
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Viviani, P.; and Aldinucci, M.; and d'Ippolito, R.; and Lemeire, J.; and
Vucinic, D.. A Flexible Numerical Framework for Engineering---A Response
Surface Modelling Application. Springer International Publishing. 2017. pp:
93-106.

in

Improved Performance of Materials: Design and Experimental Approaches

The publisher's version is available at:
http://link.springer.com/content/pdf/10.1007/978-3-319-59590-0_9

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1645520

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302158354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

 A flexible Numerical Framework for Engineering - a Response Surface
Modelling Application

P. Viviani1,2,, M. Aldinucci1, R. d’Ippolito2, J. Lemeire3, D. Vucinic3

1Dipartimento di Informatica,

Università degli Studi di Torino, Torino, IT.

2Noesis Solutions, Leuven, BE.

3Dept. of Electronics and Informatics (ETRO),

Vrije Universiteit Brussel, Brussels, BE.

Abstract

This work presents an innovative approach adopted for the development of a new

numerical software framework for accelerating dense linear algebra calculations and its

application within an engineering context.

In particular, response surface models (RSM) are a key tool to reduce the computational

effort involved in engineering design processes like design optimization. However, RSMs

may prove to be too expensive to be computed when the dimensionality of the system

and/or the size of the dataset to be synthesized is significantly high or when a large

number of different response surfaces has to be calculated in order to improve the overall

accuracy (e.g. like when using ensemble modelling techniques).

On the other hand, the potential of modern hybrid hardware (e.g. multicore, GPUs) is not

exploited by current engineering tools, while they can lead to a significant performance

improvement. To fill this gap, a software framework is being developed that enables the

hybrid and scalable acceleration of the linear algebra core for engineering applications

and especially of RSMs calculations with a user-friendly syntax that allows good portability

between different hardware architectures, with no need of specific expertise in parallel

programming and accelerator technology.

The effectiveness of this framework is shown by comparing an accelerated code to a

single-core calculation of a radial basis function RSM on some benchmark datasets. This

 2

approach is then validated within a real-life engineering application and the achievements

are presented and discussed.

Keywords: Response surface modelling, GPU computing, linear algebra, armadillo

1 Introduction

Response surface modelling (RSM) is a key tool when it comes to engineering design

optimization: in most real-life use cases the engineer knows its domain of design

parameters as a discrete dataset, namely as a black-box model, while most optimization

strategies need a certain degree of continuity in order to be applied. Regression (i.e.

approximation and interpolation) is then necessary to obtain a continuous or

differentiable function that well represents the underlying model. Moreover, computing

new points on an analytical regression function is significantly cheaper than obtaining

new samples of the dataset, as they come from experimental data or expensive numerical

simulations.

In this context, response surface modelling can address both the sparsity of the dataset

and the expensiveness of producing new points, since it provides a continuous and

analytical function that can be easily evaluated when performing optimization; however,

there are a number of situations in which even the RSM can be too expensive

computationally-wise to actually represent an advantage compared to numerical

simulation. When the dataset is very large and its dimensionality is possibly high (in terms

of inputs and outputs), then the time needed to obtain an accurate regression becomes

not acceptable, so the response surface is not able anymore to fulfil its purpose of

reducing the computational effort.

A possible solution to this issue comes from the recent development of new

computational architectures, namely multicore and manycore platforms, which allow to

speed up numerical calculation even on off-the-shelf workstation. Unfortunately, it is not

straightforward to port existing code like sophisticated regression tools to such

architectures, since specific expertise in parallel and GPU computing is needed. The aim

 3

of this work is hence to address this issue by introducing a numerical framework that can

accelerate the most numerical intensive parts of well-known regression methodologies

and needs no specific low-level coding expertise from the domain expert who uses it; the

actual application of this framework within a response surface model is showed and

validated, both from the performance point of view and from the usability point of view.

The paper is structured as following: Section 2 explains in detail the use case that drove

the development of this work, Section 3 presents the main related work in terms of

available and competing tools for high-performance linear algebra computations, Section

4 illustrates the architecture of the framework developed by the authors and Section 5

reports the experimental validation of such framework.

