
International Journal of Applied Psychology 2016, 6(3): 64-69 

DOI: 10.5923/j.ijap.20160603.03 

 

Age Differences of Gaze Distribution during Pedestrian 

Walking in a Virtual-Reality Environment 

Otmar Bock
1,*

, Paolo Riccardo Brustio
2
, Steliana Borisova

3
 

1Institute of Physiology and Anatomy, German Sport University, Cologne, Germany 
2Department of Psychology, University of Torino, Torino, Italy 

3Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria 

 

Abstract  The gaze pattern changes in old age, not only during artificial laboratory tasks but also during quasi-natural 

behavior. We have recently reported that older adults, walking in a virtual reality pedestrian precinct, spent longer time 

looking at pedestrian traffic lights than young adults did (Bock et al, 2015). We have interpreted this age-related change as a 

compensatory strategy, and we now analyze whether this strategy might be potentially hazardous in that it withdraws gaze 

from other regions that are critical for safe walking. Seventeen young and 16 older adults walked on a non-motorized 

treadmill linked to the 3D model of a pedestrian precint. The model was displayed on a monitor ahead, such that participants 

felt as if walking through the simulated world. Along their way, participants met a range of familiar objects such as pedestrian 

traffic lights, oncoming pedestrians and cats crossing their path. Eye position was recorded by a video-based system. We 

found that compared to young adults, older ones looked longer at regions of high behavioral relevance and less long at regions 

of low behavioral relevance. We conclude that looking longer at relevant regions might be a strategy for compensating central 

processing deficits, but this strategy may not pay off when an unexpected threat emerges in a seemingly irrelevant region. 
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1. Introduction 

Visual information plays an important role for locomotion: 

it allows us to navigate through the environment (Patla, 

Niechwiej, Racco, & Goodale, 2002) and to detect potential 

hazards along the way (Zietz & Hollands, 2009) (Land & 

Tatler, 2009). This seems to be particularly relevant in old 

age, where the risk of falls and fractures increases (Lord, 

2006; Owsley & McGwin, 2004), especially during 

locomotion (Berg, Alessio, Mills, & Tong, 1997; Kelsey et 

al., 2010). However, visual inspection of the environment 

might be degraded in old age because of impaired gaze 

control: Saccades slow down and become less accurate 

(Bono et al., 1996; Paquette & Fung, 2011), more time is 

spent looking at fewer objects (Maltz & Shinar, 1999; Bao & 

Boyle, 2009), and it becomes more difficult to suppress 

undesired saccades (Butler et al., 1999; Beurskens & Bock, 

2012). These ge-related impairments are not limited to 

artificial laboratory tasks since they can also be observed 

under quasi-natural conditions, when walking while 

avoiding obstacles on the floor (Keller Chandra et al., 2011; 

Chapman and Hollands, 2006b; Di Fabio et al., 2003; 

Paquette and Vallis,  2010),  climbing  stairs  (Zietz and  
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Hollands, 2009; Di Fabio et al., 2003) or walking while 

observing pedestrian traffic lights (Bock, Brustio, & 

Borisova, 2015).  

In the latter study, young and older participants walked at 

a self-determined speed through a shopping precinct 

rendered in virtual-reality; they occasionally encountered 

pedestrian traffic lights that either remained green or turned 

red. We observed that compared to young persons, older 

ones directed their gaze at the traffic lights for longer periods 

of time and more frequently, such that the proportion of time 

spent looking at the traffic lights rather than elsewhere was 

higher than in young persons. Specifically, that proportion 

gradually increased from about 25% to about 50% as young 

persons approached the traffic lights, but it was steadily 

about 50% in older ones. We interpreted the prolonged 

fixation of traffic lights in old age as a compensatory strategy, 

to overcome deficits of spatial orientation and movement 

inhibition (in case the lights turn red). We further argued that 

this strategy carries a potential hazard, since prolonged 

fixation of traffic lights may prevent older pedestrians from 

noticing other visual information that might be relevant for 

walking, such as uneven pavement or fellow pedestrians on a 

collision course. The purpose of the present work is to 

scrutinize this view. Rather than collecting new data, we 

decided to re-analyse the existent data but this time consider 

the distribution of gaze in areas of visual space other than the 

traffic lights. Our working hypothesis was that older persons 

direct their gaze for a shorter time not only at regions of 
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space that are irrelevant, but also at regions that are critical 

for safe walking. 

