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Abstract 

This work presents an innovative approach adopted for the development of a new 

numerical software framework for accelerating dense linear algebra calculations and its 

application within an engineering context. 

In particular, response surface models (RSM) are a key tool to reduce the computational 

effort involved in engineering design processes like design optimization. However, RSMs 

may prove to be too expensive to be computed when the dimensionality of the system 

and/or the size of the dataset to be synthesized is significantly high or when a large 

number of different response surfaces has to be calculated in order to improve the overall 

accuracy (e.g. like when using ensemble modelling techniques).  

On the other hand, the potential of modern hybrid hardware (e.g. multicore, GPUs) is not 

exploited by current engineering tools, while they can lead to a significant performance 

improvement. To fill this gap, a software framework is being developed that enables the 

hybrid and scalable acceleration of the linear algebra core for engineering applications 

and especially of RSMs calculations with a user-friendly syntax that allows good portability 

between different hardware architectures, with no need of specific expertise in parallel 

programming and accelerator technology. 

The effectiveness of this framework is shown by comparing an accelerated code to a 

single-core calculation of a radial basis function RSM on some benchmark datasets. This 
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approach is then validated within a real-life engineering application and the achievements 

are presented and discussed. 
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1 Introduction 

Response surface modelling (RSM) is a key tool when it comes to engineering design 

optimization: in most real-life use cases the engineer knows its domain of design 

parameters as a discrete dataset, namely as a black-box model, while most optimization 

strategies need a certain degree of continuity in order to be applied. Regression (i.e. 

approximation and interpolation) is then necessary to obtain a continuous or 

differentiable function that well represents the underlying model. Moreover, computing 

new points on an analytical regression function is significantly cheaper than obtaining 

new samples of the dataset, as they come from experimental data or expensive numerical 

simulations. 

In this context, response surface modelling can address both the sparsity of the dataset 

and the expensiveness of producing new points, since it provides a continuous and 

analytical function that can be easily evaluated when performing optimization; however, 

there are a number of situations in which even the RSM can be too expensive 

computationally-wise to actually represent an advantage compared to numerical 

simulation. When the dataset is very large and its dimensionality is possibly high (in terms 

of inputs and outputs), then the time needed to obtain an accurate regression becomes 

not acceptable, so the response surface is not able anymore to fulfil its purpose of 

reducing the computational effort. 

A possible solution to this issue comes from the recent development of new 

computational architectures, namely multicore and manycore platforms, which allow to 

speed up numerical calculation even on off-the-shelf workstation. Unfortunately, it is not 

straightforward to port existing code like sophisticated regression tools to such 

architectures, since specific expertise in parallel and GPU computing is needed. The aim 
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of this work is hence to address this issue by introducing a numerical framework that can 

accelerate the most numerical intensive parts of well-known regression methodologies 

and needs no specific low-level coding expertise from the domain expert who uses it; the 

actual application of this framework within a response surface model is showed and 

validated, both from the performance point of view and from the usability point of view. 

The paper is structured as following: Section 2 explains in detail the use case that drove 

the development of this work, Section 3 presents the main related work in terms of 

available and competing tools for high-performance linear algebra computations, Section 

4 illustrates the architecture of the framework developed by the authors and Section 5 

reports the experimental validation of such framework. 

2 Industrial Use Case 

The response surface modelling use case that served as benchmark for this work has been 

provided by Noesis Solutions NV, a simulation innovation partner to manufacturers in 

automotive, aerospace and other engineering-intense industries. Specialised in 

simulation process integration and numerical design optimization (PIDO), its flagship 

software Optimus leverages Noesis' experience in optimization and system integration 

methodologies to increase the efficiency of engineering practices and processes.  Noesis 

research tracks include process integration, extraction and exploitation of engineering 

knowledge within multidisciplinary industrial processes, advanced methods for modelling 

and optimization of the behaviour of large engineering systems in the virtual prototype 

stage, parallelization of computational effort, and assessment of quality and robustness 

of the final product. The implementation of RSM in the context of design engineering and 

optimization is a well-known technique usually referred to as Metamodel Based Design 

Optimization (Booker et al. 1999). 

