
Conservative re-use ensuring matches
for service selection

Matteo Baldoni, Cristina Baroglio, Viviana Patti, and Claudio Schifanella
Dipartimento di Informatica — Università degli Studi di Torino

C.so Svizzera, 185 — I-10149 Torino (Italy)
{baldoni,baroglio,patti,schi}@di.unito.it

Abstract—The greater and greater quantity of services that are
available over the web causes a growing attention to techniques
that facilitate their reuse. A web service specification can be quite
complex, including various operations and message exchange
patterns. In this work, we give a declarative representation of
services, and in particular of WSDL operations, that enables
the application of techniques for reasoning about actions and
change. By means of these techniques it becomes possible to
reason on the specification of choreography roles and on possible
role players, as a basis for selecting services which match in a
flexible way with the specifications. Flexible match is, indeed,
fundamental in order to enable web service reuse but it does not
guarantee the preservation of the goals, that can be proved over
the role specification itself. We show how to enrich various kinds
of match proposed in the literature so to produce substitutions
that preserve goals.

I. INTRODUCTION

One of the key ideas behind web services is that services
should be amenable to automatic retrieval, in order to allow the
direct invocation as well as the composition with other services
in order to fulfill a query. Nowadays, however, retrieval cannot
yet be accomplished automatically as well and precisely as
desired because the representations used for web services and
the discovery mechanisms are semantically poor. The need
of adding a semantic layer to service descriptions brought
to initiatives like the development of OWL-S [1] and the
development of the Web Service Modeling Ontology (WSMO)
[2]. In these approach a richer annotation, aimed at repre-
senting the so called IOPEs (inputs, outputs, preconditions
and effects of the service), is used. Inputs and outputs are
usually described in terms taken from a public ontology,
while preconditions and effects are often expressed by means
of logic representations. A similar representation, based on
preconditions and postconditions, is also typical of design
by contract, originally introduced by Meyer for the EiffelTM

language [3]. Here preconditions are the part of the contract
which is to be guaranteed by the client; if this condition is
guaranteed in the execution context of a method, then the
server commits to guaranteeing that the postcondition holds
in the state reached by the execution.

Semantic annotation allows the discovery of services, whose
descriptions do not exactly match with the corresponding
queries (e.g. [4], [5], [2]). Semantic matchmaking focuses on
the discovery of single services, in the sense that a service is
considered as corresponding to a single operation. In general,

however, the use of a web service implies the execution of
a sequence of operations in a particular order, which might
even involve other services [6]: for instance, the clients of a
supplier web service have to identify themselves, request item
prices and delivery time, and so on. In order for the interaction
to be successful, the interaction must obey some constraints:
if they are not satisfied the service will be unable to proceed
and will return an error. To allow the interaction, web services
exhibit interfaces (port-types) which gather various operations
that are logically related.

On the other hand, the need of describing compositions
of services, which have to interact according to (complex)
patterns of interaction, ruled by conversation protocols, has
lead to the development of choreography languages like WS-
CDL [7]. WS-CDL is aimed at describing collaborations
between any type of participant independently from the pro-
gramming model used by its implementation. Also a WS-CDL
specification can be seen as a sort of contract, that specifies
the ordering conditions and constraints that rule the interac-
tion. The description is done from a global point of view,
encompassing the expected behavior of all the participants.
Each participant is supposed to use the global definition to
build and test solutions that conform to it.

In this work, we focus on the problem of selecting existing
services that have to play the roles of a given choreography.
This task implies verifying two things: the conformance of the
service to the specification of a role of interest, and that the use
of that service allows the achievement of the goal, that caused
its search. Conformance guarantees the interoperability of the
service with the players of the other roles [8], [9], [10] by
guaranteeing that the message exchange will produce correct
and accepted conversations. The goal that caused the search
of a service is a condition that should hold after the whole
interaction has taken place. It is not tied to the descriptions of
some service operation but it is a global condition that should
hold in the final state, obtained after the conclusion of the
conversation/interaction. In a framework in which it is possible
to reason on operation preconditions and effects, and where
an appropriate specification of the choreography is given, it
becomes possible to design services which have a much higher
degree of autonomy w.r.t. existing ones and whose behavior
resembles more closely the behavior of autonomous agents.
In particular, a service can decide whether playing a role by
reasoning on the effects of playing the role and see whether it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302158423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


can achieve a goal of interest by doing so. The achievement
of the goal depends on the operation sequence because each
operation can influence the executability and the outcomes of
the subsequent ones. Many of the operations, however, are
offered by the partners in the interaction which, at the time
when the service reasons about the choreography, they are
still unknown. The reasoning process must, therefore, use the
specifications of the operations that will be supplied by the
partners, specifications which are included in the choreography
(that we call unbound operations). A selection process will
link unbound operations with operations offered by existing
services, and it does so by applying some kind of (possibly
flexible) match. In [11], however, we showed that performing
a match operation by operation, by applying the definitions in
[12], does not preserve the global goal. Therefore, the match-
making process, that is applied to discover services, should
not only focus on local properties of the single operations, e.g.
IOPEs, but it should also consider constraints that derive from
the global schema of execution, which is given by the chore-
ography. In this paper we extend the results achieved in [11],
limited to the so-called plugin match, to the class of re-use
ensuring matches [13]. To this aim, inspired by [1], [2], [14],
we exploit an action-based representation of the specifications
of the operations of a service: each operation is described
in terms of its preconditions and effects, as in [15], [16],
without taking into account the ontology layer which is not
functional to the aims of the work. This representation supplies
the mechanisms and the tools for reasoning on compositions
of services, as described in choreographies; in particular, it
supplies a representation of states and an execution model that
can be reasoned about.

