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Abstract In this paper we deal with approximate transient analysis of com-
plex queuing networks. In particular, we exploit the idea of flow equivalence
to reduce the size of the model. It is well-known that flow equivalent servers
lead to exact steady state solution in many cases.

Our goal is to investigate the applicability of flow equivalence to transient
analysis. We show that exact results can be obtained even in the transient
phase, but the definition of the equivalent server requires the analysis of the
whole original network. We propose thus to use approximate aggregate servers
whose characterization demands much less computation. Specifically, the char-
acterization corresponds to the steady state equivalent server of the stations
that we aim to aggregate and thus can be achieved by analyzing the involved
stations in isolation. This way, approximations can be derived for any queuing
network, but the precision of the results depends heavily on the topology and
on the parameters of the model.

We propose a methodology in which we check the aggregate servers in order
to decide whether the resulting approximate transient analysis is satisfactory.
We motivate the approach by several numerical case studies.

Keywords Queuing networks, transient analysis, flow-equivalence.

1 Introduction

Performance oriented design of modern Computer, Communication, and Man-
ufacturing systems relies on the construction and analysis of models that help
in gaining insights in their behaviors and in ensuring the development of ef-
fective and efficient products [18,16]

Modelling formalisms exist for the representation of these Discrete Event
Dynamic Systems [20] making easier the task of capturing in a precise manner

Address(es) of author(s) should be given

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302158373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

their relevant characteristics. In most cases the mathematical representations
of these models reduce to Continuous Time Markov Chains (CTMCs) for which
numerous theoretical and numerical results are available [21].The complexities
of real systems naturally translate in the complexities of their models, thus
making their analysis computationally difficult, mostly due to the state space
explosion of these representations. Consequently, techniques have been devised
to control their growths and to simplify the models with divide-and-conquer
approaches [6].

When the models are characterized by the interaction among sub-models,
decomposition methods can be used and substantial advantages can arise when
the stationary solution is in product form [13,7,14].

Simple Product Form Queueing Networks (PFQN) [3] which can be solved
by efficient algorithms and that are easy to parameterize [18] are often used
for these studies. Real systems with simultaneous resource possession, block-
ing, synchronization, large service time variability, and finite capacity con-
straints violates the assumptions underlying PFQNs, but can be conveniently
and accurately approximated using the Flow-Equivalent technique [8,2,15] for
computing performance figures related to their stationary behaviors.

When models of this type are used to guide reconfiguration decisions that
must be taken within contexts characterized by high variability of the system
workload, the steady state analysis becomes questionable and the transient
solutions of the models become mandatory.

Product form is a property of the stationary distribution of PFQNs and
holds only in very specific cases in the transient phase [4]. As a consequence,
transient analysis of real systems gains little advantages when the system
can be modeled with PFQNs. Moreover, little is known about the quality of
the transient solution of a model computed when subsystems are replaced
by their flow equivalent counterparts. Given the practical relevance of the
transient phase (for example in case of frequent reconfiguration) in this paper
we investigate the application of flow-equivalence in the context of transient
analysis. In particular, given a queuing network, we provide a methodology
for deciding when the transient behavior can be conveniently approximated
with the results of the transient analysis of a reduced version of the model
obtained using steady-state flow-equivalence concepts. We limit ourselves to
an approximation because, excluding very special cases, devising an exact
approach that reduces the complexity of the transient analysis as it happens
for the steady state solution of PFQNs, is practically un-realistic. Our criteria
are of two different types. The first concerns the structure of the sub-network
(of stations) that we intend to aggregate and to replace with an approximate
aggregate server. The second checks the adequacy of this representation by
testing the response of the aggregate to load conditions that might reveal its
inaccuracy in the transient phase.

The paper is organized as follows. In Section 2 we specify the model that
we consider in this work and summarize the methods used to compute the
stationary distribution of PFQNs. In Section 3 we describe the concept of flow
equivalent server and show how to restructure the model to accommodate the
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aggregate representation. In Section 4 we discuss the difficulties that arise
when using flow equivalence in a finite time domain. In Section 5, we discuss
the structural criteria that must be satisfied by the sub-network that we intend
to aggregate to ensure a good aggregation. In Section 6 we argue that the ap-
proximate aggregate server must also provide an adequate (dynamic) response
to the load represented by an input flow of customers, similar to that expressed
by the original sub-network analyzed in isolation and subject to the same load
conditions. In this Section we also discuss the quality of the approximation by
applying the method to a set of (relatively) large networks exhibiting different
characteristics and draw some general indications concerning both the cases
in which the method performs well as well as those where the results are not
satisfactory. In Section 7 we discuss the application of the method to a case
concerning the design and management of a web-service. Finally, in Section 8
we draw some conclusions and outline some future research directions.

2 Model

We consider a closed network ofM queues (service stations),N = {s1, s2, . . . , sM},
with a fixed number N of statistically identical jobs circulating through the
network at all times (single class network). Jobs (or customers) get service at
the stations and move from one station to another according to pre-defined
routing probabilities denoted by ri,j with i, j ∈ {1, 2, ...,M} and globally rep-
resented by the routing matrix R. Service times have exponential distributions
which can depend on the length of the corresponding queues; the service inten-
sity of queue i in the presence of n jobs at the station is denoted by µi(n). The
service disciplines of all the queues in the network are assumed to be FIFO.

A state of the model is a vector x = [x1, ..., xM ] where xi denotes the

number of jobs at station i and
∑M
i=1 xi = N . Accordingly, the state space is

defined as

S(N,M) =

{
x = [x1, ..., xM ]

∣∣∣∣ xi ≥ 0, i = 1, ...,M ;

M∑
i=1

xi = N

}
(1)

and its cardinality is |S(N,M)| =
(
N+M−1
M−1

)
.

The number of jobs at station i at time t is denoted by Xi(t) and the full
system state by X (t) = [X1(t), ..., XM (t)]. The probability that the system is
in state x at time t is denoted by πx (t), i.e.,

πx (t) = Pr{X (t) = x} = Pr{X1(t) = x1, ..., XM (t) = xM} (2)

The probabilities of the whole state space are conveniently collected in a vector
π(t) = [πx (t)]x∈S(N,M). As the network of queues forms a CTMC, π(t) satisfies
the well-known ordinary differential equation

dπ(t)

dt
= π(t)Q (3)
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where Q , the (homogeneous) infinitesimal generator, is a square matrix of size
|S(N,M)| × |S(N,M)| with the non-null entries defined as

qx ,y =


µi(xi) ri,j y 6= x ,y = {x1, . . . , xi − 1, . . . xj + 1, . . . , xM}

−
∑
∀z 6=x

qx ,z y = x (4)

2.1 Steady state analysis

The steady state distribution, denoted by π, satisfies the following system of
linear equations 

πQ = 0∑
∀x∈S(N,M)

πx = 1.

It has been proved by Gordon and Newell [12] that the equilibrium distribution
of customers in a closed PFQN of this type is given by

πx =
1

G

M∏
i=1

fi(xi) (5)

where G is a normalizing constant defined so that we have
∑
∀x πx = 1, and

the function fi (often called service function of station i) is defined as

fi(x) =

1 x = 0
Vi

µi(x)
fi(x− 1) x ≥ 1

(6)

being V = [V1, ..., VM ] a real positive solution of the eigenvector-like equation

V = VR (7)

The direct computation of the normalization constant G is of exponential
complexity, but, due to the pioneering work of Buzen [7], computationally
efficient algorithms have been devised [10] which obtain the desired quantity
in polynomial time. One such method, called Mean Value Analysis (MVA) [19],
which derives the average performance indices of all the stations of the network
without the explicit computation of the normalization constant, is used to
obtain the results presented in the last sections of this paper.
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3 Flow-equivalent aggregation in steady state

On the basis of the results recalled in the previous section, we can now define
an equivalent server. Consider a PFQN N defined as before and let K =
{s1, s2, . . . , sK}, i.e., K is the set of the first K stations, and let K′ denote the
set of the remaining stations.

