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Abstract

We study linear divisibility sequences of order 4, providing a characterization by
means of their characteristic polynomials and finding their factorization as a product of
linear divisibility sequences of order 2. Moreover, we show a new interesting connection
between linear divisibility sequences and Salem numbers. Specifically, we generate
linear divisibility sequences of order 4 by means of Salem numbers modulo 1.

Mathematical Subject Classifications 2000: 11B37.

1 Introduction

A sequence a = (an)∞n=0 is a divisibility sequence if m|n implies am|an. Divisibility se-
quences that satisfy a linear recurrence relation are particularly studied. A classic example
of linear divisibility sequence is the Fibonacci sequence. During the years linear divisibility
sequences of order 2 have been deeply studied, see, e.g., [11] and [14]. Hall [10] studied
divisibility sequences of order 3 and Bezivin et al. [3] have obtained more general results.
Divisibility sequences are very interesting for their beautiful properties. For example,
many studies can be found about their connection with elliptic curves [19], [12]. Further
results on divisibility sequences can be found, e.g, in [8] where Cornelissen and Reynolds
investigate matrix divisibility sequences, and in [22] where Horak and Skula characterize
the second–order strong divisibility sequences.

Recently, linear divisibility sequences of order 4 have been deeply examined. In par-
ticular, Williams and Guy [20], [21] introduced and studied a class of linear divisibility
sequences of order 4 that extends the Lehmer–Lucas theory for divisibility sequences of
order 2. In section 2, we consider these sequences proving that all (non degenerate) di-
visibility sequences of order 4 have characteristic polynomial equals to the characteristic
polynomial of sequences of Williams and Guy. Moreover, we provide all factorizations of
divisibility sequences of order 4 into the product of divisibility sequences of order 2.

In section 3, we generate linear divisibility sequences of order 4 by means of powers
of Salem numbers. This result is particularly intriguing, since connections between Salem
numbers and divisibility sequences have been never highlighted. Moreover, the construc-
tion of divisibility sequences by means of powers of algebraic integers is an interesting
research field that have been recently developed [18].

2 Standard linear divisibility sequences

Definition 1. Given a ring R, a sequence a = (an)∞n=0 over R is a divisibility sequence
if

m|n⇒ am|an.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302158391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Conventionally, we will consider a0 = 0.

In the following, we will deal with linear divisibility sequences (LDSs), i.e., divisibility
sequences that satisfy a linear recurrence. Classic LDSs are the Lucas sequences, i.e., the
linear recurrence sequences with characteristic polynomial x2−hx+k and initial conditions
0, 1.

In [20] and [21], the authors introduced and studied some linear divisibility sequences
of order 4. We recall these sequences in the following definition.

Definition 2. Let us consider linear recurrence sequences of order 4 over Z with charac-
teristic polynomial

x4 − px3 + (q + 2r)x2 − prx+ r2

and initial conditions
0, 1, p, p2 − q − 3r.

We say that these sequences are standard LDSs of order 4 and we call the previous poly-
nomial as standard polynomial.

In the next theorem, we prove that the product of two LDSs of order 2 is a standard
LDS of order 4. First, we need the following lemma proved in [7].

Lemma 1. Let a = (an)∞n=0 and b = (bn)∞n=0 be linear recurrence sequences with charac-
teristic polynomials f(x) and g(x), respectively. The sequence ab = (anbn)∞n=0 is a linear
recurrence sequence that recurs with f(x)⊗ g(x), the characteristic polynomial of the ma-
trix F ⊗G (Kronecker product of matrices), where F and G are the companion matrices
of f(x) and g(x), respectively.

Theorem 1. Let a = (an)∞n=0 and b = (bn)∞n=0 be LDSs of order 2 with characteristic
polynomials x2− h1x+ k1, x2− h2x+ k2, respectively, and initial conditions 0, 1. The se-
quence ab = (anbn)∞n=0 is a standard LDS of order 4 with initial conditions 0, 1, h1h2, (h

2
1−

k1)(h2
2 − k2).

Proof. Since a and b are LDSs, it immediately follows that ab is a divisibility sequence and
by Lemma 1, we know that it is a linear recurrence sequence of order 4 whose characteristic
polynomial is

x4 − h1h2x
3 + (k1h

2
1 − k2h

2
1 + 2k1k2)x2 + h1k1h2k2x+ k2

1k
2
2.

By Definition 2, ab is a standard LDS for p = h1h2, q = h2
1k2 + k1(h2

2 − 4k2), r = k1k2.
The initial conditions can be directly calculated.

Moreover, we prove that all the LDSs of order 4 have characteristic polynomial equals
to the characteristic polynomial of standard LDSs.