The paper is organized as follows. Section II sets the
representation of services and of choreographies that we adopt.
Section III discusses various kinds of match and reports
our proposal for producing conservative matches. A running
example is distributed along the pages to better explain the
proposed notions and mechanisms. Conclusions end the paper.

II. A THEORETICAL FRAMEWORK FOR REPRESENTING
AND REASONING ABOUT SERVICES

In this section, we briefly summarize the notation that we
use to represent services, introduced in [16], and we discuss
the problem of verifying a global goal. The notation is based
on a logical theory for reasoning about actions and change in
a modal logic programming setting. In this perspective, the
problem of reasoning amounts either to build or to traverse
a sequence of transitions between states. A state is a set of
fluents, i.e., properties whose truth value can change over time,
due to the application of actions. In general, we cannot assume
that the value of each fluent in a state is known: we want
to have both the possibility of representing unknown fluents
and the ability of reasoning about the execution of actions
on incomplete states. To explicitly represent unknown fluents,
we use an epistemic operator B, to represent the beliefs an
entity has about the world: Bf means that the fluent f is
known to be true, B¬f means that the fluent f is known to be

false. A fluent f is undefined when both ¬Bf and ¬B¬f hold
(¬Bf ∧ ¬B¬f ). For expressing that a fluent f is undefined,
we write u(f). Thus each fluent in a state can have one of the
three values: true, false or unknown.

Services exhibit interfaces, called port-types, which make a
set of operations available to possible clients. In our proposal,
a service description is defined as a pair 〈S,P〉, where S
is a set of basic operations, and P (policy) is a description
of the complex behavior of the service. Analogously to what
happens for OWL-S composite processes, P is built upon basic
operations and tests that control the flow of execution.

A. Basic Operations

The set S contains the descriptions of a set of service
operations. According to the main languages for representing
web services, like WSDL and OWL-S, there are four basic
kinds of operations [6] (or atomic processes, when using
OWL-S terminology [1]): one-way, notify, request-response,
and solicit-response. The first two involve a single message
exchange. In a one-way operation, a client invokes an op-
eration by sending a message to the service, while by a
notification the client receives a message from the service. The
other two operations involve the exchange of two messages.
Request-response operations are initiated by the invoker of the
operation, which sends a message to the service and, after that,
waits for a response. In solicit-response operations the order of
the messages is inverted: first the invoker waits for a message
from the service and then it sends an answer.

An operation is described in terms of its executability
preconditions and effects, the former being a set of fluents
(introduced by the keyword possible if) which must be con-
tained in the service state in order for the operation to be
applicable, the latter being a set of fluents (introduced by the
keyword causes) which will be added to the service state after
the operation execution. Formalized in these terms, operations,
when executed, trigger a revision process on the actor’s beliefs.
Since we describe web services from a subjective point of
view, we distinguish between the case when the service is
either the initiator (the operation invoker) or the servant of
an operation (the operation supplier) by further decorating
the operation name with a notation inspired by [14]. With
reference to a specific service, operationÀ denotes the oper-
ation from the point of view of the invoker, while operation¿

denotes the operation from the point of view of the supplier.
The view of operations that is used by invoker is given in terms
of the operation inputs, outputs, preconditions, and effects as
usual for semantic web services [1]. In the next part of this
section, inputs and outputs are represented as single messages
for simplicity but the representation can easily be extended to
sets of exchanged data, as in Example (1). Preconditions Ps

and effects Es are respectively the conditions required by the
operation in order to be invoked, and the expected effects that
result from the execution of the operation. For what concerns
the view of the supplier, also in this case the operation is
described in terms of its inputs and outputs. Moreover, we
also represent a set of conditions that enable the executability



of the operation (Rs, requirements) and that constitute the side
effects, Ss. For example, a buy operation of a selling service
has as a precondition the fact that the invoker has a valid
credit card, as inputs the credit card number of the buyer and
its expiration date, as output it generates a receipt, and as
effect the credit card is charged. From the point of view of
the supplier, the requirement to the execution is to have an
active connection to the bank, and the side effect is that the
store availability is decreased while the service bank account
is increased of the perceived amount.

Let us now introduce the formal representation of the four
kinds of basic operations. For each operation we report both
views.

One-Way, invoker point of view:
(a) operationÀow(min) possible if BInvokermin ∧ Ps

(b) operationÀow(min) causes BInvokersent(min)
(c) operationÀow(min) causes Es

In one-way operations, the invoker requests an execution
which involves sending an information min to the supplier; the
invoker must obviously know the information to send before
the invocation (a). The invoker can execute the operation only
if the preconditions to the operations are satisfied in its current
state (a). The execution of the invocation brings about the
effects Es of the operation (c), and the invoker will know that
it has sent an information to the supplier (b). Using OWL-
S terminology, min represents the input of the operation,
while Ps and Es are its preconditions and effects. One-way
operations have no output.