2 Industrial Use Case

The response surface modelling use case that served as benchmark for this work has been

provided by Noesis Solutions NV, a simulation innovation partner to manufacturers in

automotive, aerospace and other engineering-intense industries. Specialised in

simulation process integration and numerical design optimization (PIDO), its flagship

software Optimus leverages Noesis' experience in optimization and system integration

methodologies to increase the efficiency of engineering practices and processes. Noesis

research tracks include process integration, extraction and exploitation of engineering

knowledge within multidisciplinary industrial processes, advanced methods for modelling

and optimization of the behaviour of large engineering systems in the virtual prototype

stage, parallelization of computational effort, and assessment of quality and robustness

of the final product. The implementation of RSM in the context of design engineering and

optimization is a well-known technique usually referred to as Metamodel Based Design

Optimization (Booker et al. 1999).

One of the most significant functionalities of Optimus is indeed the calculation of

response surface models related to arbitrarily complex engineering simulation workflows:

this feature makes heavy use of linear algebra operations and performing such operations

as fast as possible is a paramount in order to achieve the purpose of response surface

 4

modelling. The presented work is focused on a specific RSM: the radial basis function

interpolation (RBF), but the techniques presented here are flexible enough to be applied

to other models as well as completely different engineering fields, given that they require

intensive linear algebra computations.

The calculation of the RBF involves the resolution of a linear system, which can be

expressed as 𝐴𝑥 = 𝑏 and where 𝐴 is rank-deficient; this system can be solved by

computing the Moore-Penrose pseudoinverse of 𝐴 by means of a singular value

decomposition (SVD) (Golub and Van Loan 1996). Accelerating the SVD represents the

main requirement to the tool here presented since it is the most expensive operation of

the whole interpolation process, accounting for more than the 95% of computing time.

For this reason, the SVD represents the main benchmark function for the performance of

this numerical library.

The main goal of this work is to provide a tool that allows engineers and domain expert

to exploit the computing capabilities of modern architectures to perform numerical linear

algebra; in this sense, given the use case and the industrial context where the tool is

expected to be used, a number of requirements that drove the development of this work

have been identified:

 State-of-the-art performance on heterogeneous CPU-GPU platforms.

 Support for advanced linear algebra operations like linear system solving and

matrix decompositions.

 Easy incorporation into existing C++ code.

 Simple interface (possibly similar to MATLAB).

 Hidden parallelism and GPU specific operations (i.e. memory transfer).

 Capability to switch from CPU to GPU implementation at runtime.

 Minimal amount of code to be maintained.

 Licensing compatible with commercial use.

 Support for both Linux and Windows.

 5

From here on we will show how the proposed library is compliant with such requirements

and how it performs within the use case introduced above, both in terms of usability and

performance.

3 Related Work

Given the large spectrum of applications for dense linear algebra, it is not surprising that

several tools exist to perform such operations; a significant subset of such tools is also

developed with performance in mind, but only recently heterogeneous architectures like

CPU/GPU ones are being targeted by such tools. The de-facto standard for what concern

linear algebra computations is the software stack composed of BLAS (Dongarra et al.

1988) and LAPACK (Anderson et al. 1999). The first library is focused on elementary

operations like matrix-vector and matrix-matrix multiplications, while the second

implements more complex functions like matrix decompositions (including the SVD), least

squares and linear system solving. Both libraries are also implemented by third parties

(either commercially or open-source) that preserve the API while they modify the internal

mechanisms, possibly targeting different architecture like GPUs. Below we report the

most notable implementations of BLAS and LAPACK:

BLAS

 Netlib BLAS, original implementation (Dongarra et al. 1988)

 Intel MKL

 OpenBLAS (Wang et al. 2013)

 NVidia cuBLAS, dedicated to CUDA GPUs (NVIDIA Corporation 2016)

 clBLAS, dedicated to OpenCL GPUs

LAPACK

 Netlib LAPACK, original implementation (Anderson et al. 1999)

 Magma, hybrid CPU-GPU implementation (Agullo et al. 2009; Tomov et al. 2010)

 Plasma, multithreaded implementation (Agullo et al. 2009)

