes
(5 cm apart) at the lateral side of the tip and base of the finger [24].
Every 20 stimulations, the experimenter slightly shifted the position
of the stimulator device (to not alter the subjective sensation). In
addition, for every 20 stimulations, a catch trial (i.e., a trial without
stimulation) was sent to avoid response biases and to control for
phantom sensations. After each stimulus, participants verbally
rated the perceived intensity sensation on a 0–10 point Likert’s
scale, in which 0 corresponds to ‘‘no intensity”, and 10 corresponds
to the ‘‘maximum perceived intensity”. A within-subjects design
study was run. Three types of stimulation were administered:
Sensory non-nociceptive electrical stimulation (ES)

For the ES, classical disposable surface electrodes (5-mm-
diameter bipolar Ag/AgCl) were attached to a constant current
stimulator (Digitimer Stimulator, Model DS7 A, Class 1 with Type
BF applied part, EN 60601-1, produced by Digitimer Ltd, 37 Hyde-
way, Welwyn Garden City, Hertfordshire, AL7 3BE- England). Pre-
liminarily, the electrical (both nociceptive and not) threshold of
each participant was detected: subjects with closed eyes verbally
reported perception of a stimulus to their right index finger (3
out of 6 repetitions). Next, stimuli were fixed at three intensities:
intensity 1 = sensory threshold ⁄ 2.5 + 2 mA, intensity 2 = sensory
threshold ⁄ 2.5 + 3 mA, intensity 3 = sensory threshold ⁄ 2.5
+ 4 mA. It has been decided to use three different intensities for
each type of stimulation to avoid the risk of a bias and/or a habit-
uation effect and to test for a possible main effect of intensity per
se. The three intensities were administered in a random order in
two conditions: in 60 trials, the electrical stimulus was self-
generated (condition SELF), and in the other 60 trials, it was exter-
nally generated (condition OTHER) for a total of 120 stimuli.

Nociceptive electrical stimulation (NES)

For the NES, nociceptive electrodes that stimulate only alpha
peripheral fibres, thanks to a pushpin-like needle electrode con-
sisting of a plastic plate (1.2 cm in diameter) and a stainless steel
needle (0.5 mm in diameter), were attached to the same devices
used for ES [22]. The nociceptive threshold of each participant
was detected using the same procedure as for the ES. Next, stimuli
were delivered at fixed multiple intensities: intensity 1 = sensory
threshold ⁄ 2.5 + 2 mA, intensity 2 = sensory threshold ⁄ 2.5 + 3
mA, intensity 3 = sensory threshold ⁄ 2.5 + 4 mA. As for ES, noci-
ceptive stimuli were randomly administered in three intensities
and in two conditions (SELF and OTHER conditions, 60 for each
condition, for a total of 120 stimuli).

Vibrotactile stimulation (VTS)

For the VTS, the experimental device was a vibrotactile stimula-
tor. The stimulator worked with a printed circuit board Arduino
(www.arduino.cc), an open-source microcontroller development
platform connected to a homemade processing script. As for the
ES and the NES, the vibrotactile stimuli were randomly adminis-
tered in three intensities (1, 2, 3) and in two conditions (SELF
and OTHER condition). For VTS stimuli intensity, it has been used
the same ratio scale used in ES and NES by increasing the intensity
of the vibration (i.e., the frequency of revolutions of the eccentric
expressed in Hz), where intensities were 1 = sensory thresh-
old ⁄ 2 Hz, 2 = sensory threshold ⁄ 3 Hz, 3 = sensory thresh-
old ⁄ 4 Hz for VTS.

The three types of stimulation (ES, NES, VTS) were administered
in separated and balanced blocks between subjects to control a
possible order effect; the order of stimuli intensities (1, 2 or 3)
and conditions (SELF and OTHER) was randomized between
subjects.

Consequently, the subject knows the agent of the action (him-
self in condition SELF and the experimenter in condition OTHER)
and the kind of stimulation (accordingly to the block), but he/she
was not aware of the forthcoming intensity of stimulation he/she
must rate.
Statistical analysis

Data analysis were conducted with Statistica 6.0. Preliminarily,
data were transformed into z-scores (within subject normalization,
see for details [23]). All data were normally distributed (Shapiro-
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Wilk test: W > 0.794; P > 0.124); therefore, parametric analyses
were conducted. Next, data in condition OTHER were subtracted
from condition SELF; consequently, negative values indicated the
presence of somatosensory attenuation.