The goal of the aggregation step is to characterize the behavior of the
sub-model K in order to replace it with an equivalent server that will then
interact with the other sub-model K′ without affecting its behavior for what
concerns the steady state.1 This characterization of the equivalent server is
performed with an offline experiment [8,11,9] which corresponds to solving
the sub-model K in isolation under a fixed load z = 1, ..., N . For this purpose
let us assume N ′ to be a queuing network having the same topology of N , but
such that the stations in K′ have null service times (they are often referred
to as “short-circuited”). Denoting by π′(z) the stationary distribution of the
customers in the network N ′ when the number of customers is z, i.e.,

π′x (z) = Pr{X = x |z jobs in the network}

= Pr{X1 = x1, ..., XK = xK , XK+1 = 0, ..., XM = 0

∣∣∣∣ K∑
i=1

xi = z}

we can compute the marginal distribution of the customers in the ith station
(i = 1, ...,K)

P ′i (k, z) =
∑

∀x′∈S(z,K):x′
i
=k

π′x ′(z) (8)

The stationary throughput of station i of N ′ when there are z customers in
the network can then be written as

χi(z) =

z∑
k=1

P ′i (k, z)µi(k) (9)

and the aggregated throughput of the sub-network K in the presence of z jobs
is

χagg(z) =
∑
i∈K

χi(z) ∑
j∈K′

ri,j

 (10)

Finally, denote with seq a load-dependent queuing station which behaves
in such a way that, when z customers are present at the station, the service
intensity equals χagg(z).

1 In the rest of the paper, we will often refer to the stations in K as the aggregated
stations meaning that these are the stations whose aggregated behavior will be captured by
the flow-equivalent server.
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Theorem 1 If station seq is put in N in place of the stations that belong to
K in such a way that

– the routing probabilities from a station si 6∈ K to seq are equal to the sum
of the routing probabilities from si to each station in K, i.e.

ri,eq =
∑
l∈K

ri,l (11)

– the routing probabilities from seq to a station sj 6∈ K are equal to the
weighted sum of the routing probabilities from each station in K to sj,

req,j =

∑
i∈K Vi ri,j∑

l∈K′
∑
h∈K Vh rh,l

(12)

then the resulting new network (denoted by Neq) has measures of interest equal
to those of N when time approaches infinite.

A different version of Theorem 1 that does not specify the new routing
probabilities appeared many times in the literature [8,11,2,1]. The proof usu-
ally focuses on showing that the normalization constant of the original network
N is identical to that of the reduced network Neq. Indeed, the recursive com-
putation developed by Buzen [7] shows that the normalization constant G can
be obtained via the repeated application of a convolution operator that is com-
mutative and thus yields the same final result independently of the order in
which the stations of the network are considered. This allows to first account
for the stations that are aggregated, and then to show that the normalization
constant of the reduced network Neq in which seq is listed as first station of
the network is identical to that of the original one (network N ).

Little is available instead in the literature for what concerns the modifica-
tions that need to be introduced in the routing matrix of network N in order to
provide a detailed and precise specification of network Neq as defined by (11)
and (12) included in the statement of Theorem 1. This is due to the fact that
these details are not relevant for the computation of the stationary distribu-
tion of the whole network; they are instead needed for the transient analysis
based on flow equivalent servers that will be discussed starting in the next
section of this paper. To verify the validity of (11) and (12), it is sufficient to
show that the visit ratios computed for the stations that belong to K′ remain
identical when considered both within the original network N and within the
reduced network Neq. Appendix A contains the details of this proof.

4 Use of flow-equivalence in transient analysis

In the previous section we showed that the key point for applying flow-equivalence
is the computation of the service rates χagg(z), 1 ≤ z ≤ N , that are required
to define the equivalent station. Since the stationary probabilities of a PFQN
depend only on the mean service times of the stations, these service rates
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(which are constants as time tends to infinity) fully characterize an equivalent
server which can replace an arbitrary number of aggregated stations without
affecting the stationary measures of the system [8,11,2,1].

Within the context of stationary analysis, flow-equivalence has been exten-
sively used [9,16] to perform sensitivity analysis of queuing networks due to
the fact that the evaluation of the constants χagg(x) is computationally simple
and the equivalent server can be reused also for different parameterizations of
the remaining stations of the network [8].

Unfortunately, the application of flow equivalence in transient contexts is
more difficult and no general results are known for this purpose since the
computation of the service rates of a “transient” equivalent server requires
the knowledge of the transient distribution of the whole network. In order
to clarify this concept in Section 4.1 we will derive general expressions for
aggregation in a transient context. In Section 4.2 we introduce the approximate
flow equivalence method that we propose in this paper.

4.1 Exact aggregation in transient analysis

Using the notation introduced in the previous section, let us assume that
network N is split into two sub-networks, one comprising the first M − 1
stations, that we call K (stations with indices from 1 up to M − 1), and the
other that is made of the last station only (station with index M). A general
state of this network (x ) can be denoted by means of a pair x = (x ′, xM ) so
that the entire state space of the network (that we have previously denoted
with S(N,M)) can now be seen as the union of N + 1 subsets denoted by
S ′(k,N,M), k = 0, ..., N, and defined as

S ′(k,N,M) =

{
x = (x1, ..., xM )

∣∣∣∣ xi ≥ 0;

M−1∑
i=1

xi = k, xM = N − k;

}
(13)

Let us also assume that the states x of N are organized in a lexicographical
order, so that first we have the (only) state with xM = N , followed by the
states with xM = (N − 1) up to the group of states characterized by xM = 0.
According to this organization of the state space, the system of differential
equations given in (3) can now be divided into N + 1 sub-systems whose left-
hand-sides are characterized by the derivatives of the transient probabilities
of the states of the corresponding groups. Let us denote by

π̃k(t) =
∑

x ′∈S′(k,N,M)

πx ′(t) (14)

the probability that there are k, 0 ≤ k ≤ N, clients in K at time t. Then by
proper summations of the equations in (3) we can write a system of ordinary
differential equations for the quantities defined in (14) in the form of

dπ̃(t)

dt
= π̃(t)Q̃(t) (15)
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where Q̃(t) is an (N + 1)× (N + 1) matrix, whose non-null entries are

q̃i,j(t) =


χagg(i, t) j = i− 1

µM (N − i)(1− rM,M ) j = i+ 1

−
∑
∀k 6=i

q̃i,k i = j.

(16)

being χagg(i, t) the aggregated service rate of the stations in K at time t if
there are i clients in K. The term χagg(i, t) can be computed according to the
following derivation.

Let νx ′(h, t) be the conditional probability of finding the sub-network K in
a given state x ′ ∈ S ′(h,N,M), given that there are h customers in K:

νx ′(h, t) =
πx ′(t)

π̃h(t)

Given a specific state x ′ of the sub-network K, the rate at which customers
flow from K to station M is expressed as

Yx ′ =

M−1∑
l=1

µl(x
′
l) rl,M

so that

χagg(h, t) =
∑

x ′∈S′(h,N,M)

Yx ′ νx ′(h, t) (17)

When started from identical initial conditions, i.e.,

π̃k(0) =
∑

x ′∈S′(h,N,M)

πx ′(h, 0)

the aggregated and the original systems (given in (15) and (3), respectively)
lead to the same transient behavior for what concerns qauantities related with
the number of clients in K and with respect to station M .

The derivation of the service rate of the flow equivalent server, that we have
proposed for the case of a single sub-network to avoid unneeded complexity,
can be easily generalized to the case of any number of sub-networks without
changing the essence of the result.

Appendix B contains a simple example which provides an illustration of
the exact transient aggregation described above, showing its dependencies on
the initial conditions and clarifying the relevance of this discussion.