 6

 Intel MKL

 CULA Dense (Humphrey et al. 2010)

While most of these libraries provide very high-performance execution of the linear

algebra operations that we are concerned about, there is a main drawback that prevents

their application in an engineering environment: their interface is so complex such that

specific expertise is needed to be used directly. In this context a number of higher-level

libraries have been developed in order to provide access to BLAS and LAPACK

functionalities to domain experts and engineers. Such wrappers usually provide a large

catalogue of functionalities that goes far beyond linear algebra (e.g. array slicing, sorting,

cumulative summing), but for the scope of this work we are going to focus only to BLAS

and LAPACK capabilities. A number of these tools have been evaluated for an application

to the use case presented above, in particular we considered:

 Armadillo (Sanderson 2010)

 Eigen (Guennebaud and Jacob 2010)

 ArrayFire (Yalamanchili et al. 2015)

 ViennaCL (Tillet et al. 2013)

 LAMA (Kraus et al. 2012)

Armadillo and Eigen are not intended to be used on different platforms other than the

CPU, while ArrayFire, ViennaCL and LAMA provide support for different back-end libraries

to target both CPU and GPU.

With respect to our requirements, the last three tools listed above are good candidates,

but there are drawbacks: LAMA and ViennaCL cannot switch from GPU to CPU at runtime,

while ArrayFire, as will be shown in Section 5, presents significant performance issues

when considering the SVD.

These limitations lead to a different implementation approach: given that is required to

keep the amount of code to be maintained to a minimum, existing state-of-the-art tools

have been reused as much as possible in order to build a software stack that actually

complied with the industrial requirements. Section 4 will present the components used

and will outline the architecture of such software stack.

 7

4 Architecture and Usage

The presented software stack is structured as outlined in Figure 1: a user friendly interface

is provided to the domain expert, then the code of such interface is provided with

mechanisms so it becomes possible to switch between different computing back-ends at

runtime. In this way the state-of-the-art performance of existing BLAS/LAPACK

implementations can be leveraged without burdening the user with a cumbersome API

or with the need of taking care of the GPU specific mechanisms.

Armadillo Template API

CPUCUDA GPU

Armadillo LAPACK interface
Armadillo BLAS

interface

Magma OpenBLAS

Magma
BLAS

cuBLAS OpenBLAS

nvBLAS

Domain Logic(C++)

Figure 1 Proposed software stack

Below, the individual components are presented, along with the reasons that guided us

in the choice.

Armadillo

The interface exposed to the user is Armadillo, a C++ template library for linear algebra

with a high-level API, which is deliberately similar to Matlab (Sanderson 2010). It provides

a large number of functions to manipulate custom objects representing vectors, matrices

and cubes (namely 3rd-order tensors); to perform the most intensive computations it

provides an interface to BLAS and LAPACK implementations (hereafter we will refer to

such implementation as the back-end). It employs a number of internal layers in order to

translate simple function calls like

 8

 Solve(A,b); //Solves the linear system Ax=b

to more complex but equivalent LAPACK syntax

 dgesv(&n, &nrhs, a, &lda, ipiv, b, &ldb, &info);

Armadillo is designed to support whatever library providing an API compliant with BLAS

and LAPACK, such as MKL or OpenBLAS. It is also able to perform a few of the operations

included in the back-end with its own implementation, but they are not designed for high

performance. Its modularity and the simple and user-friendly interface guided our choice

towards Armadillo as the API presented to the developer.

OpenBLAS

The default CPU back-end is OpenBLAS: an open-source implementation of BLAS which,

given the benchmarks provided by the authors, can be compared to the best-in-class

proprietary libraries like Intel MKL (Wang et al. 2013). The standard distribution of

OpenBLAS also provides LAPACK functions, some of which are further optimised by the

authors. The interface is compatible with the standard distribution of BLAS/LAPACK. The

very easy build-and-deploy workflow, along with its solid performance, was the key point

for the adoption of OpenBLAS as the reference CPU back-end.

Magma

The development of Magma is aimed to replace LAPACK on heterogeneous architectures,

with the typical Multicore+GPU platform as a paradigmatic example (Agullo et al. 2009;

Tomov et al. 2010), in this sense we used it as the GPU back-end for the presented work.