2. Methods 

Seventeen young (age range 20-30, mean 24.51, s.d. 3.58, 

8 females) and sixteen older persons (age range 60-80, mean 

66.15, s.d. 5.73, 6 females) participated. All were naïve to 

the purposes of our study, lived independently in the 

community and reported to be free of musculoskeletal, 

sensorimotor, cognitive or visual impairments, except for 

corrected vision. Since all arrived at the university campus 

unaccompanied, reached our research facility at the 

agreed-upon day and time, navigated through the facility 

hallways and staircases without help, and properly followed 

our verbal instructions, we concluded that they were in good 

physical and mental health (cf. Beurskens & Bock, 2013; 

Bock et al., 2015). All participants signed a written informed 

consent which was pre-approved by the Ethics committee of 

the German Sport University. 

As described in detail elsewhere (Bock et al., 2015), 

participants walked on a non-motorized treadmill 

(Christopeit Pro Magnetic) at their self-selected speed. 

Treadmill movement was registered, and the signal was used 

to drive the rendering of a 3D virtual pedestrian precinct 

displayed on a 60’ TV screen located a t eye level 130 cm 

ahead. Thus, the virtual environment moved fast, slow or 

stopped as the participants walked fast, slow or stopped, 

respectively. The participants’ field of view and gaze 

direction were registered with a head-mounted tracking 

system (Mobile Eye XG, Applied Science Laboratories, 

Bedford, USA) with a sampling rate of 30 Hz and accuracy 

of 0.5 to 1.0 deg. 

To make the virtual walk more realistic, participants 

encountered a variety of objects in the virtual precinct such 

as pedestrian traffic lights, oncoming pedestrians, trees, 

mailboxes, oncoming and crossing cats, windblown 

newspapers and shops with various window displays. Some 

of these objects required a locomotor response (e.g. stop if 

pedestrian traffic lights turned red or if a cat crossed the path), 

others required another response (e.g., spell out the gender of 

oncoming pedestrians), and yet others required no response 

(e.g. mailboxes along the way). The layout and length of the 

virtual precinct, as well as the location of objects 

encountered along the way, was identical for all participants. 

Depending on individual walking speed, it took participants 

up to eight minutes to complete the walk. The following time 

intervals were selected for gaze analysis: 

- TL: time starting when green pedestrian traffic lights 

became visible ahead (size > 10 mm on the screen) and 

ending when the green lights disappeared in the visual 

periphery. The length of this interval was 8.48 ±1.66 s, 

in dependence on walking speed. There were three TL 

per participant, intermixed with three encounters of 

traffic lights which turned red as participants 

approached (analyzed in our earlier study). 

- OP: time starting when an oncoming pedestrian became 

well discernible (size > 10 mm) and ending 2 later. 

There were two OP per participant; both times, the 

oncoming pedestrians passed by without crossing the 

participants’ path. 

- CC: time starting when a cat crossing the participants’ 

path suddenly appeared on the left and ending 2 s later, 

when the cat had completed its crossing. There were 

four CC per participant. 

In each analysed video frame, we defined a main region of 

interest (MRI), which was the traffic lights in TL, the 

oncoming pedestrian in OP and the cat in CC. The top part of 

Fig. 1 shows MRI in black. We further defined an additional 

region of interest (ARI), which consisted of the pavement in 

all analysed intervals, and additionally of an oncoming 

pedestrian who passed by during two of the three TL 

intervals. ARI is shown in grey at the top of Fig. 1. The 

remaining part of the scenery constituted the excess region of 

interest (ERI), left while at the top of Fig. 1. 

We calculated the following gaze parameters for each of the 

above intervals and regions:  

- Total gaze time (cumulative duration of all glances at the 

specified region);  

- Relative total gaze time (100* (Total gaze time / duration 

of registration)). 

For a more detailed analysis of the gaze in regions of 

behavioral relevance, we also calculated the following gaze 

parameters for MRI and ARI: 

- Longest glance time (duration of the longest glance at 

the specified region); 

- Number of re-glances (count of gaze returns from 

elsewhere to the specified region); 

- Mean glance time (Total gaze time / (1 + number of 

re-glances)); 

All parameters were averaged across repetitions, and the 

outcome was submitted to analyses of variance (ANOVAs) 

with the between-factor Age (young, older) and the 

within-factors Interval (TL, OP, CC) and Region (MRI, ARI, 

ERI).  