Theorem 2. Let a = (an)∞n=0 be a non degenerate LDS of order 4 with a0 = 0 and a1 = 1,
then its characteristic polynomial is

x4 − px3 + (q + 2r)x2 − prx+ r2

for some p, q, r.

Proof. Let us suppose that the characteristic polynomial of a has distinct roots in order
to avoid degenerate sequences, i.e., ratio of roots are not roots of unity. Since a0 = 0, we
have

an = c1α
n + c2β

n + c3γ
n − (c1 + c2 + c3)δn, ∀n ≥ 0.

Since

a2n = c1(αn − δn)(αn + δn) + c2(βn − δn)(βn + δn) + c3(γn − δn)(γn + δn),
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we can write
a2n = an(αn + βn + γn + δn)−R

where

R = (c1 + c2)((αβ)n − (γδ)n) + (c1 + c3)((αγ)n − (βδ)n) + (c2 + c3)((βγ)n − (αδ)n).

By hypothesis, an|a2n, for all n ≥ 0, thus an|R for all n ≥ 0. We will prove that R = 0.
Indeed, let us pose δn = y, an|R means that polynomials

(c1α
n + c2β

n + c3γ
n)− (c1 + c2 + c3)y

and

(c1 + c2)(αβ)n+ (c1 + c3)(αγ)n+ (c2 + c3)(βγ)n− ((c1 + c2)γn+ (c1 + c3)βn+ (c2 + c3)αn)y

have the common root y = c1αn+c2βn+c3γn

c1+c2+c3
. Let us observe that c1 + c2 + c3 6= 0, otherwise

a has order 3. In this case, we should have

c1c2(αn − βn)2 + c1c3(αn − γn)2 + c2c3(βn − γn)2 = 0 (1)

for all n ≥ 0, with c1c2, c1c3, c2c3 6= 0 so that a has order 4 and α, β, γ, δ distinct. We can
write

c1c2 = −
c1c3(αn − γn)2 + c2c3(βn − γn)2

(αn − βn)2
.

Comparing this identity for n = 1, 2, 3, we get

c1c3(α− γ) = 0, c2c3(β − γ) = 0

that contradict conditions on c1, c2, c3 and α, β, γ, δ. Thus, Eq. (1) is not true under these
hypothesis and consequently R = 0, i.e.,

(c1 + c2)((αβ)n − (γδ)n) + (c1 + c3)((αγ)n − (βδ)n) + (c2 + c3)((βγ)n − (αδ)n) = 0

and

c1 + c2 = −
(c1 + c3)((αγ)n − (βδ)n) + (c2 + c3)((βγ)n − (αδ)n)

(αβ)n − (γδ)n

for all n ≥ 1. Comparing this identity for n = 1, 2, 3, we get

(c1 + c3)(αγ − βδ) = 0, (c2 + c3)(βγ − αδ) = 0, c1 + c2 = 0.

These conditions are satisfied when

c1 + c3 = 0, βγ − αδ = 0

or
c2 + c3 = 0, αγ − βδ = 0.

We obtain
an = c1(αn + δn − βn − γn), αδ = βγ

or
an = c1(αn + γn − βn − δn), αγ = βδ.

Imposing a1 = 1 we find

an =
αn + δn − βn − γn

α+ δ − β − γ
, αδ = βγ

or

an =
αn + γn − βn − δn

α+ γ − β − δ
, αγ = βδ

i.e., the characteristic polynomial of a is a standard polynomial.
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Now, we see that any standard LDS can be factorized as a product of two LDS of order
2 over C .

Definition 3. Given the sequences (un)+∞
n=0, (vn)+∞

n=0, (sn)+∞
n=0, (tn)+∞

n=0 over a ring R, we
say that the product sequences (unvn)+∞

n=0 and (sntn)+∞
n=0 are equivalent if

un = λn−1sn, vn = λ1−ntn

where λ ∈ R is a unit.

Theorem 3. Let a = (an)∞n=0 be a standard LDS over Z, then an = bncn, for all n ≥ 0,
where b = (bn)∞n=0 and c = (cn)∞n=0 are LDSs of order 2 over C with initial conditions 0, 1
and characteristic polynomials

x2 −
√
q + 4r + 2p

√
r ±

√
q + 4r − 2p

√
r

2
√
r

x+ 1

x2 −
√
q + 4r + 2p

√
r ∓

√
q + 4r − 2p

√
r

2
x+ r

when p 6= 0. Moreover when p = 0 and q + 4r 6= 0, q 6= 0 (to avoid degenerate cases) we
have the two possible families of characteristic polynomials for b and c given by{

x2 + 1

x2 −
√
q + 4rx+ r

,

{
x2 + 1

x2 −√qx− r

These are all the families of not equivalent factorizations of a over C.