The Magma library employs Directed Acyclic Graphs (DAGs) in order to dispatch the

different tasks related to a given computation to different cores/devices, taking data

dependencies into account and aiming for the best exploitation of the available hardware.

The motivation that drove interest to Magma is twofold: it does not require the user to

take care of data transfer between the host and the device, and, its API is only marginally

 9

different from the standard LAPACK interface. These two features make Magma a good

candidate for a drop-in replacement of LAPACK on heterogeneous platforms.

NVidia nvBLAS

Direct BLAS calls from Armadillo would normally be handled by OpenBLAS, in this case

the nvBLAS library (NVIDIA Corporation 2016) provided by NVidia has been leveraged in

order to offload the operation to a GPU when available. nvBLAS intercepts standard BLAS

calls and, when available, performs the operation on the GPU using the cuBLAS

implementation from NVidia. The use of nvBLAS allowed us to leverage the GPU for what

concern the BLAS operations, while keeping Armadillo code unchanged.

Usage

As already stated, we provided Armadillo with mechanisms to handle multiple back-ends

while keeping the code to be maintained to a minimum, in this sense we also tried to

modify Armadillo’s interface as little as possible. Given a user code written using the

Armadillo syntax, only a few more lines are needed in order to take advantage of the

Magma GPU back-end, the typical usage is showed below:

// Check supported CUDA device, then initialises Magma

arma::arma_magma_init();

// Set the Magma back-end at runtime

arma::arma_set_backend(1);

// User code

// ...

// Finalises Magma back-end for a clean exit

arma::magma_finalize();

While details will be provided in the next section, this architecture satisfied all the

requirements listed in Section 2.

 10

5 Validation

As stated in Sect. 2, the goal of this work is to provide a tool that allows developers to

easily leverage modern computing architectures to perform intensive linear algebra

operations. As a part of the experimental validation, the Optimus Radial Basis Function

interpolation has been re-implemented using Armadillo. Both the usability of the

framework and its performance in comparison to the original implementation, where the

SVD is largely based on (Press et al. 2002), have been assessed. At last, even if the tools

implemented are very well-regarded, the numerical accuracy of the framework with

respect to the RBF interpolation has been assessed too.

For what concern the usability, positive feedback has been collected from industrial

developers, in particular with respect to the very easy implementation of numerical

algorithms and the very little effort required to port such algorithm on high-performance

architectures; the productivity improvement can be roughly estimated to reduce

development time by 50% with respect to writing plain C++ code from scratch.

Performance

On the performance side we carried out several tests to assess that: 1) the computation

time required by the RBF significantly benefits from the new implementation; 2) the two

back-ends are somehow complementary and there is a significant advantage given by the

ability to switch between the two at runtime.

The first benchmark is performed on a variable-sized synthetic dataset produced by an

analytical function, in order to identify the evolution of the model building time versus

the size of the dataset.

 11

Figure 2 Comparison of model building times for a variable-sized dataset.
2x Xeon E7- 4820@2.00GHz, NVidia Tesla K20c

The results presented in Fig. 2 highlight how the Armadillo’s implementation becomes

almost two orders of magnitude faster than the original one as the size of the dataset

grows; let us remark that, for this range of dataset sizes, OpenBLAS outperforms Magma

noticeably.

This result becomes significant as we consider a real-life engineering problem: the

following test has been performed on a large dataset (4149 samples) provided by a major

manufacturer in the aerospace industry. Figure 3 shows, in a logarithmic scale, the model

building times for the same three cases considered before.

Figure 3 Model building times for a large manufacturing dataset.
2x Xeon E7- 4820@2.00GHz, NVidia Tesla K20c

 12

Let us underline the advantage in terms of computing time provided by our framework:

this result is consistent with the two orders of magnitude gap showed by the rightmost

part of Fig. 2 and reduces the model building time from almost three hours to one and a

half minute, restoring the feasibility of a response surface modelling approach. It is also

important to note that, for such a large dataset, a visible gain by using the GPU back-end

with respect to OpenBLAS has been experienced.