One-Way, supplier point of view:
(a) operation¿ow(min) possible if Rs

(b) operation¿ow(min) causes BOfferermin

(c) operation¿ow(min) causes Ss

On the other hand, the supplier, which exhibits the one-way
operation as one of the services that it can execute, has the
requirements Rs (a). The execution of the operation causes
the fact that the supplier will know the information sent by
the invoker (b). We also allow the possibility of having some
side effects on the supplier’s state. These effects are not to be
confused with the operation effects described by IOPE, and
have been added for the sake of completeness.

Notify, invoker point of view:
(a) operationÀn (mout) possible if Ps

(b) operationÀn (mout) causes BInvokermout

(c) operationÀn (mout) causes Es

In notify operations, the invoker requests an execution which
involves receiving an information mout from the supplier. The
invoker can invoke the execution of the operation only if
the preconditions to the operations are satisfied in its current
state (a). The execution of the invocation brings about the
effects Es of the operation (c), and the invoker will know
the received information (b). Using OWL-S terminology, mout

represents the output of the operation, while Ps and Es are
its preconditions and effects. Notify operations have no input.

Notify, supplier point of view:
(a) operation¿n (mout) possible if BOfferermout ∧ Rs

(b) operation¿n (mout) causes BOfferersent(mout)
(c) operation¿n (mout) causes Ss

The supplier must know the information to send and must
meet the requirements Rs (a). The execution of the operation
simply causes the fact that the supplier will know that it has
sent some information to the invoker (b). As above, we allow
the possibility of having some side effects on the supplier’s
state (c).

Request-response, invoker point of view:
(a) operationÀrr(min,mout) possible if BInvokermin ∧ Ps

(b) operationÀrr(min,mout) causes BInvokersent(min)
(c) operationÀrr(min,mout) causes BInvokermout

(d) operationÀrr(min,mout) causes Es

In request-response operations, the invoker requests an execu-
tion which involves sending an information min (the input,
according to OWL-S terminology) and then receiving an
answer mout from the supplier (the output in OWL-S). The
invoker can execute the operation only if the preconditions Ps

are satisfied in its current state and if it owns the information
to send (a). The execution of the invocation brings about the
effects Es (d), and the fact that the invoker knows that it has
sent the input min to the supplier (b). One further effect of
the execution is that the invoker knows the answer returned by
the operation (c). This representation abstracts away from the
actual message exchange mechanism, which is implemented.
Our aim is to reason on the effects of the execution on the
mental state of the parties [15].

Request-response, supplier point of view:
(a) operation¿rr(min,mout) possible if Rs

(b) operation¿rr(min,mout) causes BOfferermin

(c) operation¿rr(min,mout) causes BOfferermout

(d) operation¿rr(min,mout) causes BOfferersent(mout)
(e) operation¿rr(min,mout) causes Ss

As for one-way operations, the supplier has the requirements
Rs to the operation execution (a). It receives an input min

from the invoker (b). The execution of the operation produces
an answer mout (c), which is sent to the invoker (d). As usual,
we allow the possibility of having some side effects on the
supplier’s state. On the supplier’s side, we can notice more
evidently the abstraction of the representation from the actual
execution process. In fact, we do not model how the answer
is produced but only the fact that it is produced.

Solicit-response, invoker point of view:
(a) operationÀsr(min,mout) possible if Ps

(b) operationÀsr(min,mout) causes BInvokermout

(c) operationÀsr(min,mout) causes BInvokermin

(d) operationÀsr(min,mout) causes BInvokersent(min)
(e) operationÀsr(min,mout) causes Es

In solicit-response operations, the invoker requests an execu-
tion which involves receiving an information mout (the output,



Fig. 1. An example of a simple interaction protocol, for reserving a flight,
expressed as a UML sequence diagram.

according to OWL-S terminology) and then sending a message
min to the supplier (the input in OWL-S). The invoker can
execute the invocation only if the preconditions Ps are satisfied
in its current state (a). The execution of the invocation brings
about the effects Es (e). The invoker receives a message mout

from the supplier (b) then, it produces the input information
min which is sent to the supplier, see (c) and (d).

Solicit-response, supplier point of view:
(a) operation¿sr(min, mout) possible if BOfferermout ∧ Rs

(b) operation¿sr(min, mout) causes BOfferersent(mout)
(c) operation¿sr(min, mout) causes BOfferermin

(d) operation¿sr(min, mout) causes Ss

As for notify operations, the supplier must know the infor-
mation to send and to fulfill the requirements Rs (a). The
execution of the operation causes the fact that the supplier
will know that it has sent some information to the invoker (b).
Moreover, it produces also the knowledge of the information
min received by the invoker (c). As above, we allow the
possibility of having some side effects on the supplier’s state
(d).

Example 1: As an example, let’s consider the searchFlight
operation of the flight reservation protocol depicted in Figure
1, which is offered by a seller and can be invoked by a buyer
to search information about flights with given departure (dep)
and arrival locations (arr) plus the date of departure (date).
From the point of view of the buyer, the operation, which is
of kind request-response, is:
(a) searchFlightÀrr((dep, arr, date), f lightList) possible if

Bbuyerdep ∧ Bbuyerarr ∧ Bbuyerdate∧
Bbuyer¬sellingStarted

(b) searchFlightÀrr((dep, arr, date), f lightList) causes
Bbuyersent(dep) ∧ Bbuyersent(arr)∧
Bbuyersent(date)

(d) searchFlightÀrr((dep, arr, date), f lightList) causes
BbuyerflightList

(c) searchFlightÀrr((dep, arr, date), f lightList) causes
BbuyersellingStarted

The inputs of the operation are dep, arr, and date, while the
output is flightList. In this case the set Ps contains only the
belief Bbuyer¬sellingStarted (in bold text above) while the
set Es of effects contains the belief BbuyersellingStarted (in
bold text as well).

