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ABSTRACT

Segmentation of 3D colored point clouds is a research field with re-
newed interest thanks to recent availability of inexpensive consumer
RGB-D cameras and its importance as an unavoidable low-level step
in many robotic applications. However, 3D data’s nature makes the
task challenging and, thus, many different techniques are being pro-
posed, all of which require expensive computational costs. This pa-
per presents a novel fast method for 3D colored point cloud segmen-
tation. It starts with supervoxel partitioning of the cloud, i.e., an
oversegmentation of the points in the cloud. Then it leverages on a
novel metric exploiting both geometry and color to iteratively merge
the supervoxels to obtain a 3D segmentation where the hierarchical
structure of partitions is maintained. The algorithm also presents
computational complexity linear to the size of the input. Experimen-
tal results over two publicly available datasets demonstrate that our
proposed method outperforms state-of-the-art techniques.

Index Terms— segmentation, point cloud, supervoxels, hierar-
chical clustering

1. INTRODUCTION

Many robotic applications, like recognition, grasping and manipula-
tion of unknown objects, require reliable information on the shape of
the target to perform well. Therefore, the task of identifying portions
of a scene that correspond to single semantic units (i.e., objects) is
crucial for those applications. Such task is known as segmentation.

Object segmentation is a challenging task and it is even con-
sidered by some researchers as an ill-defined problem [1] mostly
because the perception of what is the best segmentation depends
heavily on the application and even changes among humans. Tra-
ditionally image segmentation was mostly studied on 2D images,
as acquiring 3D data of general scenes was expensive and diffi-
cult. However, the recent availability of low-cost RGB-D cameras
(e.g., Microsoft Kinect and Asus XtionPRO) enables us to capture
3D point clouds at video frame rate. This opens new possibilities
for the segmentation of 3D data. Recent tools like KinectFusion al-
low us to build a complete 3D representation of a scene using mea-
surements acquired from multiple viewpoints. As a result, a dras-
tically increased amount of information becomes available to de-
scribe the shape of different objects in the target scene. This is not
the case when using 2D images, since they are limited to a single
viewpoint. However, the difficulty of the segmentation task (for 3D
point clouds) is increased by the nature of the data themselves [2]:
(a) point clouds are usually noisy, sparse and unorganized; (b) the
sampling density of points is typically uneven due to varying lin-

ear and angular rates of the scanner; and (c) they have no statistical
distribution pattern.

Anguelov et al. [3] address that a good 3D point cloud segmen-
tation algorithm should have the following properties: (a) it should
qualitatively take advantage of several kinds of features and know
how to trade them off automatically; (b) it should be able to infer
the label of a point which lies in sparsely sampled regions thanks
to its neighbors; (c) it should adapt to any 3D scanner used. These
three properties are crucial to address the aforementioned difficulties
derived from the nature of 3D data.

In computer vision, segmentation of 2D images is a deeply ex-
plored problem. A wide range of techniques has been proposed to
address this task; among them, one of the most popular approaches is
graph clustering (e.g., Graph Cuts [4]). To face the high dimension-
ality of the image segmentation problem, a recent trend is to first
perform an oversegmentation, obtaining a non-rigid grid of small
regions, known as superpixels, that adhere to the edges in the im-
age. These regions are constructed using devoted algorithms like
SLIC [5], which is widely used and highly performant. Then, a tai-
lored segmentation algorithm is applied to cluster these regions into
a proper segmentation, e.g., [6].

In comparison to 2D image segmentation, segmentation of 3D
point clouds has been less studied. According to Nguyen and Le [7],
existing methods for 3D point clouds segmentation can be divided
into five classes: (i) edge-based approaches: they detect bound-
aries in the point clouds to obtain segmented regions [8]; (ii) re-
gion-based approaches: they use neighborhood information to com-
bine close points sharing similar properties [9]; (iii) attributes-based
approaches: they are based on clustering attributes of point cloud
data [10]; (iv) model-based approaches: they use geometric primi-
tive shapes (e.g., sphere, cone, plane, and cylinder) to group points
(a noticeable method of this class is the popular RANSAC [11]);
and finally (v) graph-based approaches: they consider point clouds
in terms of a graph [12].