Proof. We want to factorize a standard polynomial into the Kronecker product of two
polynomials of degree 2, i.e., we want to find h1, h2, k1, k2 such that

(x2 − h1x+ k1)⊗ (x2 − h2x+ k2) = x4 − px3 + (q + 2r)x2 − px+ r2.

Let us observe that the characteristic polynomial of a must have distinct non zero roots
in order to guarantee that a is a LDS of order 4 . Let γ1, γ2 and σ1, σ2 be the roots of
x2 − h1x+ k1 and x2 − h2x+ k2, respectively. We have

(γ1 + γ2)(σ1 + σ2) = p

(γ2
1 + γ2

2)σ1σ2 + γ1γ2(σ1 + σ2)2 = q + 2r

γ1γ2σ1σ2(γ1 + γ2)(σ1 + σ2) = pr

(γ1γ2σ1σ2)2 = r2

(2)

When p 6= 0 these conditions are equivalent to the system
k1k2 = r

h1h2 = p

h2
1k2 + h2

2k1 = q + 4r

(3)

which is a particular case of 
k1k2 = A

h1h2 = B

h2
1k2 + h2

2k1 = C

where A 6= 0 since we suppose that the standard polynomial has not zero roots. Thus, we
can obtain

A

(
h2

1

k1

)2

− C

(
h2

1

k1

)
+B2 = 0
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from which we have

h1 = ±
√
k1

√
C + 2B

√
A±

√
C − 2B

√
A

2
√
A

and

h2 = ±

√
C + 2B

√
A∓

√
C − 2B

√
A

2
√
k1

.

Thus solutions of system 3 are

h1 = ±
√
k1

√
q + 4r + 2p

√
r ±

√
q + 4r − 2p

√
r

2
√
r

h2 = ±
√
q + 4r + 2p

√
r ∓

√
q + 4r − 2p

√
r

2
√
k1

k2 =
r

k1

.

Let us pose

λ = ±
√
k1, s =

√
q + 4r + 2p

√
r ±

√
q + 4r − 2p

√
r

2
√
r

,, s̄ =

√
q + 4r + 2p

√
r ∓

√
q + 4r − 2p

√
r

2
.

Thus, considering solutions of system 3, we have x2 − h1x + k1 = x2 − sλx + λ2 and
x2 − h2x+ k2 = x2 − s̄

λx+ r
λ2

, whose roots are

γ1,2 = λ

(
s±
√
s2 − 4

2

)
, σ1,2 =

1

λ

(
s̄±
√
s̄2 − 4

2

)
.

In this case, we have un = λn−1bn and vn = λ1−ncn, where b and c are Lucas sequences
with characteristic polynomials x2 − sx+ 1 and x2 − s̄x+ r, respectively. When p = 0 in
conditions (2) we may suppose γ1 + γ2 = h1 = 0 and find the two systems

h1 = 0

k1k2 = r

h2
2k1 = p+ 4r

,


h1 = 0

k1k2 = −r
h2

2k1 = p

with respective solutions 
h1 = 0

h2 = ±
√

p+4r
k1

k2 = r
k1

,


h1 = 0

h2 = ±
√

p
k1

k2 = − r
k1

which give, with analogous considerations as in the case p 6= 0, with λ = ±
√
k1, the two

families of characteristic polynomials for b and c related to this case.

Remark 1. It would be interesting to find when previous factorizations determine se-
quences in Z or Z[i].

In the next section, we see a new connection between LDS of order 4 and Salem
numbers.
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3 Construction of linear divisibility sequences by means of
Salem numbers of order 4

The Salem numbers have been introduced in 1944 by Raphael Salem [17] and they are
closely related to the Pisot numbers [16]. There are several results regarding Pisot numbers
and recurrence sequences [4], [5], [6]. In the following, we relate Salem numbers and LDS.

There are many equivalent definitions of Salem numbers, here we report the following
one.

Definition 4. A Salem number is an algebraic integer τ > 1 of degree d ≥ 4 such that all
the conjugate elements belong to the unitary circle, unless τ and τ−1.

In the following, we work on Salem numbers of degree 4, which can be characterized
as follows (see [2], pag. 81).

Proposition 1. The Salem numbers of degree 4 are all the real roots τ > 1, of the following
polynomials with integer coefficients

x4 + tx3 + cx2 − tx+ 1

where
2(t− 1) < c < −2(t+ 1).

It is immediate to see that previous polynomials are standard polynomials for p = −t,
q = −2 + c, r = 1.

Definition 5. We call Salem standard polynomials the polynomials

x4 − px3 + (q + 2)x2 − px+ 1

with
2(−p− 1) < 2 + q < −2(−p+ 1).

The study of the distribution modulo 1 of the powers of a given real number greater
than 1 is a rich and classic research field (see, e.g, [13]). In the following, we use the same
notation of [2] (pag. 61).