From the point of view of the supplier, instead, the operation
is represented as:
(a) searchFlight¿rr((dep, arr, date), f lightList) possible if

true
(b) searchFlight¿rr((dep, arr, date), f lightList) causes

Bsellerdep ∧ Bsellerarr ∧ Bsellerdate
(c) searchFlight¿rr((dep, arr, date), f lightList) causes

BsellerflightList
(d) searchFlight¿rr((dep, arr, date), f lightList) causes

Bsellersent(flightList)
In this case the sets Rs and Ss of requirements and side effects
are empty. The operation expects as input the departure and
arrival locations and the date of the flight, and it produces
a flightList, which it sends to its customer, so after the
operation the belief Bsellersent(flightList) will be in its
belief state. ¤

Last but not least, a service can also have internal opera-
tions, which can be included in its policy but are not visible
from outside. Each operation is represented again as an atomic
action, specified by its preconditions and its effects. Formally,
it is defined as:

operation(content) causes Es

operation(content) possible if Ps

where Es and Ps, denote respectively the fluents, which are
expected as effect of the execution of an operation and the
precondition to its execution, while content denotes possible
additional data that is required by the operation. Notice that
such operations can also be implemented as invocations to
other services.

B. Composite operations

P encodes the complex behavior of the service; it is a
collection of clauses of the kind:

p0 is p1, . . . , pn

where p0 is the name of the procedure and pi, i = 1, . . . , n, is
either an atomic action (operation), a test action (denoted by
the symbol ?), or a procedure call. Procedures can be recursive
and are executed in a goal-directed way, similarly to standard
logic programs, and their definitions can be non-deterministic
as in Prolog.

A choreography is made of a set of interacting roles, a
role being a subjective view of the interaction that is encoded.
When a service plays a role in a choreography, its policy will
contain some operations which are not of the service itself but
belong to some other role of the choreography, with which it
interacts. In other words, S can be partitioned in two sets: a
set of bound operations and a set of unbound operations, that
must be supplied by some counterpart(s). Until the counterpart
service(s) is (are) not defined, such operations will be those



specified in the choreography. Such operations will be offered
by the interlocutors as À operations. We assume that they are
represented in a way that is homogeneous with the representa-
tion of operations, i.e. by means of preconditions and effects.
The binding will be possible only when the partners in the
interaction will be found.

The fact that a service is taking a given role in the
choreography is due, in our proposal, to the fact that it knows
that a certain goal condition will be true after the execution of
the role. When a possible partner is identified for the latter role,
after the binding has taken place, it is necessary to check if the
goal condition is preserved. The reasons for which this could
not happen are explained in the following section; hereafter,
we formalize the notion of substitution that we interpret as the
binding.

Let Sd = 〈S,P〉 be a service description, and let Su be
a subset of S, containing unbound operations that are to be
supplied by a same counterpart Si. Let SSi be the set of
operations in Si that we want Sd to use, binding them to Su.
We represent the binding by the substitution θ = [SSi/Su]
applied to Sd, i.e.: Sdθ = 〈Sθ,Pθ〉, where every element of
Su is substituted by/bound to an element of SSi . Notice that
not all elements of SSi

are, instead, necessarily bound. An
example is reported in Example 2.

Example 2: As an instance, here we report the definition
of the buyTicket procedure of the flight company example.
The procedure will encode a role in a choreography if all of
the involved operations are unbound. It will, instead, encode a
service behavior when all of its operations are bound to those
offered by one or more services that act as interlocutors.

(a) buyTicket is
searchFlightÀrr((dep, arr, date), f lightList);
evaluateAndBuy

(b) evaluateAndBuy is
noBusinessÀow(reason)

(c) evaluateAndBuy is
selectFlightÀow(flight);
payMethods¿sr(payMethods, credentials);
doPaymentÀrr((chosenMethod, payInfo), resNum);
getMilesÀn (miles)

This procedure encodes the behaviour of the buyer
of a flight ticket, be it a role or a specific service.
First, it invokes an operation for searchig a flight
(searchFlightÀrr((dep, arr, date), f lightList)), and it
evaluates the result (evaluateAndBuy). The evaluation
can give either a negative outcome, hence the interaction
is interrupted (noBusinessÀow(reason)) or the interaction
continues with the flight selection (selectFlightÀow(flight)),
the payment (payMethods¿sr(payMethods, credentials) and
doPaymentÀrr((chosenMethod, payInfo), resNum)) and,
at the end, the client is notified about the obtained miles
(getMilesÀn (miles)). ¤

C. Reasoning on goals

In the outlined framework, it is possible to reason about
goals by means of queries of the form:

Fs after p

where Fs is the goal (represented as a conjunction of fluents),
that we wish to hold after the execution of a policy p.
Checking if a formula of this kind holds corresponds to
answering the query: “Is it possible to execute p in such a
way that the condition Fs is true in the final state?”. When
the answer is positive, the reasoning process returns a sequence
of atomic actions that allows the achievement of the desired
condition. This sequence corresponds to an execution trace of
the procedure and can be seen as a plan to bring about the goal
Fs. This form of reasoning is known as temporal projection.
Temporal projection fits our needs because, as mentioned in
the introduction, in order to perform the selection we need
a mechanism that verifies if a goal condition holds after the
interaction with the service has taken place. Fs is the set of
facts that we would like to hold “after” p.