However, most of state-of-the-art methods (e.g., [1, 8, 13, 14])
do not comply with Anguelov’s properties, as they use just some of
available features of the point cloud (e.g., just considering geometry
alone or color alone) or they run on the captured RGB-D image,
causing high dependency of those methods on the particular scanner
used. We also note that 3D segmentation methods using RGB-D
images (e.g., [15]) have not taken the optimal approach because they
convert the point cloud to 2D projections (with loss of information)
and then patch the obtained segmentation (in 2D) back to the 3D
scene; segmenting 3D points by dealing with them directly in 3D is
more preferable and reasonable [16].

Recently, supervoxels, the extension of the concept of super-



pixels to 3D point clouds, have been proposed [16]. Their use for
segmentation, however, has not been explored yet, except for a few
works: Stein et al. [1] proposed a general approach where supervox-
els are clustered according only to a convexity-based geometric cri-
terion; Yang et al. [17], instead, cluster supervoxels in urban scenes
using some primitives of the objects they expect to find (e.g., houses,
cars, trees). This last method is developed under a very specific sce-
nario and is therefore not suitable for general purpose segmentation.

In this paper, we propose a novel segmentation method working
directly on colored 3D point clouds. It starts by clustering the points
into supervoxels, and then merges them iteratively using a distance
metric until a stopping criterion is met. During the iterative merg-
ing process, we maintain the hierarchical structure of partitioned re-
gions. The design of the distance metric itself is one of our main
contributions: the metric exploits both geometric and color informa-
tion and combines them adaptively into a single dissimilarity value.

The effectiveness of merging supervoxels based on both geom-
etry and color for segmentation is confirmed by the fact that our
proposed method outperforms most recent methods in the state-of-
the-art, and that it has linear complexity in computational time with
respect to the size of the point cloud. In particular, running time
is an important factor for large-scale applications because consumer
RGB-D cameras provide a huge amount of data with dense and large
scale 3D models. Our method thus strengthens usability of 3D point
cloud segmentation for real-world applications.

Finally, the proposed method complies with the three aforemen-
tioned essential features addressed by Anguelov et al. [3] for point
cloud segmentation: our introduced metric leverages on both geom-
etry and color, and trades the two features off automatically (Prop-
erty (a)) the use of supervoxels defines patches in which features of
a point are inferred also from those of its neighbours (Property (b)),
and our method is independent from parameters of the scanner used
to acquire the data because it directly deals with the 3D point cloud
(Property (c)).

2. PROPOSED METHOD

We propose a novel method to segment colored 3D point clouds us-
ing supervoxels. The target 3D point cloud is first oversegmented
using a state-of-the-art supervoxel segmentation [16]. The initial
segmentation is then refined by merging similar neighbouring super-
voxels with respect to our proposed distance metric. Our proposed
method is fast (runs in linear time) yet accurate, and it complies with
all properties of a good 3D point cloud segmentation [3].

Given a point cloud P = {xi}Ni=1 with N points, we define an
n-region segmentation as a partition R = {ri}ni=1 of the points of
P ; more precisely, the regions must satisfy the following constraints:

∀x ∈ P (∃r ∈ R | x ∈ r) ;
∀r ∈ R (@r′ ∈ R \ {r} | r ∩ r′ 6= ∅) .

(1)

2.1. Framework

The segmentation of the 3D point cloud is initialized with an over-
segmented partition. This first segmentation is obtained with a su-
pervoxel segmentation algorithm. This initialization algorithm has
to be chosen carefully as unexpected behaviors could drastically cor-
rupt the final result. In particular, it is important that no supervoxel
overlaps two different regions in the expected final segmentation.
This is because our proposed method refines the segmentation by
iteratively merging neighbouring regions, but is not designed to di-
vide a region. For this reason the initial number of supervoxels has

(a) The original point cloud (b) Supervoxels

Fig. 1: A point cloud divided into supervoxels by VCCS

to be chosen accordingly to the expected minimum object size in the
scene.

In our method, VCCS [16] is employed, given its known compu-
tational efficiency and performances. VCCS initializes a grid of seed
points and then adds all the points in a certain radius from each seed
to that seed’s cluster. Then it iteratively refines this first estimate un-
til a convergence criterion is satisfied. This refinement is carried out
by moving points from one cluster to another using a metric based
both on color and spatial distance from the centroids of the clusters;
Figure 1 shows an example of a point cloud divided into supervoxels
by VCCS.