A 3 � 3 repeated measures ANOVA with STIMULATION (ES, NES,
VTS) and INTENSITY (1, 2, 3), as within subject factors, was run
(Results I).

Since the ANOVA did not show significant results, each of the
three stimulations were separately analysed using a one-way
ANOVA with the within-subjects factor INTENSITY at three levels
(1, 2, 3). Furthermore, the score of each stimulation was compared
with 0 using one-sample t-tests (Results II).

Lastly, to compare the three stimulations, intensities for each
type of stimulation (mean of intensities 1, 2, 3) were averaged;
indeed, a one-way ANOVA was run with the factor STIMULATION
at three levels (ES, NES, VTS) as within subjects (Results III).
Results and discussion

Results I

Among the three stimulations, only ES showed all negative rat-
ings (ES – intensity 1 = mean: �0.041; SE: 0.030; intensity
2 = mean: �0.316; SE: 0.055; intensity 3 = mean: �0.375; SE:
0.048; NES – intensity 1 = mean: 0.075; SE: 0.044; intensity
2 = mean: 0.145; SE: 0.067; intensity 3 = mean: 0.075; SE: 0.070;
VTS- intensity 1 = mean: 0.095; SE: 0.023; intensity 2 = mean:
0.085; SE: 0.035; intensity 3 = mean: �0.1; SE: 0.035), suggesting
a suppression effect. The 3 � 3 repeated measures ANOVA with
STIMULATION (ES, NES, VTS) and INTENSITY (1, 2, 3) as within-
subject factors did not show a significant effect (F (4, 44) = 1.076,
P = 0.379, np

2=0.379) (see Fig. 1).

Results II

Despite being the most intuitive analysis, the analysis described
above did not reveal any effect. However, since the types of stim-
ulation are intrinsically different, an alternative approach with
respect to the 3 � 3 ANOVA could be preferable.

Sensory non-nociceptive electrical stimulation (ES) results

A one-way ANOVA with within-subjects factor INTENSITY at
three levels (1, 2, 3) was run. For the ES, the main factor INTENSITY
was significant (F (2, 22) = 4.263, P = 0.0272, np

2 = 0.279). Post-hoc
Fig. 1. Scatterplot of Results I showing participants’ ratings (self minus other condition) se
link averages of each type of stimulation. X-axis displays the three intensities (1, 2, 3) for
and intensity were found.
analysis (using the Duncan Test) showed that ES stimulation trig-
gered somatosensory attenuation, given that all intensities are
negatives. In addition, intensity 1 (mean: �0.041; SE: 0.030) was
significantly different (P = 0.050) from intensity 2 (mean: �0.316;
SE: 0.055) and different (P = 0.013) from intensity 3 (mean:
�0.375; SE: 0.048), but intensity 2 and 3 are not different between
each other (P = 0.724). Finally, one-sample t-tests showed that
while intensity 1 is not different from 0 (P = 0.534), intensities 2
(P = 0.022) and 3 (P = 0.002) are significantly different from 0, indi-
cating a suppression effect.

Nociceptive electrical stimulation (NES) results

The same analysis were run for the NES as for the ES. The main
factor INTENSITY was not significant (F (2, 22) = 0.0735, P = 0.929,
np
2 = 0.006). Intensities in NES showed a very similar pattern 1

(mean: 0.075; SE: 0.044), 2 (mean: 0.145; SE: 0.067) and 3 (mean:
0.075; SE: 0.070). Importantly, all scores were positives; therefore,
ratings in the OTHER condition were higher than those compared
to the SELF condition. In addition, one-sample t-tests yielded
results not significantly different from 0.

Vibrotactile stimulation (VTS) results

For the VTS, a one-way ANOVA with within-subjects factor
INTENSITY at three levels (1, 2, 3) was also run. The main factor
INTENSITY was significant (F (2, 22) = 4.991, P = 0.0163,
np
2 = 0.312). Post-hoc analyses (using the Duncan Test) showed that

only intensity 3 (mean: �0.1; SE: 0.035) is significantly lower
(P = 0.013) than intensity 1 (mean: 0.095; SE: 0.023) and intensity
2 (P = 0.013) (mean: 0.085; SE: 0.035) but is not significantly differ-
ent from 0 (P = 0.180).
Results III

The one-way ANOVA with intensities averaged for each kind of
stimulation (mean of intensities 1, 2, 3) show that the within-
subjects factor STIMULATION at three levels (ES, NES, VTS) was sig-
nificant (F (2, 22) = 10.617, P = 0.001, np

2 = 0.491). Post-hoc analyses
(using the Duncan Test) showed that only ES stimulation triggered
somatosensory attenuation (mean: �0.244; SE: 0.212), and it was
also significantly different from both NES (P < 0.001) and VTS
(P = 0.004) (see Fig. 2).