Let Sd = 〈S,P〉 be a service description. The application
of temporal projection to P returns, if any, an execution
trace, that makes a goal of interest become true. Let us, then,
consider a procedure p belonging to P , and denote by G the
query Fs after p. Given a state S0, containing all the fluents
that we know as being true in the beginning, we denote the
fact that G is successful in Sd by:

(〈S,P〉, S0) ` G

The execution of the above query returns as a side-effect an
execution trace σ of p. The execution trace σ is linear, i.e. a
terminating sequence a1, . . . , an of atomic actions.

Example 3 (Flight-purchase, second part): Let
us suppose that the initial state of the service
b1 is S0 = {Bbuyerdep,Bbuyerarr,Bbuyerdate,
BbuyerdeferredPaymentPossible,Bbuyer¬sellingStarted},
(all the other fluents truth value is “unknown”). This means
that b1 assumes a date, a departure location, an arrival location,
the fact that it is possible to defer the payment to the departure
(at a desk at the airport), and that no selling process has started
yet. The goal of b1 is to achieve the following condition: G =
{BbuyersellingComplete,BbuyerresNum} after buyTicket
Intuitively, the buyer expects that, after the interaction, it will
have a reservation number as a result.

By reasoning on its policy and by using the definitions of
the unbound operations that are given by the choreography, b1
can identify an execution trace, that leads to a state where G
holds:

σ = searchFlightÀrr((dep, arr, date), f lightList);
selectFlightÀow(flight);

payMethods¿sr(payMethods, credentials);
doPaymentÀrr((chosenMethod, payInfo), resNum);

getMilesÀn (miles)
This is possible because in a declarative representation spec-
ifications are executable. Moreover notice that this execution



Fig. 2. The lattice of the local matches: on top the strongest; names in a box
are re-use ensuring matches; SM and GGP are in same box because logically
equivalent.

does not influence the belief about the deferred payment,
which persists from the initial through the final state and is
not contradicted. ¤

III. CONSERVATIVE, RE-USE ENSURING MATCHES

When the matching process is applied for selecting a
service that should play a role in a (partially instantiated)
choreography, the desire is that the substitution (of the service
operations to the specifications contained in the choreography)
preserves the properties of interest. In [11] we have formalized
this notion in the following way:

Definition 1 (Conservative substitution): Let us consider a
service Si = 〈S, P〉 playing a role Ri in a given choreography,
and a query G such that, given an initial state S0,

(〈S,P〉, S0) ` G w.a. σ

Consider a substitution θ = [SSj /Sσ
u(Rj)

], where Sσ
u(Rj)

=
{ou ∈ S | o occurs in σ} is the set of all unbound operations
that refer to another role Rj , j 6= i, of the same choreography,
that are used in the execution trace σ. θ is conservative when
the following holds:

(〈Sθ,Pθ〉, S0) ` G w.a. σθ

¤
In the above definition, θ can be any kind of association

between the operations of a service with the unbound opera-
tions described in a choreography. In practice it is the result
of a matching process. In the literature it is possible to find
many match algorithms, mostly based on the seminal work
by Zaremski and Wing [12] on software components, and
surveyed in [17].

Given a software component S, with precondition Spre

and postcondition Spost, and a specification (or query, in
the match-making community) Q, with precondition Qpre

and postcondition Qpost, the most important kinds of relaxed
match between Q and S are:

• EM (Exact Pre/Post Match): Qpre ⇔ Spre ∧ Qpost ⇔
Spost

• EPREM (Exact Pre Match): Qpre ⇔ Spre ∧ Spost ⇒
Qpost

• EPOM (Exact Post Match): Qpre ⇒ Spre ∧ Qpost ⇔
Spost

• PIM (Plugin Match): Qpre ⇒ Spre ∧ Spost ⇒ Qpost

• POM (Plugin Post Match): Spost ⇒ Qpost

• GPIM (Guarded Plugin Match, a.k.a. Weak-Plugin [18]):
Qpre ⇒ Spre ∧ ((Spre ∧ Spost) ⇒ Qpost)

• SM (Satisfies Match, a.k.a. relaxed plug-in in [13], plug-
in compatibility [19]): Qpre ⇒ Spre ∧ (Qpre ∧ Spost ⇒
Qpost)

• GPOM (Guarded Post Match, a.k.a. Weak-Post [18]):
((Spre ∧ Spost) ⇒ Qpost)

• GGP (Guarded-Generalized Predicate): (Qpre ⇒ Spre)∧
((Spre ⇒ Spost) ⇒ (Qpre ⇒ Qpost))

The different matches can be organized according to a lattice
[17], that we have reported in Fig. 2. On top, there is Exact
pre/post match, which states the equivalence of Q and S.
Moving down in the lattice weaker and weaker match con-
ditions are found. For instance, in Plugin match S must only
be behaviorally equivalent to Q when plugged-in to replace Q.
Plugin post match relaxes the former: only the postcondition
is considered. Guarded matches focus on guaranteeing that the
desired postcondition holds when the precondition of S holds,
not necessarily in general.