It is clear from the preceding general discussion and from the example of
Appendix B that the exact flow equivalence characterization is (computation-
ally) difficult to obtain. In particular, we have shown that

– in order to capture the transient behavior of the original network, the
aggregated CTMC must be time-inhomogeneous,
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– the computation of the time-dependent rates of the aggregated CTMC
requires the solution of the original model,

– the time-dependent rates depend on the initial state of the original model
which precludes the possibility of using the characterization of the aggre-
gated servers obtained on the basis of the initial conditions of a certain
study, within a different study with different initial conditions.

These observations emphasize the limited practical applicability of the
above results and the problems of using the flow equivalent approach in tran-
sient analysis. Still they provide motivations for investigating the possibility
of computing approximate solutions using the heuristics that we introduce in
the following sections.

4.2 Approximate aggregation for transient analysis

Here, we present the simplest strategy that maintains the advantages of the
original technique, namely, that the aggregate server is characterized on the
basis of the analysis of the aggregated stations in isolation, and that can be
used to approximate the transient probabilities of the original model with
reduced computational cost.

The idea is to impose that χagg(x, t) as defined in (17) is equal to the
constant value (independent of t) χagg(x), 1 ≤ x ≤ N , and thus to assume
that the flow equivalent servers that appear in the aggregated network are
characterized by their steady state behaviors computed with the ”offline ex-
periment” described at the beginning of Section 3. Since the rates χagg(x) can
be evaluated using computationally efficient algorithms [5] such as MVA, their
cost is negligible with respect to that of the transient analysis. Moreover, this
substitution guarantees that the approximate transient analysis tends to the
correct one as time progresses.

On the other hand, this strategy corresponds to assuming that the rate of
service of the equivalent server is not affected by the transient probabilities
of the remaining stations of the system and by the position of the customers
within the aggregated stations. Indeed, this is a very strong assumption that,
in general, does not hold. For this reason, in the following sections, we provide
conditions under which this assumption is reasonable.

We briefly mention here that an approach based on information gained
from the transient analysis of the “short-circuited” servers is also possible to
investigate. This would lead however to a situation in which the behavior of
the whole network is more difficult to define because subsequent periods with
different number of customers in the aggregate would need to be handled.
Hence the overall model would become non-Markovian.

5 Structural criteria

The characterization of the aggregate server that substitutes a set of servers
K depends only on the parameters of the sub-net represented by K. In steady
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Fig. 1 A block of three M/M/1 stations

state, for the class of models described in Section 2, this characterization leads
to exact results, i.e., the original and the aggregated models show the same
behavior. According to the results of Section 4.1 this characterization does
not provide instead exact results in the transient phase except for very spe-
cific situations. We believe that a precise characterization of all the models for
which the approximation is satisfactory is not possible. Consequently, we aim
to identify only a subset of such models for which the approximation is fore-
seen to be good. In this section we propose structural criteria that, when met,
indicate the possibility for the transient analysis of the aggregated network to
provide accurate results too. These criteria relay on the topology (intercon-
nection structure among the servers) of the network and do not depend on the
actual (non zero) values of the transition probabilities from station to station
and on the service rates of these stations.

Our first structural condition refers to the way the servers in K are con-
nected to the rest of the model. We use an example to illustrate the criteria
that we propose.

Consider the block (subnetwork) comprising the three stations2 depicted
in Figure 1. As shown in Figure 2, this block can be connected to the rest
of the network in different ways. Moreover, note that we can define an ag-
gregated station (that is equivalent in steady state and) which can take the
place of stations C, D and E in every possible network containing the block,
independently of the parameters of the other stations composing the system.

Let µA = µB = 1.5, µC = 0.1, µD = 10, µE = 5, p = q = 0.5 and
assume that initially there are 20 customers at queue A and 20 at queue B.
In Figure 3 we report the mean number of customers at station A for both
models as a function of time, denoting by OR the original model and by AG the
aggregated one. One can observe that for case (a) the approximation is rather
poor while it is accurate for case (b). The reason of the poor approximation is
that in model (a) the time spent by a customer inside the aggregated stations
is strongly dependent on the station from which it joins the subnetwork and
it has high variance. On the contrary, in model (b) every customer enters the
aggregate via the same station C, independently of the originating one.

Accordingly, as first structural condition we require is that the route a job
follows in the aggregate is independent of where it comes from and toward

2 Throughout this paper, the number reported in the service part of a queuing station
refers to the number of servers working in parallel within that station.
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Fig. 3 Mean queue lengths in two models having the same block of stations

which station it leaves the aggregate. Formally, denoting by A (D) the set
of stations from (to) which clients can arrive directly to (from) K, the above
condition holds if and only if

rk,i = rk,j ∀k ∈ A,∀i, j ∈ K and rj,k = rj,k ∀i, j ∈ K,∀k ∈ D. (18)

The second structural condition that we require refers to the initial position
of the customers of the network. In particular, we require that there are no
costumers in the aggregate server initially. This is necessary because the way
customers leave a set of stations in the transient setting depends on where
they are positioned originally. This aspect is clearly not considered by the
characterization we propose for the aggregate server. Consider again the sub-
net given in Figure 1. For the aggregate model it does not make any difference
if the clients are put originally at stations C or D originally while the transient
behavior can be substantially different for the two cases.

It is evident that the above two conditions are not sufficient to obtain a
good transient approximation because they do not consider the quantitative
aspects of the model. Conditions involving quantitative aspects will be pro-
vided in the next section where we propose a quantitative check to decide
between acceptance and rejection of a candidate aggregate.
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6 Behavioral criteria

To identify possible aggregations in a reliable manner, we must also take into
account the actual (numerical) parameters of the network to decide if aggre-
gating a set of stations K provides a reasonable approximation of the transient
behavior of the whole model. In order to propose a feasible way of testing the
validity of a possible aggregation, we must devise a methodology which con-
siders the aggregate stations of the sub-network K in isolation, still retaining
some overall information on the rest of the network which provides a context
where to analyze its transient behavior. Obviously, the context must be simple
as we cannot afford to devise a procedure which takes into account a detailed
description of the rest of the network at a cost comparable to that of the
analysis of the original model.

A first consideration is that the stations over which the equivalent server
is defined must be such that, when perturbed by arrivals from the rest of the
network, they reach their “quasi steady state” before the number of customers
in the aggregate server changes. Identifying in a precise manner the rates at
which customers arrive at the equivalent server starting from a given initial
state has a cost which is comparable with that of the transient analysis of the
whole model. We must thus accept approximations and heuristics.

A first criteria that would be in line with these last considerations is that
the service rates of the stations in K must be faster than those not belonging
to K. A possible heuristic to establish whether or not an equivalent server
defined over K is trustworthy, could be that of comparing the products Vi ×
maxxµi(x),∀i ∈ K, with those referring to the stations that directly feed the
equivalent server and thus represent the interface between the aggregate and
the rest of the network; the more the firsts are fast, the more we expect the
approximation to provide accurate results. However, especially in presence of
load-dependent stations in the interface, this strategy is excessively restrictive
ruling out aggregations that lead instead to acceptable approximation.

We propose hence a quantitative criteria to compare the speed of the equiv-
alent server and the speed of the rest of the network in each possible state of
the equivalent server considering the initial state y as well. The compari-
son is carried out on a network composed of only two stations, namely, the
equivalent station seq and another server (called smax) that represents all the
remaining stations of the original network. The service rate of smax denoted by
χmax(x,y) approximates by a heuristic approach (described later) the max-
imal arrival rate toward the equivalent station given that x customers are
present in smax and the initial state is y. Then we analyze the ratio

ρ(x) =
χagg(x)

χmax(N − x,y)
, 1 ≤ x ≤ N − 1 (19)

where χagg(x) is the load-dependent service rate of the equivalent server.
For what concerns ρ(x) we have the following cases.