One of the most significant functionalities of Optimus is indeed the calculation of 

response surface models related to arbitrarily complex engineering simulation workflows: 

this feature makes heavy use of linear algebra operations and performing such operations 

as fast as possible is a paramount in order to achieve the purpose of response surface 
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modelling. The presented work is focused on a specific RSM: the radial basis function 

interpolation (RBF), but the techniques presented here are flexible enough to be applied 

to other models as well as completely different engineering fields, given that they require 

intensive linear algebra computations. 

The calculation of the RBF involves the resolution of a linear system, which can be 

expressed as 𝐴𝑥 = 𝑏 and where 𝐴 is rank-deficient; this system can be solved by 

computing the Moore-Penrose pseudoinverse of 𝐴 by means of a singular value 

decomposition (SVD) (Golub and Van Loan 1996). Accelerating the SVD represents the 

main requirement to the tool here presented since it is the most expensive operation of 

the whole interpolation process, accounting for more than the 95% of computing time. 

For this reason, the SVD represents the main benchmark function for the performance of 

this numerical library. 

The main goal of this work is to provide a tool that allows engineers and domain expert 

to exploit the computing capabilities of modern architectures to perform numerical linear 

algebra; in this sense, given the use case and the industrial context where the tool is 

expected to be used, a number of requirements that drove the development of this work 

have been identified: 

 State-of-the-art performance on heterogeneous CPU-GPU platforms. 

 Support for advanced linear algebra operations like linear system solving and 

matrix decompositions. 

 Easy incorporation into existing C++ code. 

 Simple interface (possibly similar to MATLAB). 

 Hidden parallelism and GPU specific operations (i.e. memory transfer). 

 Capability to switch from CPU to GPU implementation at runtime. 

 Minimal amount of code to be maintained. 

 Licensing compatible with commercial use. 

 Support for both Linux and Windows. 
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From here on we will show how the proposed library is compliant with such requirements 

and how it performs within the use case introduced above, both in terms of usability and 

performance. 

 

3 Related Work 

Given the large spectrum of applications for dense linear algebra, it is not surprising that 

several tools exist to perform such operations; a significant subset of such tools is also 

developed with performance in mind, but only recently heterogeneous architectures like 

CPU/GPU ones are being targeted by such tools. The de-facto standard for what concern 

linear algebra computations is the software stack composed of BLAS (Dongarra et al. 

1988) and LAPACK (Anderson et al. 1999). The first library is focused on elementary 

operations like matrix-vector and matrix-matrix multiplications, while the second 

implements more complex functions like matrix decompositions (including the SVD), least 

squares and linear system solving. Both libraries are also implemented by third parties 

(either commercially or open-source) that preserve the API while they modify the internal 

mechanisms, possibly targeting different architecture like GPUs. Below we report the 

most notable implementations of BLAS and LAPACK: 

BLAS 

 Netlib BLAS, original implementation (Dongarra et al. 1988) 

 Intel MKL 

 OpenBLAS (Wang et al. 2013) 

 NVidia cuBLAS, dedicated to CUDA GPUs (NVIDIA Corporation 2016) 

 clBLAS, dedicated to OpenCL GPUs 

 

LAPACK 

 Netlib LAPACK, original implementation (Anderson et al. 1999) 

 Magma, hybrid CPU-GPU implementation (Agullo et al. 2009; Tomov et al. 2010) 

 Plasma, multithreaded implementation (Agullo et al. 2009) 
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 Intel MKL 

 CULA Dense (Humphrey et al. 2010) 

While most of these libraries provide very high-performance execution of the linear 

algebra operations that we are concerned about, there is a main drawback that prevents 

their application in an engineering environment: their interface is so complex such that 

specific expertise is needed to be used directly. In this context a number of higher-level 

libraries have been developed in order to provide access to BLAS and LAPACK 

functionalities to domain experts and engineers. Such wrappers usually provide a large 

catalogue of functionalities that goes far beyond linear algebra (e.g. array slicing, sorting, 

cumulative summing), but for the scope of this work we are going to focus only to BLAS 

and LAPACK capabilities. A number of these tools have been evaluated for an application 

to the use case presented above, in particular we considered: 

 Armadillo (Sanderson 2010) 

 Eigen (Guennebaud and Jacob 2010) 

 ArrayFire (Yalamanchili et al. 2015) 

 ViennaCL (Tillet et al. 2013) 

 LAMA (Kraus et al. 2012) 

Armadillo and Eigen are not intended to be used on different platforms other than the 

CPU, while ArrayFire, ViennaCL and LAMA provide support for different back-end libraries 

to target both CPU and GPU. 