In our application domain, Q is an unbound operation, while
S is an operation. For short, we decorate substitutions with an
acronym denoting the applied match (e.g. θEM is a substitu-
tion obtained by applying the exact match, θPIM by applying
the plugin match, etc.). All these matches have been defined
for the retrieval of single components, and have a local nature,
i.e. they compare a requirement to a software specification (in
our case, an unbound operation) independently of the context
of usage (in our work, the choreography role). On the other
hand, a choreography defines the global execution context, in
which unbound operations are immersed.

In [11] we have proved that, in general, flexible matches do
not satisfy Definition 1. In other words, it is not guaranteed
that after the substitution of a set of operations, which were
selected by applying one of the local flexible matches, to a set
of unbound operations in a role, a goal that could previously be
achieved is still achievable. In fact, besides a few special cases
(EM and EPOM are the only matches which, by their own
nature are conservative), the identified operation can produce
additional effects w.r.t. Qpost. This is not a problem when
the operation is to be used alone but when it is inserted in
the context of a role execution, the additional effects may
inhibit the preconditions of operations that follow. This is a
problem because the choice of playing a role bases on the
proof that the adoption of that role allows the achievement of
a goal of interest for the player. The substitution is necessary
in order to make the role executable but this transformation
should not affect the possibility of reaching the goal, that
was demonstrated for the role specification. In [11] we also
showed how to enrich the plugin match so to guarantee that the
built substitutions are conservative. This is done by taking into



account the overall structure, encoded by the choreography.
In the following we extend this result to a wider class of

matches; in particular, we show that all matches which are
re-use ensuring, according to the definition given by Chen
and Cheng in [13], can be enriched in order to guarantee
the production of conservative matches. Once again, we do
this by exploiting only constraints that can be inferred from
the choreography, without modifying the local nature of the
considered matches.

Definition 2 (Re-use ensuring match [13]): A specification
match M is re-use ensuring iff for any S and Q, M(S,Q) ∧
{Spre}S{Spost} ⇒ {Qpre}S{Qpost}.

In the above definition, {Cpre}C{Cpost} denotes a Hoare
triple and is informally interpreted as the truth of “program
C started with Cpre satisfied will terminate in a state such
that Cpost holds” [20]. Considering the lattice in Figure 2, re-
use ensuring matches are all those in a box, while POM and
GPOM are not re-use ensuring.

In order to extend the results in [11] to all re-use ensuring
matches, we need to recall a few notions given in that paper.
Intuitively, we take into account the dependencies between
operations, which produce as effects fluents, that are used as
preconditions by subsequent operations. The idea is to verify
that the “causal chains” which allow the execution of the
sequence of operations, are not broken after the substitution.
The obvious hypothesis is that we have a choreography and
that we know that it allows to achieve the goal of interest, i.e.
that there is an execution σ, which allows the achievement of
the goal. We will use this trace for defining a set of constraints
that, whenever satisfied by a substitution obtained by a re-
use ensuring match, guarantee that the substitution is also
conservative. This is a “sufficient” condition because there
might exist conservative substitutions that do not satisfy this
set of constraints.

Let us start with the notions of dependencies between
operations and dependency sets for fluents. Consider a service
description S = 〈S,P〉, and suppose that, given the initial
state S0, the goal G = Fs after p succeeds, thus obtaining
as answer the successful sequence of operations σ = a1; a2;
. . . ; an, which is an execution trace of p. We denote by
σ the sequence of operations a0; a1; a2; . . . ; an; an+1, where
a0 and an+1 are two fictitious operations that will be used
respectively to represent the initial state S0 and the set of
fluents Fs, which must hold after σ. That is, we assume a0

has no precondition and Es(a0) = S0, and that an+1 has no
effect but Psan+1 = Fs.

Consider two indexes i and j, such that j < i, i, j =
0, . . . , n+1. We say that in σ the operation ai depends on aj

for the fluent Bl, written aj Ã〈Bl,σ〉 ai, iff Bl ∈ Es(aj),
Bl ∈ Psai, and there is not a k, j < k < i, such that
Bl ∈ Es(ak). Given a fluent Bl and a sequence of operations
σ, we can, therefore, define the dependency set of Bl as
Deps(Bl, σ) = {(j, i) | aj Ã〈Bl,σ〉 ai}.

Let [s/ou] be a specific substitution of a service operation
s to an unbound operation ou, that is contained in θ, we say
that a fluent Bl ∈ Es(s)−Es(ou) (i.e. an additional effect of

s w.r.t. the effects of ou) is an uninfluential fluent w.r.t. the
sequence σθ iff for all pairs (j, i) ∈ Deps(B¬l, σ), identifying
by k the position of ou in σ, we have that k < j or i ≤
k. Intuitively, this means that the fluent will not break any
dependency between the operations which involve the inverse
fluent because either it will be overwritten or it will appear
after its inverse has already been used. Note that σ and σθ have
the same length and are identical as sequences of operations
but for the fact that in the latter the selected service operations
substitute unbound operations. For this reason, we can reduce
to reasoning on σ for what concerns the operation positions.