– If ρ is always greater than one, i.e., the equivalent station serves with a
rate that is constantly greater than that of the rest of the network. In this
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case, the number of clients at the equivalent station is always small with
high probability. This is the situation in which we expect a very accurate
approximation due to the fact that if there is only one customer within
the aggregate station, there is no congestion and the average time that it
spends there is very similar both in transient and steady state periods.

– There is a threshold k greater than 1 and smaller than N − 1 such that
ρ is smaller than one for 1 ≤ x < k and greater or equal to one for
k ≤ x ≤ (N − 1). In this case, since we imposed that the equivalent
station is empty at the beginning of the transient period, we have that the
number of customers at the equivalent server increases monotonically up
to a certain level l and then starts to stabilize3. The more l is small, the
faster the equivalent station stabilizes; roughly speaking, this means that
if l is close to one, the approximation is accurate; whereas if l is close to
N the error will be significant.

– ρ constantly below one. This is the worst case where the use of the approx-
imation leads to inaccurate results.

Now we turn our attention to the definition of the function χmax, which is
needed for the evaluation of ρ. Note that the exact calculation of χmax would
require the transient analysis of the model and thus our parametrization is
based on computationally negligible heuristics. In our experiments we found
that these heuristics provide reliable information of the model.

In order to proceed we need the following notation. Let ωi denote the set of
all paths from station i to the aggregate station. Given a path σ ∈ ωi, let s(σ)
denote the set of stations along the path and p(σ) the probability that a client
follows σ. We assume that the sub-model that connects the initially loaded
stations to the aggregate server is acyclic; the generalization to the cyclic case
is straightforward.

Then χmax is calculated as

χmax(x,y) = max
y′≤y,

∑
i
y′
i
=x

∑
∀i s.t. y′

i
>0

∑
∀σ∈ωi

p(σ) min
∀j∈s(σ)

max
z=1,..,x

µj(z) (20)

where from left to right

– the first max operator chooses an initial condition that is congruent with
y and provides maximal load toward the aggregate;

– the first
∑

considers all initially loaded stations;
– the second

∑
considers all paths toward the aggregate;

– the combination of the min and max operators results in a heuristic service
rate that overestimates the speed with which the clients may arrive at the
aggregate.

The formula in (20) treats the clients in some sense in average (the routes are
weighted according to their probabilities) and in some sense in a pessimistic

3 As a further condition, we assume also that χmax and χeq are monotonic increasing
functions in such a way that ρ is guaranteed to overtake 1 at most once. Note that this
assumption is violated only if the load-dependent service rates are “ill-parametrised”
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manner (maximal service rates are chosen at all involved stations). In gen-
eral the computation given in (20) can be excessively complicated due to the
combinatorial complexity introduced of the first max operator and due to the
numerous path but in most practical cases (as for those presented later) it
boils down to simple calculations.

Note that the test is applicable also when the transient analysis of interest
starts from a set of states. In this case, the function χmax is computed for
every possible initial state and weighted according to the initial probabilities.

In the following we illustrate the use of the test.

Example 2 Consider the network depicted in Figure 4 and composed of four
single server stations.

A D

B

C

p

1− p

1

1

1

1

Fig. 4 Example 2 - Queuing network composed of four M/M/1 stations

Assume that 40 customers are present inside the system and that the pa-
rameters of the network are µB = 0.1, µC = 1, µD = 1, and p = 0.5. Let us
consider the case in which all the customers are in station A at the beginning
and we are interested in assessing the quality of the aggregation of stations B
and C for different values of µA. In this case, since station A is single server
then χmax, as it has been defined in (20), is constant, independent of the
value of x. In Figure 5 we report the results of this test. It is possible to notice
that the only “safe” approximations are those with µA equal to 0.1 and 0.15,
whereas the others can lead to significant inaccuracies.

This is confirmed by Figure 6 which provides a comparison between the
original and the aggregated model by showing the mean and the variance of
the number of customers present at station D for the cases with µA equal
to 1, 0.5 and 0.14. Indeed, the time dependent behaviors generated by the
aggregated model when it is subject to an initial arrival rate equal to 1 and 0.5
are completely different from those observed in the original model. Specifically,
for the case µA = 1 the aggregated model reaches steady state after 5 time
units whereas the original network arrives near the steady state only at time 75
after a spike that the model with the aggregate station is unable to reproduce.
A worse situation occurs with µA = 0.5, where the aggregate stabilizes around
50 time units, whereas the original model requires more than 450 time units

4 For sake of synthesis, we do not report the results obtained for many other values of
µA.
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Fig. 5 Check of the aggregation of station B and station A by varying µA. (Example 2,
µA = 1).

to reach the equilibrium. On the contrary, we can observe that when µA = 0.1
the approximation provided by the equivalent station is accurate.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70

OR,E[XD]
AG, E[XD]

OR,Var[XD]
AG, Var[XD]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  100  200  300  400  500

OR,E[XD]
AG, E[XD]

OR,Var[XD]
AG, Var[XD]

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  50  100  150  200

OR,E[XD]
AG, E[XD]

OR,Var[XD]
AG, Var[XD]

Fig. 6 Comparison of the original and the aggregated models: the mean and variance of
the number of customers at station D as function of the time (Example 2, for the cases with
µA equal to 1 (top left), 0.5 (top right), 0.1 (bottom) ).

Another example of use of the test is provided in the following where, in
order to put under stress our methodology, we considered a larger sub-network
characterized by a more intricate interconnecting structure.
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As for the previous examples, since the purpose is to show the potentials of
the method, we perform the experiments on a relatively small network in which
we aggregate all the stations except for the two that are used as observation
points to evaluate the accuracy of the approximation.

Example 3 The model we consider is depicted in Figure 7 and corresponds
to a network composed of five M/M/1 stations and an infinite server. The
customers go through a cycle that starts at station A and continues with a
choice between two parallel paths: the first composed of stations B and D,
and the second of stations C and E. Upon their exit from these parallel paths,
customers may either move forward to station F or return to the choice-point
between the two parallel paths to follow one of them once more. Finally, after
a service at station F customers return to station A.

∞

1 1

1

1 1
0.7

0.7

0.2

0.1

0.15

0.15

0.5

0.5

B D

C E

A F

Fig. 7 Example 3 - Queuing System

We assume to be interested in measures computed for stations A and F . In
this way, stations B, C, D, and E can become part of aggregate servers. Be-
cause of the structural conditions described in Section 5, the possible aggregate
servers are

1. stations B, C, D and E (from now-on we will denote this aggregate server
with sB,C,D,E);

2. stations B and D (sB,D);
3. stations C and E (sC,E).

For our tests, we chose the first aggregation because it minimizes the number
of stations of the network.

We use the following parameters: µB = 5, µC = 0.5, µD = 2, µE = 0.2 and
µF = 1, rA,B = rA,C = 0.5, rD,F = rE,F = 0.7, rD,B = rD,C = 0.15, rE,B =
0.1 and rE,C = 0.2. The parameters highlight that the two parallel paths of
the network have very different passage times. Indeed, the path composed of
stations B and D is much faster than that composed of C and E.

We test different values of the service rate of station A by assuming that
40 customers are present at station A whereas the other stations are initially
empty. Since station A is an infinite server then χmax(x) = x · µA. Figure 8
depicts the results (in log scale for sake of readability). Observing the plot it
is possible to notice that: when station A serves customers with rate 0.001 the
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function ρ is constantly larger than one; when the rate is 0.005, ρ is always
greater than one except for the case in which the equivalent station contains
a customer; when µA is equal to 0.01, ρ starts to be greater than one when
15 customers are present in the the equivalent station; when µA is 0.05, it is
greater than one only when 34 customers are in the equivalent station. Always
in Figure 8 it is possible to notice how the four trajectories diverge. In fact,
the smaller µA is and the more ρ(x) tends to infinity for large values of x.