With respect to our requirements, the last three tools listed above are good candidates, 

but there are drawbacks: LAMA and ViennaCL cannot switch from GPU to CPU at runtime, 

while ArrayFire, as will be shown in Section 5, presents significant performance issues 

when considering the SVD. 

These limitations lead to a different implementation approach: given that is required to 

keep the amount of code to be maintained to a minimum, existing state-of-the-art tools 

have been reused as much as possible in order to build a software stack that actually 

complied with the industrial requirements. Section 4 will present the components used 

and will outline the architecture of such software stack. 
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4 Architecture and Usage 

The presented software stack is structured as outlined in Figure 1: a user friendly interface 

is provided to the domain expert, then the code of such interface is provided with 

mechanisms so it becomes possible to switch between different computing back-ends at 

runtime. In this way the state-of-the-art performance of existing BLAS/LAPACK 

implementations can be leveraged without burdening the user with a cumbersome API 

or with the need of taking care of the GPU specific mechanisms. 

Armadillo Template API

CPUCUDA GPU

Armadillo LAPACK interface
Armadillo BLAS 

interface

Magma OpenBLAS

Magma 
BLAS

cuBLAS OpenBLAS

nvBLAS

Domain Logic(C++)

 

Figure 1 Proposed software stack 

Below, the individual components are presented, along with the reasons that guided us 

in the choice. 

 

Armadillo 

The interface exposed to the user is Armadillo, a C++ template library for linear algebra 

with a high-level API, which is deliberately similar to Matlab (Sanderson 2010). It provides 

a large number of functions to manipulate custom objects representing vectors, matrices 

and cubes (namely 3rd-order tensors); to perform the most intensive computations it 

provides an interface to BLAS and LAPACK implementations (hereafter we will refer to 

such implementation as the back-end). It employs a number of internal layers in order to 

translate simple function calls like 
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 Solve(A,b); //Solves the linear system Ax=b 

to more complex but equivalent LAPACK syntax 

 dgesv( &n, &nrhs, a, &lda, ipiv, b, &ldb, &info ); 

Armadillo is designed to support whatever library providing an API compliant with BLAS 

and LAPACK, such as MKL or OpenBLAS. It is also able to perform a few of the operations 

included in the back-end with its own implementation, but they are not designed for high 

performance. Its modularity and the simple and user-friendly interface guided our choice 

towards Armadillo as the API presented to the developer. 

 

 

 

OpenBLAS 

The default CPU back-end is OpenBLAS: an open-source implementation of BLAS which, 

given the benchmarks provided by the authors, can be compared to the best-in-class 

proprietary libraries like Intel MKL (Wang et al. 2013). The standard distribution of 

OpenBLAS also provides LAPACK functions, some of which are further optimised by the 

authors. The interface is compatible with the standard distribution of BLAS/LAPACK. The 

very easy build-and-deploy workflow, along with its solid performance, was the key point 

for the adoption of OpenBLAS as the reference CPU back-end. 

 

Magma 

The development of Magma is aimed to replace LAPACK on heterogeneous architectures, 

with the typical Multicore+GPU platform as a paradigmatic example (Agullo et al. 2009; 

Tomov et al. 2010), in this sense we used it as the GPU back-end for the presented work. 

The Magma library employs Directed Acyclic Graphs (DAGs) in order to dispatch the 

different tasks related to a given computation to different cores/devices, taking data 

dependencies into account and aiming for the best exploitation of the available hardware. 

The motivation that drove interest to Magma is twofold:  it does not require the user to 

take care of data transfer between the host and the device, and, its API is only marginally 
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different from the standard LAPACK interface. These two features make Magma a good 

candidate for a drop-in replacement of LAPACK on heterogeneous platforms. 