After partitioning the point cloud into m supervoxels, the merg-
ing process begins: at every iteration, our proposed algorithm
merges the two most similar regions in the current partition, reduc-
ing the total number of regions by 1. This iteration is executed until
the number of regions becomes 2. This iterative merging algorithm
generates a full dendrogram, which inherits information about the hi-
erarchy of regions in terms of their similarity. The generated dendro-
gram enables us to represent the merging process using a weighted
graph. We can then cut the dendogram at the d-th level of the hierar-
chy to obtain d regions, where d is the desired number of objects. We
note that when the number of regions is 2, a binary segmentation is
obtained, which is nothing but the discrimination of just foreground
and background.

We denote by Rm−k the current partition composed of m − k
regions at the k-th iteration (k ∈ [0,m − 2]). When the algorithm
starts, an undirected weighted graph Gm = {Rm,Wm} is con-
structed over the supervoxel set Rm, where Wm =

{
wmij
}

, ∀i 6= j

such that rmi , r
m
j ∈ Rm ∧ A

(
rmi , r

m
j

)
= 1, for some adjacency

function A. Note that wmij = wmji because Gm is an undirected
graph. The weights represent the distance (or dissimilarity measure)
between pairs of regions wmij = δ

(
rmi , r

m
j

)
. The distance function

δ is presented in details in Section 2.2.
At the k-th iteration, our algorithm selects the pair of regions

rm−kp , rm−kq ∈ Rm−k having wm−kpq = minWm−k and then
merges them. As a result, we obtain a new partition Rm−(k+1) =
Rm−k \

{
rm−kq

}
having all the points x ∈ rm−kp ∪ rk−mq assigned

to the region rm−(k+1)
p . Note that Rm−(k+1) contains m− (k+ 1)

regions. After that, edges and corresponding weights are updated
for subsequent iterations. Wm−(k+1) is generated according to the
following rule:

w
m−(k+1)
ij =

{
δ
(
r
m−(k+1)
p , r

m−(k+1)
j

)
if i = p ∨ i = q

wm−kij otherwise
.

(2)
Note that wm−kpq /∈Wm−(k+1) since it does not exist anymore.

When k = m − 2, the algorithm stops and returns the full den-
drogram D =

{
Rm, . . . , R2

}
, from which we can obtain the de-

sired number of regions. If the number d of objects to be segmented



is known in advance, simply taking the level Rd of D is enough.
However, typically this information is not known in advance. In this
scenario, a proper threshold has to be set on some metric to automat-
ically assess which level of D represents the best segmentation. The
learning strategy should be tailored on the dataset; in Section 4 we
discuss the strategy we adopted for our evaluation data.

2.2. Distance metric

The distance metric δ plays a crucial role in our proposed segmen-
tation algorithm: it decides which regions are to be merged at each
iteration. As a consequence, the distance metric should be designed
carefully as it drastically impacts the segmentation result. In this pa-
per, we adhere to the following three main criteria so that the above
mentioned properties addressed by Anguelov et al. [3] are satisfied:
1. it should exploit both the color and the geometry information pro-
vided by the point cloud; 2. it should possess capability of adaptively
and automatically adjusting the weights of the two components; 3. it
should have values bounded in the range [0, 1], where 0 corresponds
to the maximum similarity and 1 to the minimum one.

We propose the first (to the best of our knowledge) distance
metric clustering supervoxels on 3D point clouds that satisfies these
three criteria. Our proposed metric is a combination of two terms: a
color data term δC that captures the color distance between any two
regions; and a geometric data term δG that captures the geometric
distance between any two regions. Color data and geometric data
are two inherently different types of data, with different dynamics
and different distributions over the point cloud. Therefore the two
data terms δC and δG have to be transformed to a unified domain for
efficient combination. We define TC and TG the two transformations
that transform δC and δG (respectively) from their initial (different)
domains to a unified one that ranges between 0 and 1. For any two
regions ri and rj , (i, j) ∈ [0;m− k]2, our proposed distance value
δ(ri, rj) between ri and rj can be written as:

δ (ri, rj) = TC (δC (ri, rj)) + TG (δG (ri, rj)) . (3)

Note that the distance metric in (3) is modular: any of the compo-
nents might be changed according to the specific needs of an appli-
cation. In this work we present and evaluate some variations that we
have designed for a general purpose segmentation.