3. Results 

The means and standard deviations of gaze parameters 

from young (black lines) and older participants (grey lines) 

during their encounters with traffic lights, an oncoming 

pedestrian and a crossing cat are plotted in Figure 1 A. Total 

gaze time in MRI was higher in older than in young adults 

during TL, but not during OP or CC; no substantive age 

differences of total gaze time in ARI and ERI can be 

discerned. Findings are similar for gaze time percentage, 

longest glance time, number of re-glances and mean gaze 

time. The ANOVA outcome is summarized in Table 1. 
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             Interval: TL             Interval: OP          Interval: CC        Mean of all 3 intervals 

     

 

Figure 1.  Schematic screen shots, as seen a participant who encountered traffic lights (top left), an oncoming pedestrian (top middle) and a crossing cat (top 

right). The main region of interest (MRI) is shown in black, the additional region of interest (ARI) in grey, and the excess region of interest (ERI) is the 

remaining area. Graphs show the means and inter-individual standard deviations of gaze parameters in each of the three regions of interest, separately for 

encounters with traffic lights (left), oncoming pedestrians (middle left), and crossing cats (middle right), as well as jointly across all three types of encounter 

(right). Data of young participants are plotted in black, and those of older ones in grey 
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Table 1.  Outcome of three-way ANOVAS with the factors Interval (TL, OP, CC), Region (MRI, ARI, ERI) and Age (young, older). Rows represent 
dependent variables, columns ANOVA effects, and cell entries are F-values with degress of freedom in parentheses. Degrees of freedom differ between 
variables since a different number of data points was analysed. For relative total gaze time, effects of Age and Interval*Age couldn’t be calculated as relative 
time added up to 100% in either age group across all three intervals 

 Interval Region Age I*R I*A R*A I*R*A 

Total gaze time 
417.11*** 

(2,56) 

25.27*** 

(2,56) 

2.15n.s. 

(1,28) 

.55 n.s. 

(4,112) 

2.15 n.s. 

(2,56) 

13.01*** 

(2,56) 

9.86*** 

(4,112) 

Rel. total gaze time 
- 

- 

50.70*** 

(2,56) 

- 

- 

16.37*** 

(4,112) 

- 

- 

6.29** 

(2,56) 

1.04 n.s. 

(4,112) 

Longest glance time 
66.83*** 

(2,54) 

129.56*** 

(1,27) 

9.85** 

(1,27) 

2.77 n.s. 

(2,54) 

7.58** 

(2,54) 

15.77*** 

(F1,27) 

4.69* 

(2,54) 

# Re-glances 
103.11*** 

(2,32) 

5.38* 

(1,16) 

0.00 n.s. 

(1,16) 

23.55*** 

(2,32) 

0.30 n.s. 

(2,32) 

0.78 n.s. 

(1,16) 

1.20 n.s. 

(2,32) 

Mean gaze time 
1.34 n.s. 

(2,54) 

122.28*** 

(1,27) 

3.42 n.s. 

(1,27) 

3.06 n.s. 

(2,54) 

.54 n.s. 

(2,54) 

12.56** 

(1,27) 

1.49 n.s. 

(2,54) 

 

With total gaze time as dependent variable, ANOVA 

yielded several significant effects. Of interest for the present 

study are significant effects that include the factor Age, i.e, 

Region * Age and Interval*Region*Age. The former 

interaction term was explored by post-hoc decomposition 

with Tukey`s HSD tests; total gaze time in MRI was 

significantly higher for older adults compared to young ones 

(p < .001), while total gaze time in ARI and ERI was similar 

for both age groups (both p > .05). The later interaction term 

arose because age differences during TL were much more 

ronounced than those during OP and CC (see Fig. 1 A-C). 

With relative total gaze time as dependent variable, 

ANOVA revealed one significant effect of interest, Region * 

Age. As depicted in Fig. 1H, relative gaze time percentage in 

MRI was higher in older adults than in young ones, while 

relative gaze time in ARI and ERI was higher in young adults 

than in older ones ( Tukey`s HSD: all p < .001).  

With longest glance time as dependent variable, 

significance of interest emerged for Age, Interval * Age, 

Region * Age and the three-way interaction. Fig. 1L 

demonstrates that older participants looked longer than 

young ones at MRI but not at ARI and accordingly, Tukey`s 

HSD tests showed a significant age difference for MRI    

(p < .001) but not for ARI (p > .05).  

With number of re-glances, ANOVA revealed no 

significant effects that included Age. Fig. 1P illustrates that 

the number of re-glances into MRI and ARI was similar in 

both age groups (p > .05). With mean gaze time, ANOVA 

yielded significance of interest for Region * Age only. As 

shown in Fig. 1T, mean gaze time of older participants was 

higher than that of young ones in MRI but not in ARI, as 

confirmed by Tukey’s HSD tests (MRI: p < .05; ARI: 

p > .05). 