 

NVidia nvBLAS 

Direct BLAS calls from Armadillo would normally be handled by OpenBLAS, in this case 

the nvBLAS library (NVIDIA Corporation 2016) provided by NVidia has been leveraged in 

order to offload the operation to a GPU when available. nvBLAS intercepts standard BLAS 

calls and, when available, performs the operation on the GPU using the cuBLAS 

implementation from NVidia. The use of nvBLAS allowed us to leverage the GPU for what 

concern the BLAS operations, while keeping Armadillo code unchanged. 

 

Usage 

As already stated, we provided Armadillo with mechanisms to handle multiple back-ends 

while keeping the code to be maintained to a minimum, in this sense we also tried to 

modify Armadillo’s interface as little as possible. Given a user code written using the 

Armadillo syntax, only a few more lines are needed in order to take advantage of the 

Magma GPU back-end, the typical usage is showed below: 

 

// Check supported CUDA device, then initialises Magma 

arma::arma_magma_init();   

// Set the Magma back-end at runtime 

arma::arma_set_backend(1); 

 

// User code 

// ... 

 

// Finalises Magma back-end for a clean exit 

arma::magma_finalize(); 

 

While details will be provided in the next section, this architecture satisfied all the 

requirements listed in Section 2. 
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5 Validation 

As stated in Sect. 2, the goal of this work is to provide a tool that allows developers to 

easily leverage modern computing architectures to perform intensive linear algebra 

operations. As a part of the experimental validation, the Optimus Radial Basis Function 

interpolation has been re-implemented using Armadillo. Both the usability of the 

framework and its performance in comparison to the original implementation, where the 

SVD is largely based on (Press et al. 2002), have been assessed. At last, even if the tools 

implemented are very well-regarded, the numerical accuracy of the framework with 

respect to the RBF interpolation has been assessed too.  

For what concern the usability, positive feedback has been collected from industrial 

developers, in particular with respect to the very easy implementation of numerical 

algorithms and the very little effort required to port such algorithm on high-performance 

architectures; the productivity improvement can be roughly estimated to reduce 

development time by 50% with respect to writing plain C++ code from scratch. 

 

Performance 

On the performance side we carried out several tests to assess that: 1) the computation 

time required by the RBF significantly benefits from the new implementation; 2) the two 

back-ends are somehow complementary and there is a significant advantage given by the 

ability to switch between the two at runtime. 

The first benchmark is performed on a variable-sized synthetic dataset produced by an 

analytical function, in order to identify the evolution of the model building time versus 

the size of the dataset.  
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Figure 2 Comparison of model building times for a variable-sized dataset. 
2x Xeon E7- 4820@2.00GHz, NVidia Tesla K20c 

The results presented in Fig. 2 highlight how the Armadillo’s implementation becomes 

almost two orders of magnitude faster than the original one as the size of the dataset 

grows; let us remark that, for this range of dataset sizes, OpenBLAS outperforms Magma 

noticeably. 

This result becomes significant as we consider a real-life engineering problem: the 

following test has been performed on a large dataset (4149 samples) provided by a major 

manufacturer in the aerospace industry. Figure 3 shows, in a logarithmic scale, the model 

building times for the same three cases considered before. 

 

Figure 3 Model building times for a large manufacturing dataset. 
2x Xeon E7- 4820@2.00GHz, NVidia Tesla K20c 
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Let us underline the advantage in terms of computing time provided by our framework: 

this result is consistent with the two orders of magnitude gap showed by the rightmost 

part of Fig. 2 and reduces the model building time from almost three hours to one and a 

half minute, restoring the feasibility of a response surface modelling approach. It is also 

important to note that, for such a large dataset, a visible gain by using the GPU back-end 

with respect to OpenBLAS has been experienced. 

While above the comparison with the original implementation of the RBF has been 

considered, now the focus is put on comparing the two BLAS/LAPACK back-ends of this 

framework. The previous experiments showed a substantial advantage in favour of 

OpenBLAS for datasets of size up to a thousand of samples, while the real-life dataset 

showed how the GPU takes the edge for very large problems. In this sense it would be 

useful to understand the behaviour of the back-ends in the region between these two 

cases: Figure 4 shows the break-even dataset size for which the GPU becomes actually 

faster. 