While above the comparison with the original implementation of the RBF has been

considered, now the focus is put on comparing the two BLAS/LAPACK back-ends of this

framework. The previous experiments showed a substantial advantage in favour of

OpenBLAS for datasets of size up to a thousand of samples, while the real-life dataset

showed how the GPU takes the edge for very large problems. In this sense it would be

useful to understand the behaviour of the back-ends in the region between these two

cases: Figure 4 shows the break-even dataset size for which the GPU becomes actually

faster.

In fact, the expectation is that the fastest back-end depends on both, the problem size

and the hardware configuration. To prove such assumption, experiments on different

machines have been performed considering only the most expensive part of the RBF

interpolation: solving the rank-deficient linear system 𝐴𝑥 = 𝑏.

Figure 4 Model building times for different dataset sizes.
2x Xeon E7- 4820@2.00GHz, NVidia Tesla K20c

 13

Fig. 5 shows three different hardware configurations and the statement that there is not

a back-end that is in principle faster than another holds true: different back-ends behave

better based on the hardware configuration and the problem size and, above all, the

break-even point for Magma to take the edge gets larger as the GPU gets more low-end,

to the extreme case in which there is no break-even at all. In this sense the possibility to

switch among the back-ends at runtime opens up the possibility to implement a policy

that always chooses the fastest based on the problem and the platform.

Figure 5 Linear system 𝐴𝑥 = 𝑏 solved on different machines with different hardware configuration.

As a final performance benchmark it is interesting to show how this framework

significantly outperforms the only competing tool that possibly meets the requirements,

when considering the calculation of the SVD on GPU. It has been stated in Section 3 that

ArrayFire revealed a significant performance issue, so it was discarded despite being a

good candidate. Fig. 6 shows the comparison of computing times for ArrayFire and

Armadillo+Magma. Let us note that ArrayFire leverages the cuSolver LAPACK replacement

provided by NVidia in order to perform the SVD.

 14

p

Figure 6 Computing time for the SVD of a square matrix.

It is noticeable how Magma significantly outperforms cuSolver as the dimension of the

dataset increases.

Accuracy

In order to verify the numerical accuracy of the presented software stack, the

interpolation results obtained on a test dataset by the original implementation and by

both the back-ends leveraged by Armadillo have been compared. To produce a measure

of accuracy we measured the errors on a different and dense validation dataset and we

expected those errors to be at most equal in all the cases. Fig. 7 shows how the Armadillo

implementation produces a slightly more accurate implementation compared to the

original one: this implies that the faster calculation does not affect final accuracy, which

is possibly better than expected. Tuning of the tolerance parameter for the SVD is possible

with Armadillo, but we did not consider such intervention as relevant, since under both

the performance and accuracy point of view the framework proved itself to be fully

satisfactory for the scope of this work.

 15

Figure 7 Sum of squared errors calculated on a 1000 points validation dataset.
RBF interpolation built on a 500 points synthetic dataset.

6 Conclusion

Starting from the specific use case of response surface modelling, in this work we

introduced a software stack designed to allow domain experts and engineers to exploit

high-performance architectures in a transparent way while developing linear algebra

intensive applications. To achieve such result, we carefully extended the Armadillo library,

which provides a Matlab-like interface for linear algebra objects and operations, in order

to both integrate it with different high-performance computing back-ends and to allow

the user to transparently switch between such back-ends at runtime.

The resulting framework has been validated within the industrial context of the use-case

provider, considering either the computing performance as well as the usability: the latter

allowed for a code development time decrease of roughly 50%, while the former has

largely outperformed the original implementation, as well a competing tool. In this sense

we can state that the requirements listed during the analysis of the use-case are

completely met by this framework, while providing fully satisfactory performance in both

synthetic test cases as well as actual aerospace manufacturing problems.

 16

Future Development

Since the main purpose of this work is to provide a general tool for developers, we expect

that in the near future more Response Surface Models other than the RBF interpolation

will benefit from the acceleration provided by this approach. Moreover, we also expect

that new models will be implemented using Armadillo, significantly accelerating the

coding process.