2.2.1. Color-data term

To better match human color perception, Lab color space and
the standard CIEDE2000 color difference have been chosen [18].
Given two regions ri and rj , we compute the mean values of the
L*a*b* components Mi =

(
µ(L∗,i), µ(a∗,i), µ(b∗,i)

)
and Mj =(

µ(L∗,j), µ(a∗,j), µ(b∗,j)

)
, and we define the distance between the

two labels as

δC (ri, rj) =
∆E00 (Mi,Mj)

R∆E00

, (4)

where ∆E00 is the CIEDE2000 difference [18] andR∆E00 its range.

2.2.2. Geometric-data term

For any two adjacent regions ri and rj , we denote by ~xi and ~xj
their respective centroids, by ~ni and ~nj their unit normals, and by
~cij the unit vector laying on the line connecting the two centroids.
More precisely ~cij =

~xi−~xj
‖~xi−~xj‖ . Figure 2a shows a graphical rapre-

sentation of this formalism. We define the geometric data term δG

(a) (b) (c)

Fig. 2: Geometrical representation of two regions and their features
(a) and illustrations of convex (b) and concave (c) angles.

between the two regions ri and rj as:

δG (ri, rj) =
‖~ni × ~nj‖+ |~ni · ~cij |+ |~nj · ~cij |

3
, (5)

where ‖~v‖ indicates the magnitude of the vector ~v, while |a| is the
absolute value of the scalar a. This distance function exploits the
properties of cross and dot products between unit vectors for which

‖~v × ~u‖ =

{
0 iff ~v ‖ ~u
1 iff ~v ⊥ ~u

, and |~v · ~u| =

{
0 iff ~v ⊥ ~u
1 iff ~v ‖ ~u

. (6)

Therefore, the geometric data term returns maximum similarity if
the two normals are parallel to each other and at the same time they
are both perpendicular to the line connecting the two centroids; i.e.,
if ri and rj are coplanar.

Stein et al. [1] proposed a segmentation method based on the
property that faces of the same object usually make convex angles
with each other, while two different objects touching each other will
produce most of the time a concave angle. This property is observed
and exploited also in [13, 19]. Figure 2b and Figure 2c show graph-
ical representations of convex and concave angles. We designed a
variation δ′G of our proposed geometric data term that also incor-
porates a convexity criterion inspired by the one proposed in [1].
Namely, δ′G is defined as:

δ′G =

{
1
2
δG if ~ni · ~cij − ~nj · ~cij ≥ 0

δG otherwise
. (7)

In other words, if the angle between the normal vectors of two ad-
jacent regions is convex, we are halving the geometric data term
presented in (5) computed for the two regions as it is more probable
that they are parts of the same object. Note that ~ni ·~cij−~nj ·~cij ≥ 0
if and only if the angle between the normal vectors of the regions ri
and rj is convex.

2.2.3. Unification transformations

Both δC and δG have ideally range [0, 1], but they might have a dras-
tically different dynamic and distribution when applied to different
point clouds. For this reason, if they are merged without first apply-
ing a proper transformation, their values can’t be reliably compared.
Therefore, the goal of TC and TG is to transform δC and δG (respec-
tively) so that, when they are merged together, none overcomes the
other. Moreover, the two transformations should respect the follow-
ing constraints:

1. TC : R → [0, c] and TG : R → [0, g] for some c, g ∈ R+
0 |

c+ g = 1.

2. TC and TG should be monotonically increasing.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

(c)

Fig. 3: Histograms of the distribution of (a) δC and δG, (b) δC and
δG after being transformed with Adaptive Lambda, and (c) δC and
δG after being transformed with Equalization.