Summing up, older participants had higher values for all 

gaze parameters in MRI, when compared to young 

participants. The age-related increase was 46.52% for total 

gaze time, 21.97% for relative total gaze time, 42.88% for 

longest glance time, 16.77% for the number of re-glances, 

and 30.64% for mean glance time. 

4. Discussion 

The present study re-analysed data on gaze behavior in a 

quasi-natural setting, where participants interact with their 

environment to achieve ecologically valid goals. Having 

shown before that older persons look longer at upcoming 

green pedestrian traffic lights than young persons do, we 

now explore whether a similar preference exists for other 

events besides traffic lights, and whether such a preference 

reduce the inspection of other, behaviorally relevant regions 

of visual space.  

The analysis shows that older persons look longer than 

young ones not only at upcoming traffic lights, but also at 

pedestrians passing by and cats crossing the path; however, 

the age difference is less pronounced for the latter two events. 

It therefore appears that age differences are particularly 

pronounced when an object might suddenly change – the 

green lights might turn red – and/or when an object has high 

behavioral relevance – missing the red lights is potentially 

life-threatening. In either case, longer glances at traffic lights 

would not be attributable to an age-related enhancement of 

the “visual grasp reflex” (Rafal et al., 2000; Bos & Machado 

2013), but rather to a strategic choice for devoting a higher 

portion of one’s dwindling processing resources to highly 

relevant objects. In other words, longer glances at traffic 

lights would signify compensation rather than decay. 

The presumed compensation comes at a cost, however, 

since less time remains to look at other regions of visual 

space. The main purpose of the present study was to find out 

whether this reduction of gaze time is limited to regions of 

little behavioral relevance (ERI), or rather includes regions 

that are relevant for maintaining balance (ARI). We found 

that older participants looked slightly less long at ERI and 

ARI than young ones; however, the age difference didn’t 

reach statistical significance, which suggests that at least part 

of the increased MRI viewing is compensated not by 

reducing ERI and ARI viewing, but rather by walking more 

slowly. Indeed, when total gaze time is expressed as 

percentage of the registration time, the age difference for 
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gaze time in ERI and ARI became significant. 

The above pattern of finding revives a long-known 

question: should performance of age groups be compared in 

absolute or rather in relative terms (Somberg & Salthouse, 

1982)? We propose the following answer with respect to the 

present data: older persons compensate the reduction of their 

processing resources by slowing down (Salthouse, 1996), 

and therefore need longer than young ones to establish the 

presence and nature of an obstacle in their walking path. 

Assuming that walking speed is a valid indicator of this 

age-related slowing, relative time is a better indicator of 

older persons’ ability for dealing with obstacles in ARI. If so, 

our data would indicate that older participants compensated 

their prolonged processing of MRI by abbreviating the 

processing of both other regions, ERI and ARI. Thus, 

compensatory extension of MRI processing would indeed 

carry a behaviorally relevant cost: although older 

participants had virtually the same time in ms to process 

information in ARI, they had less time to process that 

information in the same depth as young ones: young 

participants spent 24.33% of their gaze time in ARI but older 

participants only 16.76%, a reduction of (x - y) / x * 100 = 

31.26%. This age-related shortage of processing time may 

contribute towards the increasing incidence of falls in older 

age (WHO 2008), in particular when it is aggravated by older 

persons’ difficulties for concurrently processing two streams 

of visual information (Beurskens & Bock, 2012), in this case 

one stream originating in MRI and the other in ARI. Future 

research should address these implications of the present 

study.  

Analyses of the remaining gaze parameters indicate that in 

older participants, both the longest and the mean gaze time in 

MRI increased in proportion with total gaze time in MRI, 

while the number of re-glances into MRI didn’t change; this 

outcome suggests that the characteristics of visual inspection 

were preserved in older age, except for a scaling in time. 

Our findings fit well with earlier work on age-related 

changes of gaze behavior in quasi-natural settings. Older 

persons were found to glance earlier, and for longer time, at 

stairs they were going to negotiate (Zietz and Hollands, 2009; 

Di Fabio et al., 2003) as well as at obstacles they were going 

to step over or avoid (Keller Chandra et al., 2011; Chapman 

and Hollands, 2006b; Di Fabio et al., 2003; Paquette and 

Vallis, 2010). Our data extend those findings to behaviorally 

relevant objects that are not located on the floor, and 

therefore argue against the view that age-related gaze 

changes are due to reduced attention in the lower visual field 

(di Fabio et al., 2005). It rather appears that the deficit is 

more general: any objects of behavioral relevance seem to 

attract older persons’ gaze more strongly than that of young 

ones, and the attraction is more pronounced when behavioral 

relevance is higher.   
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