For what concern the architecture of the framework, we propose an improvement based

on the results showed by Fig. 4 and 5: we observed that the performance is significantly

dependent on the hardware configuration and the problem size, in this sense the idea is

to implement a set on policies that, based on early performance evaluation, automatically

selects the fastest back-end on which the given dataset should be processed.

At last, a possible development concerns the identification of a suitable BLAS/LAPACK

back-end for OpenCL in order to target a wider range of accelerators like AMD and Intel

GPUs.

Acknowledgments

This work has been partially supported by ITEA2 project 12002 MACH, the EU FP7 REPARA

project (no. 609666), the EU H2020 Rephrase project (no.644235) and the “NVidia GPU

research centre” programme.

References

Agullo E, Demmel J, Dongarra J, et al (2009) Numerical linear algebra on emerging

architectures: The PLASMA and MAGMA projects. J Phys Conf Ser 180:12037.

Anderson E, Bai Z, Bischof C, et al (1999) LAPACK Users’ Guide, Third. Society for

Industrial and Applied Mathematics, Philadelphia, PA

Booker AJ, Dennis JE, Frank PD, et al (1999) A rigorous framework for optimization of

expensive functions by surrogates. Struct Multidiscip Optim 17:1–13.

Dongarra J, Croz J Du, Hammarling S, Hanson RJ (1988) An Extended Set of FORTRAN

 17

Basic Linear Algebra Subprograms. ACM Trans Math Softw 14:1–17.

Golub GH, Van Loan CF (1996) Matrix Computations (3rd Ed.). Johns Hopkins University

Press, Baltimore, MD, USA

Guennebaud G, Jacob B (2010) Eigen v3.

Humphrey JR, Price DK, Spagnoli KE, et al (2010) CULA: hybrid GPU accelerated linear

algebra routines. In: Modeling and Simulation for Defense Systems and

Applications V. {SPIE}-Intl Soc Optical Eng,

Kraus J, Förster M, Brandes T, Soddemann T (2012) Using LAMA for efficient AMG on

hybrid clusters. Comput Sci - Res Dev 28:211–220.

NVIDIA Corporation (2016) CUDA Toolkit Documentation.

http://docs.nvidia.com/cuda/eula/index.html. Accessed 25 Nov 2016

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical Recipes in C.

Sanderson C (2010) Armadillo: An Open Source C++ Linear Algebra Library for Fast

Prototyping and Computationally Intensive Experiments. In: NICTA. Australia,

Tillet P, Rupp K, Selberherr S, Lin C-T (2013) Towards Performance-Portable, Scalable,

and Convenient Linear Algebra. In: 5th USENIX Workshop on Hot Topics in

Parallelism. USENIX, Berkeley, CA,

Tomov S, Dongarra J, Baboulin M (2010) Towards dense linear algebra for hybrid GPU

accelerated manycore systems. Parallel Comput 36:232–240.

Wang Q, Zhang X, Zhang Y, Yi Q (2013) AUGEM: Automatically Generate High

Performance Dense Linear Algebra Kernels on x86 CPUs. In: Proceedings of the

International Conference on High Performance Computing, Networking, Storage

and Analysis. ACM, New York, NY, USA, p 25:1--25:12

Yalamanchili P, Arshad U, Mohammed Z, et al (2015) ArrayFire - A high performance

software library for parallel computing with an easy-to-use API. AccelerEyes,

Atlanta

 18

List of figures

Figure 1: Proposed software stack. (page 7)

Figure 2: Comparison of model building times for a variable-sized dataset. 2x Xeon E7-

4820@2.00GHz, NVidia Tesla K20c. (page 10)

Figure 3: Model building times for a large manufacturing dataset. 2x Xeon E7-

4820@2.00GHz, NVidia Tesla K20c. (page 11)

Figure 4: Model building times for different dataset sizes. 2x Xeon E7- 4820@2.00GHz,

NVidia Tesla K20c. (page 12)

Figure 5: Linear system Ax=b solved on different machines with different hardware

configuration. (page 13)

Figure 6: Computing time for the SVD of a square matrix. (page 13)

Figure 7: Sum of squared errors calculated on a 1000 points validation dataset.

RBF interpolation built on a 500 points synthetic dataset. (page 14)