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25  30  35  40

L
o

g
(ρ

(x
))

customers at seq

µ=0.05
µ=0.01

µ=0.005
µ=0.001

Fig. 8 Log of function ρ by using the aggregate station sB,C,D,E when all the customers
are at station A at the beginning with µA equal to 0.001, 0.005, 0.01 and 0.005. (Example
3)

In this situation we expect that in the first two cases the aggregation
will be able to provide accurate results; in the third case it will provide an
approximation with a significant error; whereas in the last case the aggregation
will not be able to represent the dynamics of the original network.

Figure 9, that depicts the mean and the variance of the number of cus-
tomers present at station F as function of the time, confirms our prevision.
In fact, it is possible to observe that for the cases with µA equal to 0.001 and
0.005, the use of the equivalent server provides time dependent behaviors that
are almost indistinguishable from those generated by the original network. On
the contrary, the other two cases present a substantial error until the system is
close to be in steady state. As pointed out by the test in Figure 8, the approx-
imation works better when µA is equal to 0.01 than when it is 0.05. In fact,
in the third scenario, the use of the equivalent server provides a maximum
relative error around 12 percent on the mean and about 20 per cent on the
variance whereas in the fourth case they are around 78 and 88 percent respec-
tively. The large difference is consequence of the fact that although both the
mean and the variance are underestimated, in the third scenario the original
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and the approximated trajectories flatten out at the same time. This does not
happen in the fourth scenario where the flow equivalent approximation misses
completely the peaks present in both the mean and the variance around 25
time units.
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Fig. 9 Comparison of the original and the aggregated models: the mean and variance of
the number of customers at station F as function of the time (Example 3, for the cases
with µA = 0.001 (top-left), µA = 0.005 (top-right), µA = 0.01 (bottom-left) and µA = 0.05
(bottom-right)

As a last example, we propose a variation of the model depicted in Figure 7.
The aim of the test is to show the impact of the initial state on the quality of
the approximation.

Example 4 In order to illustrate the robustness of the test, we consider the
net depicted in Figure 11 which is identical to that considered in Example 3,
for except station A that has been replaced by three stations: namely, A1, A2,
and A3.

StationsA1 andA2 are single-server stations having service rate 0.1 whereas
A3 is an infinite server with service rate 0.05; they are connected with the rest
of the net in such a way that when a customer finishes its service at F it arrives
to A1 or to A2 with equal probability 0.5. After a service at A1 a customer ar-
rives to A3; finally, when a customer departs from stations A2 or A3 it arrives
to B or C with probability 0.5. The remaining parameters of the network are
identical to those used in the previous experiment.
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Fig. 10 Example 4 - Queuing System

Also in this new version of the network the set of stations that we aim
to aggregate consists of stations B, C, D and E. In particular, we assume a
scenario in which we want to perform transient analyses for three different
initial states: A1 = A2 = 20, A2 = A3 = 20 an A1 = A3 = 20.

The result, reported in Figure 11, shows that: i) the initial state A2 =
A3 = 20 provides the same ρ(x) of the case A1 = A3 = 20; ii) since ρ(x) starts
to be greater than one only at 35, the initial states in which customers are
present at station A3 are candidates to be unfavourable situations to apply our
approximation; iii) the initial state A1 = A2 = 20 is an optimal situation to
use the transient flow-equivalence approximation because the corresponding ρ
is smaller than one only for x = 1.
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Fig. 11 Log of function ρ by using the aggregate station sB,C,D,E for three different initial
states: A2 = A3 = 20, A1 = A2 = 20 and A1 = A3 = 20.
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As for the previous cases, we performed both the exact and the approxi-
mated transient analysis and used the station placed right after the aggregation
as observation point. The results are reported in Figure 12 where the average
and the variance of the number of customers at station F is depicted. Ob-
serving the results, it is possible to notice that our conjectures are confirmed;
in fact transient flow-equivalence fails to reproduce the peaks that character-
ize the two situations where customers are present in station A3 whereas it
provides an accurate approximation when the initial state is A1 = A2 = 20.
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Fig. 12 Comparison of the original and the aggregated models: the mean and variance of
the number of customers at station F as function of the time (Example 4, for the cases
with initial state A1 = A2 = 20 (top left), A2 = A3 = 20 (top right) and A1 = A3 = 20
(bottom).

7 Numerical illustration - Analysis of a web-service network

In this section, we apply the methodology for the analysis of a realistic model
of a web-service considered under several operational conditions. The model
is the synthesis of several models presented in [17] where flow-equivalence has
been massively used to perform stationary analyses.

Following the indications in [17] we construct a PFQN model consisting
of three main parts: an infinite-server station that represents thinking clients;
two single-server stations modeling the I/O channels of the router used by the
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web-service to communicate with the clients; a set of load-dependent stations
corresponding to the web-servers that process clients requests. A graphical
representation of the structure of our model is depicted in Figure 13 where
the web-servers are not provided in detail. The detailed representation of the
web-servers are depicted in Figure 14.

Inf

1

Clients

1

Out

In

Router Servers

Server 1

Server 2 Server 3

Server 4
Server n

Web-service

Fig. 13 Case 2 -Clients connected to a web-service

For sake of simplicity, the modeling of each web-server considers only the
interaction among the CPU and two storage disks as well as the communi-
cation between the CPU and the router. Requests coming from the clients
are managed by the router and delivered to the CPUs of the different servers
by the In station according to pre-defined routing probabilities; answers pro-
duced by the servers return to the interested clients via the Out station of the
router.

CPU

Disk-1

Disk-2

rCPU,Out

rCPU,Disk−1

rCPU,Disk−2

rCPU,CPU

rIn,CPU

Fig. 14 Case 2 - Server structure

This basic model is used to study the behavior of the web-service with
respect to three different types of questions:

– the effect of the change of the number of servers with respect to the tran-
sient dynamics of the web-service;
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– the effect that different strategies adopted for the variation of the number
of servers allocated to the web-service may have shortly after the variations;

– the effect that different server architectures may have on the transient
dynamics of the web-service.

All these questions are studied with the aim of illustrating possible situa-
tions in which the use of equivalent stations provide good results with addi-
tional benefit of reducing consistently the computational cost of the analyses.

7.1 Analysis of the time that the system requires to stabilize

In this first context, we take into consideration three systems that differ only
in the number of web-servers connected beyond the router, i.e. one, two, and
three web servers, respectively. Requests arriving to systems with more than
one web-server are directed with equal probability to the different web-servers.

Web-servers are networks of single server stations having rates µCPU =
300, µDisk−1 = µDisk−2 = 1 and routing probabilities rCPU,CPU = 0.7,
rCPU,Disk−1 = rCPU,Disk−2 = rCPU,Out = 0.1. The thinking rate of each
client is 0.03 and the I/O channels of the router receive/send requests with
rate equal to 1.1.

For all the three alternatives, we aim to estimate the time the system needs
to reach a stationary condition, given that the router and the web-servers are
idle at time 0 and that the number of clients is equal to 40. The detailed
analysis of this case study is quite costly and we show that the results that
we obtain by applying the flow-equivalence approach are robust and relatively
inexpensive. In order to maximize the reduction of the network we collapsed
all the stations beyond the router in a single aggregate.

Figure 15 shows function ρ for all the three cases, points-out how the more
web-servers compose the aggregate and the more the aggregation is foreseen
to be accurate. In particular, we can observe that the function referring to the
case in which only one web-server is connected to the network goes beyond one
at 28 whereas those with two and three serves are already greater than one at
10 and 6 respectively. Although we expect a poorer approximation in the first
case, by considering that all the function diverge quickly, we can assume that
all the aggregations will provide a satisfactory approximation of the dynamics
of the original systems.