A possible choice might be to use some value λ ∈ [0, 1] as
weight; in that case we will have TC(a) = λa and TG(b) =
(1− λ) b. Since we would like it to adapt automatically we pro-
pose to define the value of λ as a function of the distributions of
the two components. We assume that δC and δG have two unknown
distributions with known means µC and µG, respectively. We then
define λ = µG/(µC + µG), so that λµC = (1− λ)µG. We call
this pair of transformations Adaptive Lambda.

Another option might be instead to use TC and TG to apply
equalization to δC and δG; this way they will cover the whole range
[0, 1] with uniform distribution. Given a function f ∈ [0,m] having
unknown distribution, we can sample f on an input of n elements
obtaining a sample distribution f̄ . Let’s call ni the number of occur-
rences of the output i ∈ [0,m], pi = p(f = i) = ni

n
the frequency

of the output i, and cdf f (i) =
∑i
j=0 pj the cumulative distribution

function of f . Then, to equalize the distributions of δC and δG we
have to impose TC (a) = 1

2
cdf δC (a) and TG (b) = 1

2
cdf δG(b).

The division by 2 is used to bring the range of both transformations
in [0, 1

2
], so that when they are summed according to (3) they respect

the Property 3 defined at the beginning of this section. We will call
this pair of transformations Equalization.

Figure 3 shows the effect of Adaptive Lambda and Equalization
on two sample distributions for δC and δG. It can be noticed how
Adaptive Lambda projects the two distributions onto one reference
Gaussian distribution, while Equalization projects δC and δG onto
the uniform distribution.

3. COMPUTATIONAL COMPLEXITY

Consumer-grade depth cameras generate dense 3D data at 30 fps
from a hand-held sensor. The amount of points in the built 3D cloud
of points is thus potentially enormous. For any 3D point cloud seg-
mentation to be usable in practice with 3D models generated using a
consumer-grade depth camera, the method has to scale well to large
size point clouds. In this section, we discuss in details the time com-
plexity of our proposed method with respect to the size of the point
cloud. Our inputs are the point cloud P with N points and the num-
ber of supervoxels m (m� N ).
Initialization The starting point is to compute the m supervoxel
partition. For this purpose, we use VCCS that converges in O(N)
operations [16]. The three features of a region (i.e., centroid, normal
vector and mean color) used to compute δ need to be evaluated once
per region. Computing these features for all regions in the initial

partition takes O(N) time. This is because, according to Eq. (1),
no two regions are overlapping and each point needs to be consid-
ered only once. For each pair (ri, rj) of adjacent regions comput-
ing δ(ri, rj) takes O(1) operations because all features are already
computed. The following update ofWm also takesO(1) operations.
For each region in the current partition there is a limited number of
adjacent regions. Therefore, the number of adjacent regions is dom-
inated by N and building the initial set Wm (and thus the graph
Gm) takes O(N) operations. As a consequence, the full initializa-
tion pipeline takes O(N) operations. Note that the set of weights
Wm can be sorted while being built to fasten computations in the
clustering loop.
Clustering loop At the k-th iteration, identifying the pair (rq, rp)
of regions with minimum weight takes O(1) operation because
Wm−k is sorted. When merging the two regions rp and rq , the
three features are recomputed, which takes O(s) operations, where
s = |rp ∪ rq|. Moreover, the weights wpj for each pair (rp, rj) of
adjacent regions is updated. This takes O(1) operations as there is
a limited number of regions adjacent to rp. Then the recomputed
weights need to be inserted in the sorted list of weights Wm−k.
Inserting an element in a sorted data structure can take as lower
as O(logn), in case of self-balancing B-tree; in our case n is the
number of regions (so m − k, at iteration k). Therefore, the over-
all cost of the clustering step is O(m(h + logm)), where h is
the maximum number of points in a region. m is considerably
smaller than N , while h is at most N : m � N and h < N .
Then O(logm) � O(N), O(h + logm) < O(N) and thus
O(m(h + logm)) < O(N). In other words, the overall cost is
dominated by O(h), and therefore it is still in the order of O(N).

In conclusion, the overall computational cost required for the
proposed algorithm is linear with respect to the size of the point
cloud. This means that our proposed method is promising for scaling
up to large-scale 3D point clouds.

4. EVALUATION

To objectively assess quality of a segmentation, we used the Object
Segmentation Dataset (OSD) [20] included in the PCL because it is
the only dataset for 3D segmentation having ground-truth informa-
tion publicly available, to our knowledge.