Definition 3: A substitution θ is called uninfluential iff for
any substitution [s/ou] in θ, all beliefs in Es(s)−Es(ou) are
uninfluential fluents w.r.t. σ.

Proposition 1: Let M be a re-use ensuring match, any
substitution θM that is uninfluential is also conservative.

Proof: The proof is by absurd and it uses the
proof theory introduced in [21]. Let us assume that
(〈S,P〉, S0) ` G w.a. σ but (〈SθM , θM ,PθM 〉, S0) 6`
G w.a. σθM . Therefore, there exists a fluent F such that
a0, a1, . . . , ai−1 ` F but (a0, a1, . . . , ai−1)θM 6` F , where
σ = a0, a1, . . . , ai−1, ai, . . . , an and F ∈ Ps(ai), i.e. ai

is not executable because one of its preconditions does not
hold. Now, since a0, a1, . . . , ai−1 ` F , there exists j ≤
i − 1, such that a0, a1, . . . , aj ` F and F ∈ Es(aj) but
(a0, a1, . . . , aj)θM 6` F . Let us assume that j is the last
operation to produce F before ai. There are two possible
cases, either F 6∈ Es(ajθM ) or there is another operation
akθM , with j < k < i, such that ¬F is one of its effects.
The first case is absurd since by hypothesis the match is re-
use ensuring, therefore (a0, a1, . . . , ai−1, ai)θM ` F , for any
fluent F in Es(ai). The second is absurd as well, since j is
the last operation to produce F , the effect ¬F of akθM should
be one of its additional effects but this is absurd because by
hypothesis θM is an uninfluential substitution.

From the above proposition and the construction of depen-
dency sets, it is easy to show that the following theorem holds.

Theorem 1: Let M be a re-use ensuring match, Si = 〈S,
P〉 be a service which plays a role Ri in a given choreography,
and G a query such that, (〈S,P〉, S0) ` G w.a. σ, where SO

is the initial state. Let θM be a substitution for all unbound
operations of Si that refer to another role Rj played by the
service Sj , j 6= i. The problem of determining whether θM is
conservative w.r.t. G is decidable.

Example 4: Let us now consider the goal and the service
description specified in the previous examples, and suppose
that the operation payMethod is defined in this way:
(a) payMethods¿sr(payMethods, credentials) possible if

Bbuyercredentials∧
BbuyermustPay(flight)
∧BbuyerdeferredPaymentPossible

(b) payMethods¿sr(payMethods, credentials) causes
Bbuyersent(credentials)

(c) payMethods¿sr(payMethods, credentials) causes
BbuyerpayMethods

(d) payMethods¿sr(payMethods, credentials) causes



>
In particular, the operation has, as a precondition, the
possibility of pay the ticket directly at the airport desk
(BbuyerdeferredPaymentPossible).

Let us now consider a service, that is a candidate to play
the role of Seller, which is equivalent to the role specification
but for the operation that implements searchFlight, which is
specified as:
(a) searchFlight¿rr((dep, arr, date), f lightList) possible if

true
(b) searchFlight¿rr((dep, arr, date), f lightList) causes

Bsellerdep ∧ Bsellerarr ∧ Bsellerdate
(c) searchFlight¿rr((dep, arr, date), f lightList) causes

BsellerflightList
(d) searchFlight¿rr((dep, arr, date), f lightList) causes

Bsellersent(flightList)
(e) searchFlight¿rr((dep, arr, date), f lightList) causes
¬BbuyerdeferredPaymentPossible
This operation has an additional effect, w.r.t. to the
corresponding unbound operation, that is it negates
the possibility of paying the ticket at the airport
(¬BbuyerdeferredPaymentPossible). Despite this, the
service matches with the unbound operation according to
many of the re-use ensuring matches (e.g. EPREM, PIM,
GPIM, SM). This additional effect is not uninfluential because
it prevents the executability of the operation payMethod, as
defined above.

If the additional effect were, for instance, that Bveg meals,
supplying an additional information concerning the availability
of vegetarian meals, the achievement of the goal would not be
compromised and the selection would be allowed. ¤

IV. CONCLUSIONS

In this work we extended the proposal in [11] by proving
that for any re-use ensuring match, as defined in [13], it is
decidable to verify that the obtained substitutions are conser-
vative w.r.t. a goal that is proved by using for the unbound
operations the specifications provided by the choreogrpahy.
This result allows the enrichment of the matches with a test
that can be applied at the match execution time, locally, i.e.
operation by operation. This is done by taking into account
the execution context given by the choreography.

The literature related to matchmaking is wide and it is
really difficult to be exhaustive. The matches proposed in
[12] have inspired most of the semantic matches for web
service discovery. Amongst them, Paolucci et al. [4] propose
four degrees of match (exact, plugin, subsumes, and fail).
Differently than in our proposal, these matches are computed
on the ontological relations of the outputs of an advertisement
for a service and a query and are orthogonal to our work. This
approach tackles DAML-S representations, in which services
are described by means of inputs and outputs. This approach
is refined in [5], a work that describes a service matchmaking
prototype, which uses a DAML-S based ontology and a
Description Logic reasoner to compare ontology-based service
descriptions, given in terms of input and output parameters.