In fact, the expectation is that the fastest back-end depends on both, the problem size 

and the hardware configuration. To prove such assumption, experiments on different 

machines have been performed considering only the most expensive part of the RBF 

interpolation: solving the rank-deficient linear system 𝐴𝑥 = 𝑏. 

 

Figure 4 Model building times for different dataset sizes. 
2x Xeon E7- 4820@2.00GHz, NVidia Tesla K20c 
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Fig. 5 shows three different hardware configurations and the statement that there is not 

a back-end that is in principle faster than another holds true: different back-ends behave 

better based on the hardware configuration and the problem size and, above all, the 

break-even point for Magma to take the edge gets larger as the GPU gets more low-end, 

to the extreme case in which there is no break-even at all. In this sense the possibility to 

switch among the back-ends at runtime opens up the possibility to implement a policy 

that always chooses the fastest based on the problem and the platform. 

 

  

 

Figure 5 Linear system 𝐴𝑥 = 𝑏 solved on different machines with different hardware configuration. 

 
As a final performance benchmark it is interesting to show how this framework 

significantly outperforms the only competing tool that possibly meets the requirements, 

when considering the calculation of the SVD on GPU. It has been stated in Section 3 that 

ArrayFire revealed a significant performance issue, so it was discarded despite being a 

good candidate. Fig. 6 shows the comparison of computing times for ArrayFire and 

Armadillo+Magma. Let us note that ArrayFire leverages the cuSolver LAPACK replacement 

provided by NVidia in order to perform the SVD. 



 14 

p 

Figure 6 Computing time for the SVD of a square matrix. 

It is noticeable how Magma significantly outperforms cuSolver as the dimension of the 

dataset increases. 

 

Accuracy 

In order to verify the numerical accuracy of the presented software stack, the 

interpolation results obtained on a test dataset by the original implementation and by 

both the back-ends leveraged by Armadillo have been compared. To produce a measure 

of accuracy we measured the errors on a different and dense validation dataset and we 

expected those errors to be at most equal in all the cases. Fig. 7 shows how the Armadillo 

implementation produces a slightly more accurate implementation compared to the 

original one: this implies that the faster calculation does not affect final accuracy, which 

is possibly better than expected. Tuning of the tolerance parameter for the SVD is possible 

with Armadillo, but we did not consider such intervention as relevant, since under both 

the performance and accuracy point of view the framework proved itself to be fully 

satisfactory for the scope of this work. 
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Figure 7 Sum of squared errors calculated on a 1000 points validation dataset. 
RBF interpolation built on a 500 points synthetic dataset. 

6 Conclusion 

Starting from the specific use case of response surface modelling, in this work we 

introduced a software stack designed to allow domain experts and engineers to exploit 

high-performance architectures in a transparent way while developing linear algebra 

intensive applications. To achieve such result, we carefully extended the Armadillo library, 

which provides a Matlab-like interface for linear algebra objects and operations, in order 

to both integrate it with different high-performance computing back-ends and to allow 

the user to transparently switch between such back-ends at runtime. 

The resulting framework has been validated within the industrial context of the use-case 

provider, considering either the computing performance as well as the usability: the latter 

allowed for a code development time decrease of roughly 50%, while the former has 

largely outperformed the original implementation, as well a competing tool. In this sense 

we can state that the requirements listed during the analysis of the use-case are 

completely met by this framework, while providing fully satisfactory performance in both 

synthetic test cases as well as actual aerospace manufacturing problems. 
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Future Development 

Since the main purpose of this work is to provide a general tool for developers, we expect 

that in the near future more Response Surface Models other than the RBF interpolation 

will benefit from the acceleration provided by this approach. Moreover, we also expect 

that new models will be implemented using Armadillo, significantly accelerating the 

coding process. 

For what concern the architecture of the framework, we propose an improvement based 

on the results showed by Fig. 4 and 5: we observed that the performance is significantly 

dependent on the hardware configuration and the problem size, in this sense the idea is 

to implement a set on policies that, based on early performance evaluation, automatically 

selects the fastest back-end on which the given dataset should be processed. 

At last, a possible development concerns the identification of a suitable BLAS/LAPACK 

back-end for OpenCL in order to target a wider range of accelerators like AMD and Intel 

GPUs. 
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