OSD contains 110 point clouds, divided in a training set of 45
and a test set of 65. Each of these point clouds captures a scene
where a variable number of objects is present on the surface of a
table, in some scenes stacked one on top of the other or occluding
each other. Each scene is provided together with ground-truth manu-
ally segmented by a human. Running our algorithm over this dataset
allows us to compare our results with those obtained by two other
recent methods in the state-of-the-art: one is [1] and the other is [8].
The former, as already mentioned earlier, uses supervoxels like ours,
but, differently from ours, it clusters supervoxels exploiting only ge-
ometric information. The latter employs edges information to obtain
a first estimate of segmentation and then refines it using topological
neighborhood. We remark that although OSD allows us to objec-
tively compare performances with other state-of-the-art techniques,
scenes in that dataset are quite similar between each other, under
controlled environments and obtained from single RGB-D images.

To objectively evaluate results on the dataset, we employed the
metrics below, both of which were also used in [1, 8]. The ground-
truth G = {gi}Ki=1 is the set of K human annotated regions gi.
Weighted Overlap For each region gi, among the regions ob-
tained by the segmentation to be tested, the region having the maxi-
mum overlap with gi is selected as its best estimate. Then, we define



Table 1: Average scores obtained on OSD using the threshold t
yielding the best result on the training set. Results of state-of-the-art
techniques are provided for comparison. All scores are percentages.

t WOv tp fp fn

Stein et al. [1] 87,00 90,70 4,30 9,30
Ückermann et al. [8] - 92,20 1,90 7,80
Only color 0.10 85,34 87,10 7,03 8,60
Only geometry 0.29 86,91 89,45 6,14 7,96
Equalization δG 0.94 89,39 91,59 5,37 8,41

δ′G 0.94 89,61 92,08 5,27 7,92
Adaptive λ δG 0.18 92,96 94,00 2,43 6,00

δ′G 0.15 92,98 94,36 2,39 5,64

Ovi = maxrj {|gi ∩ rj | / |gi ∪ rj |}. The Weighted Overlap (WOv)
is computed as [14]: WOv = 1∑

i|gi|
∑
i |gi|·Ov i. The range of the

above metric is [0, 1], where 1 correspond to the perfect overlap (i.e.,
the segmentation is the exact same partition as the ground-truth).

True- and False-positive rates We denote by si the region in the
segmentation having maximum overlap with the region gi in G. For
each gi, we define the true positive points by TP i = gi ∩ si while
we define the false positive points by FP i = si \ TP i. We also
define the false negative points by FN i = gi \ TP i. Finally the
average scores over all gi inG are defined as [8]: tp = 1

K

∑
i
|TPi|
|gi|

,

fp = 1
K

∑
i
|FPi|
|ri|

, and fn = 1
K

∑
i
|FN i|
|gi|

. They all have [0, 1] as
range, but for tp higher is better, while for fp and fn lower is better.

As explained in Section 2.1, the proposed algorithm has the
property to construct a whole hierarchy of segmentation ranging
from m regions (i.e., the starting number of supervoxels) to 2 re-
gions in terms of the dendogram. This dendogram needs to be cut
at a proper point to obtain the segmentation. There are many ways
to determine this cutting criterion. In our case, we simply stopped
our algorithm when minWm−k ≥ t, for a certain threshold t. We
learned the best threshold for this dataset over the training set and
then we evaluated the performance using that threshold over the
whole dataset. To this end, we have run our algorithm on the training
set using all values of t ∈ [0, 1] with an increment of 0.01. Then we
have taken as the best t the one giving the best average tp score over
the training set. The value m was instead set to 250.

Table 1 illustrates the performances of the algorithm using the
four different variations on the distance metric detailed in Sec-
tion 2.2: using the geometric metric δG in its simple form or the
metric weighted according to the convexity (i.e., δ′G); and both
the transformations, Adaptive Lambda and Equalization. Also, re-
sults obtained when using only the color-data term δC and only the
geometry-data term δG are presented. Our results are compared also
with those obtained by [1] and [8] as presented in their respective
papers. For [1] the parameters used are v = 0.5, s = 2, nfilter = 3
and βthresh = 10, while for [8] n = 6 and θmax = 0.85.