Figures 16 and 17 confirm our expectations by showing respectively the
mean and the variance of the number of thinking clients and the time evolu-
tion of the utilizations of stations In and Out. In fact, the use of equivalent
stations produces an accurate approximation of the transient behavior of the
original model for all the cases. In particular, we can see that the accuracy of
the approximation improves by using more equivalent servers. Although this
phenomenon is heavily dependent on the parametrization of the model, we
conjecture that it is a consequence of the fact that for small queue levels, the
equivalent stations serve request with rates that are very close to those that
they have in steady state.
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Fig. 15 Log of function ρ for the cases in which the webservice is composed of one, two an
three web-serves by considering the case in which all the customers are in the infinite server
at the beginning.

Observing these results, a point of interest is that the web-service with a
single web-server requires a time to stabilize which is about twice longer than
that of the other two cases.
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Fig. 16 Mean and variance of the number of thinking clients as function of time - single
web-server (top left), two web-servers (top right), three web-servers (bottom).

The longer transient period of the system with only one web-server may
be explained by observing that in this first case the bottleneck station is the
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Fig. 17 Utilization of stations In and Out as function of the time.

web-server itself, whereas for the second and the third system’s configurations
the bottlenecks are always stations In and Out.

7.2 Upgrading the system - Analysis of different strategies

The second aspect of the web-service that we study with our flow-equivalence
aggregation methodology concerns the possibility of addressing different de-
sign and planning strategies concerning the choice of changing the number of
connected servers at run-time.

The first question that we consider concerns the possibility of connecting
two additional servers to a web-service which originally works with a single
web-server. We further assume that: i) the addition of the new servers is per-
formed on a pre-existent system that is stable; ii) the system is constrained
in such a way that the router utilization cannot exceed the 85 percent limit
(as an example, we can imagine that part of the bandwidth is dedicated to
protocols, such as SNMP, for the remote monitoring to the entire system).

A common way of addressing this problem is to consider the PFQN of the
system with three web-servers and then compute the stationary utilization of
the stations modeling the router in order to verify that they do not exceed
the pre-fixed threshold. For this particular case, by considering stationary
measures only, such property is satisfied; in fact, if the web-service has three
web-servers then the stationary utilization of each channel is around 0.824.
In spite of this, stationary analysis do not provide any information about the
behaviour of the system during the interval that goes from the moment in
which the system is perturbed because of the upgrading (connection of the
two additional components) up to the time when stability is reached again.

Let us consider two possible strategies to upgrade the system: the first
considers the scenario in which we connect the second web-server to the system,
we wait until the system has reached again a stable state and then we connect
the last web-server; the second consists of a brute force approach in which the
two new web-servers are connected to the system simultaneously.
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In order to decide which strategy is preferable, we perform three experi-
ments: the first that considers the upgrade of the system from one web-server
to two; the second considering the case in which the system with two servers
is enhanced with a third web-server; the last that considers the simultaneous
connection of two new web-servers to the system. Each analysis has been per-
formed by using the stationary distribution of the system before the upgrading
as initial condition. Denote with πix the stationary probability to observe the
system with i web-servers in state x, with πjx′(0) the initial condition of the
system having j web-servers in state x′, and assume that all the entries of
the vector x are ordered in such a way that they correspond to those in x′ if
i < j. We perform the analyses by starting from initial conditions that have
πjx′(0) = πix if x′k = xk for 1 ≤ i ≤ |x| and x′k = 0 for |x| + 1 ≤ k ≤ |x′|.
Indeed, this time we cannot collapse all the network beyond the router as a
single aggregate since we must discriminate between the web-service that is
already working and those that have been just connected to the system. Thus,
we consider each web-server as a different equivalent station.

Moreover, since the initial state of these transient analyses are different
from those considered in the study reported in the previous sub-section, we
need to check again the reliability of the equivalent station representing the
web-servers. Note that in this case it is more complex to define function
χmax because we must account for the fact that the original position of the
clients/requests is not deterministic, but is specified with a probability distri-
bution. As already mentioned, this can be done by averaging function χmax
according to the starting distribution. In this particular case, this operation is
particularly simple since the average rates with which customers move inside
the network at the beginning of the analysis corresponds to the stationary
throughput of the network when a single web-server is connected (two for the
upgrading from two to three) and 1, . . . , N customers are present in the sys-
tem. Figure 18 depicts the result of the three tests from which can observe
that the three trajectories are indistinguishable. We can notice that they to be
greater than zero at 20; thus, by using a sort of rule of thumb, we expect an
approximation that is of the same quality of the first case of the experiment
presented in the previous section.

We compute the time evolution of the utilization of stations In and Out
from the moment immediately after an upgrading of the system to that in
which the system can be considered stable again. The results are reported in
Figures 19 and 20.

Specifically, Figure 19 shows how the utilization of station In increases
monotonically over the whole transient period and then stabilizes around the
stationary value for all the three upgrading policies that we consider. As a
consequence, station In does not overtake the 85 percent threshold that we
imposed as constraint.

On the contrary, the utilization of station Out, depicted in Figure 20, is
characterized by peaks in all the three cases. These peaks occur because the
new web-servers are idle at the moment of their connection to the system;
thus, immediately after the connection of a new web-server, requests have
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Fig. 19 Utilization of station In as function of the time during different upgrading of the
system.

a not negligible probability to be served promptly, without queuing. It thus
follows that at the beginning of each transient period, the response times
of the web-servers are lower than their steady-state values. As a consequence,
station Out becomes congested in these initial periods. From Figure 20, we can
notice that the simultaneous connection of two new web-servers violates the
constraint (on the router utilization) that we imposed at the beginning. Our
approach is able to represent this facet as well, but it slightly overestimates the
height of the peaks and underestimates their time extensions (note the scale
of the figures). This inaccuracy is present also in the other two cases, leading
to misleading results concerning the ”from one to two” web server upgrading
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of the system. In fact, our approach predicts a violation of the threshold in
the time interval (10, 30).
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Fig. 20 Utilization of station Out as function of the time during different upgrading of the
system.

Despite this, it is important to point out that the error induced by the use of
the equivalent stations is limited, and that an important result is the capability
of the method to highlight (with reasonable costs) a possible problem that
would be completely neglected by any analysis based exclusively on steady-
state behaviors. Indeed, we provide in Figure 21 the relative error between the
exact and the approximated utilization of station Out. By observing the plot
it is possible to notice that the relative error does not exceed the 0.7 percent
in the worst case.

Summarizing the results of this analysis, we can observe that the trajecto-
ries generated using our approach show clearly that:

– the first strategy minimizes the risk of malfunctions;
– the second strategy minimizes the time required by the system to return

to stability conditions.

7.3 Example of use of the approximation on a non-PFQN

The third aspect of the web-service that we study with our methodology refers
to a case in which the web-servers connected to the router are not identical, but
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Fig. 21 Relative error on the utilization of station Out between exact and approximate
solution as function of the time.

show some specific differences in the internal parallelism that they apply. The
type of analysis that we perform during this last set of experiments is quite
similar to that of the study conducted in Section 7.1, but this time we consider
a web-service having one web-server as in the previous case and another one
that mantains the structure depicted in Figure 14, but is composed of multi-
server stations; specifically, the CPU has four servers, Disk − 1 has two and
Disk − 2 has three with rates µCPU = 150, µDisk−1 = 2 and µDisk−2 = 1.5
respectively. The routing probaiblities are rCPU,CPU = 0.5, rCPU,Disk−1 =
rCPU,Disk−2 = 0.2 and rCPU,Out = 0.1.

As a further assumption, we consider the scenario in which the router has
knowledge of the number of requests present in the two web-servers and de-
cides the routing of incoming requests by using a shortest queue policy. This
means that a new request is sent to the second web-server after the ending
of a service at station In if the sum of the number of requests present at the
stations composing the first web-server exceeds the number of those under
process at the second web-server and viceversa. As last, we give priority to the
second web-server whenever the two web-servers are dealing with an identical
number of requests. Note that within this new setting, the queuing network
representing the whole model does not have a product form solution and can-
not be analyzed using the standard and efficient computational algorithms
(e.g. MVA algorithm). In this case the cost of the computation of the original
model is not negligible also for what concern stationary measures.