In the present study it has been examined the role of re-
afferences in somatosensory attenuation by comparing self-
parately for each stimulation. Each subject is represented by a different colour. Lines
each stimulation (ES, NES and VTS). No significant differences between stimulation



Fig. 2. Scatterplot of Results III showing participants’ ratings (self minus other condition with intensities averaged). Each subject is represented by a different colour. X-axis
displays the three stimulations (ES, NES, VTS). The line links averages of each stimulation. Only ES stimulation was significantly different from both NES (P < 0.001) and VTS
(P = 0.004).
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generated- versus other-generated stimulation within three types
of unpredictable somatosensory stimuli and intensities. The results
showed that the phenomenon was present for electrical non-
nociceptive stimulation (but not for vibrotactile and nociceptive
ones) and that the effect increased with the intensity. It is worth
noticing that within the somatosensory domain, most of the exist-
ing literature on sensory attenuation employed electrical stimuli
[25,26], several employed vibrotactile stimuli [3,27,28] and nox-
ious stimuli [17–20,30]. However, no previous study directly com-
pared these various kinds of stimuli. These results are consistent
with some previous evidence, showing that sensory attenuation
is not only linked to motor-related signals but also to the re-
afferences that follow intended actions (e.g., [16,21]). Indeed, a ser-
ies of previous investigations has demonstrated that the sensory
attenuation could not be only explained by phenomena as, for
example, the temporal predictability of the stimulus [32; see also
33] or the temporal control (i.e., the presence of an action to con-
trol the onset of the stimulus; cf. [34]). On the other hand, if, as
suggested by the results from Lange [31] and Vroomen and Steke-
lenburg [33], the sensory attenuation can also occur in absence of
action, this finding might indicate that the predictive mechanisms
involved in the phenomenon are not limited to the action predic-
tion but may also depend on external signals as, for example, our
results indicate from the type of stimulation per se. Hence, in gen-
eral, the phenomenon might depend on the optimal integrations of
distinct types of information, namely, efferences and afferences,
which are weighted according to the given context and to signal
availabilities [33,34]. The higher sensory attenuation effect for
electrical stimuli (but not for vibrotactile and, particularly, noci-
ceptive ones) was quite unexpected. However, it is possible to
speculate concerning the following interpretation of these results.
Enhancing the salience of unexpected external events has a strong
evolutionary meaning because it enables prompt reaction in
advance to alerting signals. This ability is strongly rooted on antic-
ipation, but in this design, this approach was not possible because
stimuli were already processed. In this context, electrical stimula-
tion could have been perceived as in between a safe stimulation
(i.e., vibrotactile for which a response is too premature) and an
unsafe one (i.e., nociceptive for which a response is too late). In
other words, electrical stimuli, particularly the stronger ones,
might be considered potentially more dangerous. Consequently,
those stimuli might represent a more salient event, as demon-
strated by the higher rating of the ES compared to the NES and
the VTS. This hypothesis is consistent with the fact that sensory
attenuation increased with higher intensities as if the cognitive
system would be progressively more activated for stimuli that
are potentially more dangerous.

Taken together, these results seem to indicate that re-afferences
could modulate sensory attenuation, although the lack of the sen-
sory attenuation with the nociceptive stimulation needs to be
clarified.
Study limitation

The primary limitation of the study is the small sample size of
the experimental group, since it is a behavioural investigation that
led to a low/medium effect size. Nonetheless, since the present
study is a pilot investigation, a sample size similar to previous
studies on these issues was employed [35,36]. However, it is pos-
sible that the lack of effect with the nociceptive stimulation could
be due to this low/medium effect size. Large sample size investiga-
tions will be necessary to overcome the limitations of this initial
study.
Conclusions

In the present study, it has been demonstrated that re-
afferences modulate sensory attenuation to optimize the efficacy
of the reactions to different external stimuli. However, due to the
limitation of this study, these results should be considered with
caution. To investigate this hypothesis, future studies should
gather additional behavioural and anatomo-functional evidence
on how quantitative and qualitative features of re-afferences could
modulate sensory attenuation.
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