We observe that all results are in line with, when not better than,
the state-of-the-art ones. Adaptive Lambda performs better than
Equalization. This suggests that δC and δG distributions are impor-
tant to segmentation and equalizing them (i.e., projecting them onto
the uniform distribution) results in a loss in performance. Incorpo-
rating weights based on the convexity of the angles slightly improves
the performance. The gain obtained by δ′G over δG however is very
small and could vary from domain to domain, given its hypothe-
sis on the object shapes. So the use of δG might be preferred for

Fig. 4: Three sample segmentations; the first column hosts the orig-
inal point clouds, the second the results of our segmentation using
Adaptive Lambda and δ′G, the third the ground-truths.

some applications. In all cases the metric proposed outperforms the
use of only one of the two components. The distance metric using
Adaptive Lambda decisively outperforms the state-of-the-art meth-
ods. This difference in performance is statistically significant: we
performed t-tests on the hypotheses that our technique using Adap-
tive Lambda and δ′G achieves better results than any of the other test
candidate; all hypotheses are confirmed with α = 0.01 (significance
level), and in many cases even with α = 0.005. We also performed
t-test on the hypothesis that the fp rate obtained by [8] is statistically
lower than ours; this hypothesis is rejected (not confirmed even with
α = 0.05). It is also important to remark that these performances are
obtained using a simple learning algorithm for the threshold; using a
more refined learning strategy is expected to improve even more the
performances of our method.

In terms of running time, the C++ implementation of the algo-
rithm used for the evaluation process is able to segment 307,200
points in 1140 ms on average, which is enough for most real-time
robotic applications, e.g., robot grasping [21]. Moreover, the im-
plementation used doesn’t exploit any parallel computation at the
moment, although many parts of the algorithm may be easily par-
allelized. Any parallel implementation should lead to a consid-
erable gain in running time. The machine used has an Intelr

CoreTM i7@2.20GHz CPU.
In Figure 4, three different examples of segmentations obtained

by our algorithm are shown. It can be noticed how, even in complex
scenes, our algorithm is still able to segment all the different objects.
As the complexity of the scene increases, however, it tends to sepa-
rate faces of the same object. This might arise from the fact that the
training set of the dataset does not contain complex scenes while the
test set does. Accordingly, the threshold learned on the training set
results a little too low for scenes with much higher complexity. It
should be possible to address this issue using a more robust learning
strategy for the threshold.

To address the effectiveness of our proposed method in more
challenging scenes, we also tested it on the KinFu dataset proposed
by Kaparthy et al. [13]. It represents many indoor 3D scenes ob-
tained from a RGB-D video stream processed with the KinectFu-
sion algorithm to obtain a single fused point cloud. The dataset is
more challenging than OSD in that it has a greater number of var-
iegate objects in the scene though it has no ground-truth. Figure 5
illustrates few scenes in KinFu together with our segmented outputs



Fig. 5: Results on KinFu dataset using Adaptive Lambda and δ′G

(with Adaptive Lambda and δ′G) using the same threshold t = 0.15
that was learned on the different dataset OSD. We show only a qual-
itative result due to the absence of ground-truth for KinFu.

5. CONCLUSIONS

We have presented a novel algorithm tailored for segmenting 3D col-
ored point clouds. The technique starts by dividing the point cloud
into supervoxels; then clusters them using a hierarchical approach
driven by a metric of our design which merges both color and geo-
metric information to assess the similarity of adjacent regions. The
contribution of the proposed approach is two-folded: the algorithm
is fast, thanks to its complexity linear to the size of the input, and
it is able to achieve performances better than those in the state-of-
the-art. Another important contribution of this work is the study of
a modular distance metric for 3D point clouds and the evaluation of
the performances of some of the possible variations of the proposed
metric. The importance of the proposed merging criteria is indeed
confirmed by increased performances when compared with the use
of color or geometry alone. Finally, we remark that our proposed
metric, though evaluated in an iterative segmentation framework in
this paper, is general enough to be considered for use in other state-
of-the-art frameworks such as graph-based approaches. Investiga-
tion in such direction is left for future work.
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