We perform the transient analysis of the whole system till it can be con-
sidered in steady state. Figure 22 depicts the average arrival rate to the two
web-servers from which it is possible to observe that the router addresses the
requests to the second second web-server more frequently. This is not sur-
prising since it has higher priority and is almost twice faster than the first
one under saturation condition. However, for smaller utilizations the second
web-server is slower than the first due to the fact that it is composed of multi-
server stations. Figure 22 points out this phenomenon in the time interval (0,5)
when the curve describing the arrival rate to the second server flattens after
the first arrival. This phenomenon occurs because the second-server receives
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almost immediately the first request from the router due to its higher priority.
Since it is not able to process the request before the arrival of the next one,
the router directs the new request to the first web-server whose queue is still
empty.
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Fig. 22 Average arrival rate to the web-servers.

Another point of interest, shown by Figure 23, is the fact that even if
the arrival rates to the web-servers require only 30 time units to stabilize (see
Figure 22), the whole system can be considered completely stable only after 70
time units. Both the figures show that the use of equivalent stations provides
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Fig. 23 Mean and variance of the number of thinking clients as function of time.

a quite accurate approximation of the original trajectories. In particular, for
what concerns the number of thinking clients the original curves cannot be
distinguished from their approximation.

The computation of the transient analyses required in the worst case (web-
service having three web-servers) the uniformization of a CTMC with 1221759
states whereas the original process was composed of 4.7×1011 states. In regards
to this case the time required to carry on the computation was around 20
minutes. The computation of the other cases did not exceed two minutes per
case. The original trajectories have been computed on the basis of 500.000
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simulation runs. The most expensive cases were the upgradings that required
45 minutes against the 10 minutes of the other cases.

8 Conclusions

In this paper we considered the transient analysis of closed queuing networks.
Specifically, we investigated the use of the concept of the equivalent server in
transient analysis, using the characterization which provides exact steady state
results for some classes of networks. Similarly to what is done for the steady
state behavior, we showed that equivalent servers can be exact in the transient
phase as well, but their characterizations require the knowledge of the solution
of the whole original network and depend also on the initial location of the
customers in the network. Consequently, the exact characterization does not
lead to advantages from the computational point of view.

For this reason, we opted for an approximate approach. Specifically, we
proposed to use the steady state characterization which can be efficiently
computed considering in isolation only those stations that we aim to aggre-
gate, thus leading to a significant computational gain with respect analyzing
the original network. Naturally, in many cases this characterization leads to
highly inaccurate results in the transient phase. For this reason, we provided
structural conditions and devised quantitative tests to ensure that the approx-
imation yields reasonable results.

As future work we plan to continue to study this difficult and important
problem with the objective of defining a characterization that stays ”between”
the exact one and that used in this paper. This would increase the compu-
tational cost with respect to the approximation introduced in this work, but
would provide more accurate results. We also plan to apply the method to a
wider range of models, including those represented by open networks, and to
devise new structural conditions that will allow to identify classes of models
that are intrinsically well suited for this approach.

References

1. Balbo, G., Bruell, S.C.: Calculation of the Moments of the Waiting Time Distribution
of FCFS Stations in Product Form Queueing Networks. Computer Performance 4(2)
(1983)

2. Balsamo, S., Iazeolla, G.: An Extension of Norton’s Theorem for Queueing Networks.
IEEE Trans. on Software Eng. SE-8 (1982)

3. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, Closed, and Mixed
Networks of Queues with Different Classes of Customers. J. ACM 22(2), 248–260
(1975)

4. Boucherie, R., Taylor, P.: Transient Product Form Distributions in Queueing Networks.
Discrete Event Dynamics Systems: Theory and Applications 3, 375–396 (1993)

5. Bruell, S.C., Balbo, G.: Computational Algorithms for Closed Queueing Networks. The
Computer Science Library. Elsevier North Holland (1980)

6. Buchholz, P.: Hierarchical Markovian Models - Symmetries and Reduction, pp. 234–246.
Elsevier Science Publishers B. V. (1992)



Exploiting Flow Equivalent Server in Transient Analysis 31

7. Buzen, J.P.: Computational algorithms for closed queueing networks with exponential
servers. Commun. ACM 16(9), 527–531 (1973). DOI 10.1145/362342.362345

8. Chandy, K.M., Herzog, U., Woo, L.: Parametric analysis of queueing networks. IBM
Journal of Res. and Dev. 1(1), 36–42 (1975)

9. Chandy, K.M., Sauer, C.H.: Approximate Methods for Analyzing Queueing Network
Models of Computing Systems. ACM Comput. Surv. 10(3), 281–317 (1978). DOI
10.1145/356733.356737. URL http://doi.acm.org/10.1145/356733.356737

10. Chandy, K.M., Sauer, C.H.: Computational algorithms for product form queueing net-
works. Commun. ACM 23(10), 573–583 (1980)

11. Denning, P.J., Buzen, J.P.: The Operational Analysis of Queueing Network Mod-
els. ACM Comput. Surv. 10(3), 225–261 (1978). DOI 10.1145/356733.356735. URL
http://doi.acm.org/10.1145/356733.356735

12. Gordon, W.J., Newell, G.F.: Cyclic queueing networks with restricted length queues.
Operations Research 15(2), 266–277 (1967)

13. Jackson, J.R.: Jobshop-Like Queueing Systems. Management Science 10, 131–142
(1963)

14. Kelly, F.: Reversibility and Stochastic Networks. Wiley (1979)
15. Kritzinger, P., van Wyk, S., Krezesinski, A.: A generalization of Norton’s theorem for

multiclass queueing networks. Perform. Eval., Elsevier 2, 98–107 (1982)
16. Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press, New

York (1983)
17. Menasce, D.A., Almeida, V.: Capacity Planning for Web Services: Metrics, Models, and

Methods, 1st edn. Prentice Hall PTR, Upper Saddle River, NJ, USA (2001)
18. Menasce’, D.A., Almeida, V.A.F., Dowdy, L.W.: Performance by Design: Computer

Capacity Planning by examples. Prentice Hall (2004)
19. Resiser, M., Lavenberg, S.S.: Mean Value Analysis of Closed Multichain Queueing Net-

work. J. ACM 27(2), 313–320 (1980)
20. Silva, M., Balbo, G.: Performance Models for Discrete Event Systems with Synchro-

nisations: Formalisms and Analysis Techniques. Editorial KRONOS, Zaragoza, Spain
(1998). URL http://webdiis.unizar.es/GISED/?q=news/matchbook

21. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press (1995)

A Derivation of routing probabilities in Theorem 1

If we detail the expression represented by Equation 7, we obtain
Vi =

∑
j∈K′

Vj rj,i +
∑
h∈K

Vh rh,i i ∈ K′

Vl =
∑
j∈K′

Vj rj,l +
∑
h∈K

Vh rh,l l ∈ K
(21)

which can be rewritten in the following way
Vi =

∑
j∈K′

Vj rj,i +
∑
h∈K

Vh rh,i i ∈ K′

∑
l∈K

Vl =
∑
j∈K′

Vj

∑
l∈K

rj,l +
∑
h∈K

Vh

[
1−
∑
j∈K′

rh,j

]
(22)

and subsequently re-organized to obtain
Vi =

∑
j∈K′

Vj rj,i +
∑
h∈K

Vh rh,i i ∈ K′∑
j∈K′

∑
h∈K

Vh rh,j =
∑
j∈K′

Vj

∑
l∈K

rj,l
(23)
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If we now define (see also [1])

Veq =
∑
j∈K′

∑
h∈K

Vh rh,j (24)

we can transform the previous system of equations as follows
Vi =

∑
j∈K′

Vj rj,i + Veq

∑
h∈K

Vh rh,i∑
j∈K′

∑
h∈K

Vh rh,j

i ∈ K′

Veq =
∑
j∈K′

Vj

∑
l∈K

rj,l

(25)

which proves our theorem when we define

req,eq = 0

ri,eq =
∑
l∈K

ri,l i ∈ K′

req,j =

∑
h∈K

Vh rh,j∑
l∈K′

∑
h∈K

Vh rh,l

j ∈ K′

(26)

B Derivation of the transient equivalent server of a small network

The following example gives an illustration of the exact transient aggregation described
above and clarifies the relevance of this discussion.