The matchmaking process, like in [4], produces a discrete scale
of degrees of match (Exact, PlugIn, Subsume, Intersection,
Disjoint).

WSMO (Web Service Modeling Ontology) [2] is an orga-
nizational framework for semantic web services. As such, it
does not suggest a specific matching rule, which is up to the
specific implementations. However, the authors propose in [22]
an approach that is based on [12] and on [5], hence it suffers
of the same limits that we have mentioned.

Works like [23], [24] propose approaches for goal-driven
service composition based on planning. However, the task
is accomplished without reference to any choreography. In
particular, in [23] the composition and the semantic reasoning
phases (carried on on inputs and outputs) are separated and
the latter is performed on a local basis only. In [25], [26]
web services are composed by composing their interaction
protocols in a social framework, by means of a temporal logic.

REFERENCES

[1] OWL-S Coalition, “http://www.daml.org/services/owl-s/.”
[2] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman, and

A. Polleres, Enabling Semantic Web Services : The Web Service Mod-
eling Ontology. Springer.

[3] B. Meyer, “Applying ”design by contract”,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[4] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic match-
ing of web services capabilities,” in Proc. of ISWC ’02. Springer, 2002,
pp. 333–347.

[5] L. Li and I. Horrocks, “A software framework for matchmaking based
on semantic technology,” in Proc. of WWW Conference. ACM Press,
2003.

[6] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Springer, 2004.

[7] WS-CDL, “http://www.w3.org/tr/ws-cdl-10/.”
[8] S. K. Rajamani and J. Rehof, “Conformance checking for models of

asynchronous message passing software,” in Proc. of 14th International
Conference on Computer Aided Verification, CAV 2002, ser. LNCS, vol.
2404. Springer, 2002, pp. 166–179.

[9] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based analysis of
obligations in web service choreography,” in Proc. of IEEE International
Conference on Internet&Web Applications and Services 2006, 2006.

[10] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Chore-
ography and orchestration: a synergic approach for system design,” in
Proc. of ICSOC 2005, 2005.

[11] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella,
“Service selection by choreography-driven matching,” in Emerging Web
Services Technology, ser. Whitestein Series in Software Agent Technolo-
gies and Autonomic Computing, T. Gschwind and C. Pautasso, Eds.
Birkhäuser, September 2008, vol. II, ch. 1, pp. 5–22.

[12] A. M. Zaremski and J. M. Wing, “Specification matching of software
components,” ACM Transactions on SEM, vol. 6, no. 4, pp. 333–369,
1997.

[13] Y. Chen and B. H. C. Cheng, Foundations of Component-Based Sys-
tems. Cambridge Univ. Press, 2000, ch. A Semantic Foundation for
Specification Matching, pp. 91–109.

[14] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Me-
cella, “Synthesis of Underspecified Composite e-Service bases on Ato-
mated Reasoning,” in Proc. of ICSOC04. ACM, 2004, pp. 105–114.

[15] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming
Rational Agents in a Modal Action Logic,” Annals of Mathematics
and Artificial Intelligence, Special issue on Logic-Based Agent
Implementation, vol. 41, no. 2-4, pp. 207–257, 2004. [Online].
Available: http://www.kluweronline.com/issn/1012-2443

[16] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
interaction protocols for customizing web service selection and com-
position,” JLAP, special issue on Web Services and Formal Methods,
vol. 70, no. 1, pp. 53–73, 2007.



[17] H. Toth, “On theory and practice of assertion based software develop-
ment,” Journal of Object Technology, vol. 4, no. 2, pp. 109–129, 2005.

[18] J. Penix and P. Alexander, “Efficient specification-based component
retrieval,” Automated Software Engg., vol. 6, no. 2, pp. 139–170, 1999.

[19] B. Fischer and G. Snelting, “Reuse by contract,” in ESEC/FSE-Workshop
on Foundations of Component-Based Systems, 1997.

[20] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, 1969.

[21] M. Baldoni, L. Giordano, A. Martelli, and V. Patti,
“Programming Rational Agents in a Modal Action Logic,”
AMAI, vol. 41, no. 2-4, pp. 207–257, 2004. [Online]. Available:
http://www.kluweronline.com/issn/1012-2443

[22] U. Keller, R. L. A. Polleres, I. Toma, M. Kifer, and D. Fensel, “D5.1 v0.1
wsmo web service discovery,” WSML deliverable, Tech. Rep., 2004.

[23] M. Pistore, L. Spalazzi, and P. Traverso, “A minimalist approach to
semantic annotations for web processes compositions.” in ESWC, 2006,
pp. 620–634.

[24] J. Bryson, D. Martin, S. McIlraith, and L. A. Stein, “Agent-based
composite services in DAML-S: The behavior-oriented design of an
intelligent semantic web,” in Web Intelligence. Springer, 2003.

[25] L. Giordano and A. Martelli, “Web Service Composition in a Temporal
Action Logic,” in Proc. of 4th International Workshop on AI for Service
Composition (held in conjunction with ECAI 2006), Riva del Garda,
August 2006.

[26] A. Martelli and L. Giordano, “Reasoning About Web Services in a
Temporal Action Logic,” in Reasoning, Action and Interaction in AI
Theories and System, ser. LNAI. Springer, 2006, no. 4155, pp. 229–
246.