Definition 6. Given a real number α, let E(α) be the nearest integer to α, i.e., α =
E(α) + ε(α) where ε(α) ∈ [−1

2 ,
1
2 ] is called α modulo 1.

In the original work of Salem [17], he proved that if α is a Pisot number, then αn

modulo 1 tends to zero and if α is a Salem number, then αn modulo 1 is dense in the unit
interval. Further results on the distribution modulo 1 of the Salem numbers can be found,
e.g., in [1] and [23]. Moreover, integer and fractional parts of Pisot and Salem numbers
have been studied, e.g., in [9] and [24].

Let R ⊆ C be a ring and α ∈ R with α 6∈ R∗, then the sequence (αn)∞n=0 is clearly
a LDS. Given a couple of irrational numbers λ and α, it is interesting to study when the
sequence (E(λαn))∞n=0 is a LDS.

Example 1. If we consider 1√
5

and the golden mean φ, it is well–known that

E

(
1√
5
φn
)

= Fn,

where Fn is the n–th Fibonacci number, consequently we get a LDS.
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Let g(x) be a Salem standard polynomial, g(x) has real roots α > 1, α−1 and complex
roots γ, γ−1 with norm 1. Let (un)∞n=0 be a standard LDS with characteristic polynomial
g(x). By the Binet formula, there exist λ, λ1, λ2, λ3 such that

un = λαn + λ1α
−n + λ2γ

n + λ3γ
−n.

Since
|un − λαn| ≥ |λ1α

−n|+ |λ2|+ |λ3|,

for all ε > 0, with n sufficiently large, we have

|un − λαn| ≥ ε+ |λ2|+ |λ3|.

Thus, if |λ2|+ |λ3| < 1
2 , there exists n0 such that

un = E(λαn), ∀n > n0

and if |λ1α
−1|+ |λ2|+ |λ3| < 1

2 , then

un = E(λαn), ∀n ≥ 1.

An interesting case is given by the Salem standard polynomial

x4 − tx3 + tx2 − tx+ 1

for t ≥ 6. In this case, we have the Salem numbers

α =
1

4

(
t+
√

(t− 4)t+ 8 +
√

2

√
t(t+

√
(t− 4)t+ 8− 2)− 4

)
and

λ =
1√

(t− 4)t+ 8
.

Thus, we can determine infinitely many LDSs generated by powers of a Salem number,
specifically the sequences

(θn(t))∞n=1 = E(λαn), ∀t ≥ 6 ∈ Z

For example, when t = 6 we have the LDS

1, 6, 29, 144, 725, 3654, 18409, ...

when t = 7, we have
1, 7, 41, 245, 8897, 53621, ...

These sequences appear to be new, since they are not listed in OEIS [15]. Moreover, as a
consequence, we have the following property on Salem numbers, i.e.,

d|n⇒ E(λαd)|E(λαn).

Finally, in the following proposition we characterize all the Salem standard polynomials
that produces LDSs of this kind.

Proposition 2. With the above notation, if |λ1α
−1| + |λ2| + |λ3| < 1

2 , then the integer
coefficients p, q of g(x) must satisfy the following inequalities2 ≤ p ≤ 8, −4− 2p < q <

p4 + 8p3 − 160p− 400

4p2 + 32p+ 64
p > 8, −4− 2p < q < −4 + 2p
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Proof. The real root α > 1 of g(x) can be written as

α =
1

4

(
p+

√
p2 − 4q +

√
(p+

√
p2 − 4q)2 − 16

).
Moreover, by the Binet formula

λ = λ1 =
αγ

(α− γ)(αγ − 1)
, λ2 = λ3 = −

αγ

(α− γ)(αγ − 1)
.

Thus, from |λ1α
−1|+ |λ2|+ |λ3| < 1

2 we get

|(α− γ)(αγ − 1)| > 2α+ 2.

Posing γ = a+ ib, with some calculations we find

α4 − 4aα3 + 2(2a2 − 7)α2 − 4(a+ 4)α− 3 > 0

from which we have
α > 2 + a+

√
(a+ 2)2 + 1

since −1 < a < 1 and α > 1. Using the explicit expression of α and that a =
p−
√
p2−4q
4 ,

we finally obtain

1

4
(p+

√
−16 + (−p−

√
p2 − 4q)2+

√
p2 − 4q) > 2+

p

4
+

√
1 +

1

16
(8 + p−

√
p2 − 4q)2−1

4

√
p2 − 4q,

whose solutions are2 ≤ p ≤ 8, −4− 2p < q <
p4 + 8p3 − 160p− 400

4p2 + 32p+ 64
p > 8, −4− 2p < q < −4 + 2p

.
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