Consider a network of three queues with routing probabilities r1,3 = r3,2 = 1, r2,1 =
r2,3 = 1/2, service rates µ1 = 4, µ2 = 3, µ3 = 2 and with two clients. The corresponding
infinitesimal generator is

Q =

∣∣∣∣∣∣∣∣∣∣

−2 2 0 0 0 0
3
2
−5 3

2
2 0 0

4 0 −6 0 2 0
0 3

2
0 −3 3

2
0

0 4 3
2

0 −7 3
2

0 0 4 0 0 −4

∣∣∣∣∣∣∣∣∣∣
where the states are ordered as |0, 0, 2|, |0, 1, 1|, |1, 0, 1|, |0, 2, 0|, |1, 1, 0|, |2, 0, 0|.
Let us assume that both clients are at the third queue initially, and denote
the transient probabilities of the network by πi(t) where i is one of the states
of the network. The system of ordinary differential equations for this model is

π|0,0,2|(t)

dt
= −π|0,0,2|(t)µ3 + π|0,1,1|(t)µ2r2,3 + π|1,0,1|(t)µ1

dπ|0,1,1|(t)

dt
= π|0,0,2|(t)µ3−π|0,1,1|(t) (µ2+µ3)+π|0,2,0|(t)µ2r2,3+π|1,1,0|(t)µ1

dπ|1,0,1|(t)

dt
= π|0,1,1|(t)µ2r2,1−π|1,0,1|(t) (µ1+µ3)+π|1,1,0|(t)µ2r2,3+π|2,0,0|(t)µ1

dπ|0,2,0|(t)

dt
= π|0,1,1|(t)µ3−π|0,2,0|(t)µ2

dπ|1,1,0|(t)

dt
= π|1,0,1|(t)µ3+π|0,2,0|(t)µ2r2,1−π|1,1,0|(t) (µ1+µ2)

dπ|2,0,0|(t)

dt
= π|1,1,0|(t)µ2r2,1−π|2,0,0|(t)µ1
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where we highlighted the groups of equations corresponding to specific values
of the number of customers at the third station (the first equation refers to the
state with all the customers on the third station; the second group of equations
corresponds to 1 customer at the third station; and finally the last group to
the case when there are no customers at the third station). Summing up the
equations for each group we get

dπ|0,0,2|(t)

dt
= −π|0,0,2|(t)µ3 + π|0,1,1|(t)µ2r2,3 + π|1,0,1|(t)µ1

d[π|0,1,1|(t)+π|1,0,1|(t)]

dt
= π|0,0,2|(t)µ3 − [π|0,1,1|(t) + π|1,0,1|(t)]µ3

−[π|0,1,1|(t)µ2r2,3 + π|1,0,1|(t)µ1]
+[π|0,2,0|(t)µ2r2,3 + π|1,1,0|(t) (µ1 + µ2r2,3) + π|2,0,0|(t)µ1]

d[π|0,2,0|(t)+π|1,1,0|(t)+π|2,0,0|(t)]

dt
= [π|0,1,1|(t) + π|1,0,1|(t)]µ3

−[π|0,2,0|(t)µ2r2,3 + π|1,1,0|(t) (µ1 + µ2r2,3) + π|2,0,0|(t)µ1]

The left hand sides of these three equations express the derivatives of the probabilities of
the aggregated states |0, 2|, |1, 1|, |2, 0| which correspond to lumping together stations 1 and
2. Looking at the right hand sides, we can identify the speed at which the lumped stations
send clients to the third one. Indeed, when the state of the aggregated network is |1, 1| the
lumped stations send client to the third queue with intensity

π|1,0,1|(t)µ1 + π|0,1,1|(t)µ2r2,3

and when the state of the aggregated network is |2, 0| the intensity is

(π|2,0,0|(t) + π|1,1,0|(t))µ1 + (π|1,1,0|(t) + π|0,2,0|(t))µ2r2,3

These intensities are expressed in terms of the transient probabilities πi(t)of the original
model state.

By defining the probability distribution of the aggregated network

π̃|0,2|(t) = π|0,0,2|(t)

π̃|1,1|(t) = π|0,1,1|(t) + π|1,0,1|(t)

π̃|2,0|(t) = π|0,2,0|(t) + π|1,1,0|(t) + π|2,0,0|(t)

and the conditional probabilities of finding the aggregated stations in a specific state, given
the total number of customers in the aggregation

ν|0,0|(0, t) =
π|0,0,2|(t)

π̃|0,2|(t)

ν|0,1|(1, t) =
π|0,1,1|(t)

π̃|1,1|(t)
ν|1,0|(1, t) =

π|1,0,1|(t)

π̃|1,1|(t)

ν|0,2|(2, t) =
π|0,2,0|(t)

π̃|2,0|(t)
ν|1,1|(2, t) =

π|1,1,0|(t)

π̃|2,0|(t)
ν|2,0|(2, t) =

π|2,0,0|(t)

π̃|2,0|(t)

it is possible to re-write the reduced system of differential equations in the following manner

dπ̃|0,2|(t)

dt
= −π̃|0,2|(t)µ3 + π̃|1,1|(t)

[
ν|0,1|(1, t)µ2r2,3 + ν|1,0|(1, t)µ1

]
dπ̃|1,1|(t)

dt
= π̃|0,2|(t)µ3 − π̃|1,1|(t)µ3 − π̃|1,1|(t)

[
ν|0,1|(1, t)µ2r2,3 + ν|1,0|(1, t)µ1

]
+π̃|2,0|(t)

[
ν|0,2|(2, t)µ2r2,3 + ν|1,1|(2, t) (µ1 + µ2r2,3) + ν|2,0|(2, t)µ1

]
dπ̃|2,0|(t)

dt
= π̃|1,1|(t)µ3

−π̃|2,0|(t)
[
ν|0,2|(2, t)µ2r2,3 + ν|1,1|(2, t) (µ1 + µ2r2,3) + ν|2,0|(2, t)µ1

]
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Fig. 24 Example for equivalent flow intensity for: starting from state |0, 0, 2| (dashed) and
from state |0, 1, 1| (dotted)

t = 0.1 t = 1 t =∞
π̃0(t) 0.831318 0.416356 0.386059
π̃1(t) 0.152926 0.34847 0.353887
π̃2(t) 0.015756 0.235174 0.260054

Table 1 Probability of having 0, 1 and 2 clients in the first two stations of the network
starting from state |0, 0, 2|.

where, for example, the rate of the inhomogeneous Markov chain from state |1, 1| to state
|0, 2| is

q̃|1,1|,|0,2|(t) = ν|0,1|(1, t)µ2r2,3 + ν|1,0|(1, t)µ1 (27)

which corresponds also to a specific instance of (17).
The above 3 differential equations give the exact characterization of the behavior of the

original model; the obvious downside of this solution is that we used the transient probabil-
ities of the original network to describe the aggregated network. Moreover, the equivalent
time-dependent service intensities depend on the initial conditions. This is illustrated in
Figure 24 where we depicted the values of the aggregate rate expressed by (27) as a function
of time for two different initial states.

For sake of reproducibility in Table 1 we provide the probability of having 0, 1 and
2 clients in the first two stations of the network starting from state |0, 0, 2| for some time
points.


